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ABSTRACT EEG-based emotion classifiers have the potential of significantly improving the social
integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the
acute stages of Alzheimer’s disease. Emotion classifiers have historically used software on general-purpose
computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are
to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware
accelerators that would enable near real-time classification and extended periods of operations. In this
article, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network,
named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG
signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and
pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of
emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with
an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific
training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys
Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of
11GOps/W , a throughput of 1.65GOps that is in line with the real-time specification of a wearable device,
and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its
emotion inference accuracy is competitive with the top software-based emotion detectors.

INDEX TERMS Emotion recognition, EEG, FPGA, machine learning, hardware accelerator, edge AI,
convolutional neural networks, hardware parallelism, pipelining.

I. INTRODUCTION
Patients suffering fromAmyotrophic Lateral Sclerosis (ALS)
or the late stages of Alzheimer’s disease are in a locked-in
emotional state that prevents them from using their facial
features to express emotions. On the other hand, the brain
EEG signals of such patients are not impacted by such state
and continue to contain the information needed to detect
emotional content. The main goal of this article is to prove
the feasibility of a wearable, small footprint, EEG-based
machine-learning device to help these patients communicate
their emotions in real time to their social environment,
particularly their families and care providers. Such device
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is built around a low-power, FPGA-implemented emotion
classifier with competitive classification accuracies for both
the valence and arousal of the classified emotion.

Nowmultiple efforts have beenmade to design EEG-based
software classifiers for emotions ranging from shallow [1]
to deep models, the latter including hybrid combinations of
convolutional neural networks (CNN) for extracting EEG
features and recurrent neural networks (RNN) for analysing
the EEG time series [2], [3], or even an ensemble of CNN
models applied to sub-sampled versions of the same signal to
mitigate EEG non-stationarity [4]. More recent approaches
have been biologically inspired and used models such as
spiking neural networks (SNN) to include spatio-temporal
awareness captured from the EEG data [5]. Prior studies have
either used raw EEG data [6], [7] or specialized EEG features
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such as differential entropy (DE) [8], higher order crossings
(HOC) [9], asymmetrical indices (AIS) [8], or power spectral
distribution (PSD) [1]. Depending on the composition of the
training set, there are two different training paradigms for
emotion classification: subject-independent [10], [11] and
subject-dependent [1], [9]. The machine-learning accelerator
of this article can of course work in either paradigm. But
a distinct contribution of this article is to illustrate the use
of a more recent approach to training that combines the
advantages of both [12].

Despite the increasing research interest in AI-based edge
bio-processors [13], only one single EEG-based hardware
classifier of emotions has been reported [14]. Even though it
uses a CNN, our approach has several distinguishing features,
including:

1) Hardware architecture: Our architecture uses aggres-
sive pipelining to minimize memory footprint, to cohe-
sively bind intermediate values between layers during
their parallel execution, and to improve throughput
with a 14-channel EEG system. The 6-channel EEG
online system proposed in [14], uses global buffers for
storage instead of SRAM, but no pipelining is reported
in the architecture.

2) Resource re-use: Our pipelined architecture achieves
a smaller relative footprint, by improving compute
resource usage with such unique features as CNN
kernel queuing and data buffer swapping, which takes
full advantage of the low data rate of the EEG
sensor.

3) Feature extraction: Our approach fully exploits the
CNN properties by providing smoothened PSD fea-
tures with correlation among consecutive frequency
bins. On the other hand, the CNN reported in [14] skips
these considerations by using traditional frequency
spectrum, sample entropy, and Asymetrical Indices [8].

4) Unbiased validation: In order to ensure comparable
results with the state-of-the-art, we validate our hard-
ware system on the complete DEAP dataset. In [14],
samples whose manual ratings are allocated in the
center of the emotion circumplex are excluded, which
prevents the comparison of the DEAP accuracy with
the state-of-the-art.

5) Diversified validation: We also validate our hardware
system on the Frequency eXpression Dataset (FEXD),
which is another byproduct of this article. FEXD
constitutes the largest EEG frequency data repository
for emotion detection using diverse visual stimuli
such as videos or pictures from the International
Affective Picture System (IAPS). It includes more
isolated evoked experiences and ensures the classifier
functionality on different types of visual stimuli.

6) Hardware accuracies: To the best of our knowledge,
the hardware results we report in this article seems
to be the very first in providing hardware accuracies
for the arousal binary detection problem. The binary

classification of [14] only includes the valence
dimension.

One important contribution of our work is the bench-
marking of several machine learning algorithms for emotion
detection under the same conditions so as to rigorously
justify the BioCNN design decisions. Convolutional Neural
Networks (CNNs) are selected because of their reliability,
flexibility and ability to extract complex features from data.
CNNs are extensively used in many applications, including
computer vision, signal processing, natural language process-
ing, language translation, and any other machine-learning
task, involving large volumes of data with spatially correlated
features. For the particular application of EEG-based emotion
detection, CNNs provide the highest level of detection
accuracy among various machine-learning algorithms, such
as support-vector machines, decision trees, and random
forests. In this article, we architect, design, implement, and
test in hardware a specialized CNN, called BioCNN, that is
optimized for biomedical applications. BioCNN embodies
all the main characteristics required in an AI-based edge
bio-processor. It is robust and reliable, operates in real
time, consumes a modest amount of power, and has the
algorithmic potential to be applied in ECG diagnostic, blood
pressure monitoring, intelligent hearing aid application, and
EEG-based emotion detection [13]. The main focus in
the BioCNN design is optimizing wearability, reliability,
area, low-power, and interactivity. All these features are
achieved by exploiting the relaxed latency constraints in
biomedical applications. The fine-grained flexibility of the
proposed BioCNN architecture and the internal cohesion
between its layers are not easily achieved using a High-Level
Synthesis (HLS) tool such as Mentor’s Catapult.

To summarize, our major contributions in this article are as
follows:

1) We rigorously justify the use of CNN for emotion
detection using extensive benchmarking against other
machine learning algorithms on both public-domain
and in-house datasets.

2) We report on BioCNN, a 14-channel, hardware system
for emotion detection using EEG signals and a
compact, low-power, energy-efficient FPGA imple-
mentation of a CNN inference engine. The system is
designed to operate in real-time on a constrained edge
node.

3) We introduce, implement, and test a novel, holis-
tic architecture for CNN hardware implementation,
including input staging, convolutions, maxpooling, and
output classification. The architecture is based on
aggressive pipelining and hardware parallelism with
the dual goal of maximizing resource re-use and
minimizing memory footprint.

4) We report on two novel algorithms for pipelined max-
pooling and serialized classification processing that
are amenable to compact, energy-efficient hardware
implementation.
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5) We report on the experimental results of implementing
BioCNN on a constrained edge node, namely, Xilinx
Altys FPGA, showing its competitive features in terms
of inference accuracy, low-power consumption, energy
efficiency, real-time operation, and re-use of logic
resources.

This article is a major expansion of our upcoming,
four-page ISCAS 2020 publication [15] with entirely new
sections II, III, and VI, full hardware description in
Section IV, including all the processing stages, and detailed
functional and runtime verification in Section V.

The remainder of this article is organized as follows.
Section II tackles the emotion detection problem, data
collection and the feature extraction process. Section III
explains algorithm selection whereas Section IV presents
the implementation details of the BioCNN architecture.
Section V gives the full details of the BioCNN experimental
results and compare them with the state of the art. The
proposed BioCNN prototype makes extensive use of resource
re-utilization whose various design options are extensively
evaluated in Section VI. Section VII discusses the future out-
look of BioCNN, and the paper is concluded in Section VIII.

II. THE EMOTION DETECTION PROBLEM
An emotion is defined as an episode of interrelated, synchro-
nized changes in the states of all or most of the organismic
subsystems in response to the evaluation of an external or
internal stimulus event as relevant to major concerns of the
organism [16]. The organismic subsystems are the central
nervous system (CNS), neuro-endocrine system (NES),
autonomic nervous system (ANS), and somatic nervous
system (SNS). Data collection in emotion research is based
on eliciting the emotional states through external stimulus
using pictures selected from the International Affective
Picture System (IAPS), and measuring the changes in the
CNS with EEG sensors. The CNS is a good candidate for
measuring emotional features because of its involvement in
the information processing, the execution and the monitoring
of the emotions.

In order to label the samples with the reference classes,
a discrete model called ‘‘Circumplex of Emotions’’ [17] is
used to represent all possible emotional states as a function
of two continuous dimensions: (1) Valence, which provides a
numerical scale formeasuring how pleasant an episode is; and
(2) Arousal, which provides a numerical scale for measuring
the emotion impact or strength. The evoked experiences are
mapped onto the circumplex as illustrated in Fig. 1 using a
discretized version of the manual feedback given by each
participant during the data collection session. These labels are
used for classifier design using supervised learning.

A. DATA COLLECTION
DEAP [1] and DREAMER [10] are two state-of-the-art
datasets for emotion detection. DEAP made available the
manual ratings and the EEG activity of 32 subjects watching

FIGURE 1. Circumplex of the emotions as a function of the Valence and
Arousal.

40 one-minute length videos by using a 32-channel EEG
cap sampling at 512 Hz. DREAMER provides the manual
feedback and the EEG activity of 23 subjects rating 18 videos
with variable length (65-393 s) and using the same 14-channel
EEG cap from our study at a sampling rate of 128 Hz. Both
repositories are used in this article along with our own dataset
of labeled EEG waveforms for a set of 5 subjects.

The local EEG records have been collected using a
low-cost off-the-shelf device, Emotiv Epoc Plus. The objec-
tive of the latter dataset is to increase the number of
samples per subject. This is accomplished with a multitude
of short experiences evoked using the International Affective
Picture System (IAPS) stimulus. Fig. 2 displays one of
the 180 subsets composing such experiments. The fully
automated protocol starts with a RELAX picture lasting for
5 seconds. Next, it displays, the picture to be classified
during 6 seconds. Last, it shows a rating picture called SAM
(Self-Assessment Manikini) [18] that captures the valence
and arousal experienced during the observation stage.

FIGURE 2. Sequence of the visual stimuli.

The three datasets are standardized and normalized into the
single FEXD dataset, which is the largest EEG frequency data
repository for emotion detection, containing 60 subjects and
2194 samples. DREAMER contributes 414 samples (23 sub-
jects sdrexx); DEAP contributes 1280 samples (32 subjects
sdeaxx), and the in-house collection supplies 500 samples
(5 subjects slocxx). The three studies used the 10-20 system
for the electrode placement, so reducing the density to
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the EEG cap with the lowest number (14) of electrodes
makes their features comparable. The voltage measurements
on the scalp are a collection of multiple neurons firing
at different regions, which makes the small mismatches in
coordinates across EEG caps justifiable. All the three datasets
are down-sampled to a common 128 Hz, the signals are
bandpass-filtered to the frequency range 4-45Hz (Brainwaves
θ , α, β, and γ ), which is also the frequency range adopted by
the DEAP dataset. Whereas the delta (δ) waves are somewhat
correlated with the arousal and attention attributes [19], they
are also highly susceptible to slow motion artifacts such as
isolated muscular contractions, which is the main reason
for their removal. The eye blinking artifacts are removed
using a three-step process based on Independent Component
Analysis (ICA). The components are pre-selected based
on their scalp plot activation, their frequency spectrum is
analyzed in search of a smooth decaying trend after an initial
activation, and Event Related Potentials (ERP) images from
the same emotion label are used to identify time-independent
activation patterns.

B. PSD+Welch FEATURE EXTRACTION
FEXD stands for Frequency Emotion eXpression Dataset
because the extracted EEG features are frequency-based.
According to Davidson [20] there is strong correlation
between the Power Spectral Density (PSD) of the EEG
signals and the various EEG frequency bands during the
emotion elicitation process. Further higher frequency bands
contain more information about positive emotions than lower
ones [21]. It has been pointed out that in the context of
the DEAP dataset, negative correlation may exist between
arousal and some of the EEG frequency bands (θ , α,
and γ ), [1]. As for valence, a close correlation exists between
the PSD and all the EEG frequency bands.

The PSD, denoted Sxx(f ), describes how the power of
the EEG time series is distributed over frequency. The
approximation of the true PSD is achieved using

Sxx(f ) =
(1t)2

T
|

N∑
n=1

xne−iwn|2 (1)

which is based on the Discrete Fourier transform of the signal.
A finite window 1 ≤ n ≤ N is considered with the signal
sampled according to xn = x(n1t) for a total time interval of
T = N1t .
Fig. 3 displays the effect of applying PSD to the 14 epochs

received from the EEG cap channels. In this article, emphasis
is placed on the PSD over handcrafted feature extraction
techniques such as Higher Order Crossings (HOC) [9],
Differential Entropy (DE) [8], or Asymmetrical Indices
(AIS) [8]. This is because PSD facilitates the exploration of
training alternatives across the three datasets with different
epoch lengths. Non-handcrafted features are also discarded
due to epoch length differences, which makes the raw data
of the datasets incomparable. In order to estimate the true
PSD, Welch’s method is used. It is an averaging method

FIGURE 3. Frequency domain transformation of the epochs from each
channel.

with overlapping bins that is typically used to reduce the
PSD variance and increase the spatial correlation between
consecutive bands on the frequency axis.

In order to involve all the relevant frequencies during
training, the epoch length per channel is selected to match
the duration in each experiment which ranged from 5sec
to 393sec. The PSD of these multiple length episodes is
down-sampled to a common count of 129 samples for all
experiments without compromising their frequency content.
As a result, each EEG input frame has a set of 14 frequency
series coming from the 14 channels and arranged in a matrix
form. The number of the frequency matrices is equal to the
number of visual stimuli used in the experiments. The size
of each matrix is 14 × 129, where 14 is the number of
electrodes for the Emotiv EPOC+ cap, and 129 is the number
of frequency-domain samples at the sampling rate of 128 Hz.
Once the classifier is deployed, the input EEG frames are
obtained by applying PSD+Welch to 14 rows of a testing
epoch of 128 EEG samples, which are collected every second
through the available channels.

C. AVERAGE PER FREQUENCY BAND
To reduce the dimensionality of the frequency-domain
PSD+Welch features, an average per frequency band (APFB)
is performed. The APFB-compressed data is then used for
training the shallow models, which are often difficult to train
using high-dimensional features. Even though flat averages
discard spectral variations within the frequency bands, they
still give information about the dominant EEG bands under a
particular evoked experience as well as about any significant
fluctuations within each band. The transformation process
leads to the features expressed in Fig. 4. As can be seen,
instead of having a matrix of size 14 × 129 for each visual
stimulus, only a matrix of size 14 × 4 is used. On Fig. 4 the
red, green, blue, and yellow colors refer to the band averages
in θ, α, β, and γ bands, respectively.
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FIGURE 4. Features after the averaging process per frequency band for
each of the channels.

III. ALGORITHM SELECTION
A. ALGORITHM DESIGN
Both unsupervised and supervised learning are explored to
determine the best algorithm from a hardware implementa-
tion viewpoint for the emotion detection problem.

1) UNSUPERVISED LEARNING
Removing the labels from the dataset and exploring its
content is a good approach to achieve familiarity with the
data, and develop intuition of the emotion detection problem.
The first algorithm explored is the k-mean clustering algo-
rithm whose hardware implementation is simpler than other
competing clustering algorithms such as Gaussian Mixture
Models (GMM) or Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). The k-mean algorithm
partitions the data into K clusters whose inter-point distances
are less than the distances of any two pints belonging to two
different clusters. Fig. 5 illustrates the principal component
analysis (PCA) of the final clusters for valence along with
the actual distribution of the valence classes. PCA is used to
visualize the data by plotting the points with respect to the
top three components. The k-mean algorithm describes the
valence classes with an accuracy of 59%, which is illustrated
graphically in Fig. 5 where the predictions are marked as
stars, and the actual values as circles whose colors indicate
the valence value (low of high). The prediction accuracy of
Fig. 5 is not the best that can be achieved but is comparable
to several prior studies such as [1], [11], [22].

When the clustering includes both valence and arousal,
the k-mean prediction accuracy is significantly degraded as
it is clear in Fig. 6, where predictions (Stars) and actual
values (Circles) fail to align across the graph.

2) SUPERVISED LEARNING
The shallow models used for the supervised learning
approach are Decision Tress, Random Forest, and Support

FIGURE 5. PCA of k-mean for two clusters (Left graph) and PCA data with
the real valence tags (Right graph).

FIGURE 6. PCA of k-mean for four clusters (Left graph) and PCA data with
the real emotion tags (Right graph).

Vector Machines with Radial Basis Function (SVM-RBF)
as kernel. A decision tree is a hierarchical graph model
whose branches are generated according to a decision
parameter. A Random Forest is an ensemble of decision trees,
constructed during training phase. The inference phase is
based on the majority voting of the various decision tress.

SVM on the other hand is a large margin classifier,
which uses kernels to construct a separation hyper-plane in a
high-dimensional space that splits the two classes. The kernel
used in this work is the Radial Basis Function (RBF), which
allowsmore irregular boundaries in the original feature space.
An RBF is given by

K (x, x ′) = exp
(
−
||x − x ′||2

2σ 2

)
(2)

where x and x ′ are two points in the feature space, and σ
is the radius of proximity beyond which the kernel value
becomes small. Such RBF kernel is considered a similarity
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TABLE 1. Accuracy comparison of the shallow models using single trial
of 20% out, and 10-fold CV.

measurement as it has a value close to 1 whenever x and x ′

are close to each other.
Table 1 shows the classification accuracy using the APFB

features for a single trial test and a 10-fold cross validation
(CV). Among the group of shallow supervised learning,
SVM-RBF and Random Forest are the best models for the
single trial test. The 10-fold CV is more informative than the
single trial test as it takes into account multiple scenarios
and gives a more realistic evaluation. Unfortunately, all
the shallow algorithms perform poorly in the 10-fold CV,
and only SVM slightly outperforms the Random Forest
classifier while keeping a more consistent behavior for both
validation scenarios. In general, none of the shallow models
performed well. One explanation for this may be that the
APFB features do not capture important variations within
each EEG frequency band that could help in achieving better
classification.

B. CNN ALGORITHM
Convolutional Neural networks (CNNs) are inspired by the
mammal visual cortex and were originally used for image
recognition. In the context of emotion classification, the EEG
frequency series are stacked as 2D images so that a CNN can
be used for EEG feature recognition. CNNs are particularly
suitable for extracting complex features from 2D data, even
in the presence of variations.

FIGURE 7. Architecture of the Valence classifier implemented in
Tensorflow.

Fig. 7 illustrates the architecture of the CNN valence clas-
sifier prototyped in TensorFlow [23]. The frequency frame
is passed to a convolutional layer containing 100 different

kernels, whose convolution results are passed through a
rectifier linear unit (ReLU) function, and down-sampled
using Maxpooling with a 2 × 2 pool window. A dropout
of 20% is applied to the intermediate activations, which
are flattened onto a fully connected network with a single
layer to make it hardware friendly. The dense layer has only
two neurons representing the HIGH and LOW values of the
valence scale. Another CNN architecture similar to Fig. 7 is
used for the arousal scale.

TABLE 2. Accuracy comparison of the CNN model using 10-fold cross
validation.

Using 10-fold cross validation, Table 2 shows that CNN
achieves a significant improvement in classification accuracy
with respect to the shallow models. The model learns a
more accurate representation for the valence when trained
with the DEAP dataset. DEAP and DREAMER work with
different EEG caps and under different experimental setups,
but the model and the standardized frequency features display
an acceptable performance in FEXD, close to the state
of the art. Deeper convolutional neural networks might
reach higher accuracy, but given our hardware objective of
achieving a resource-constrained implementation, the model
in Fig. 7 represents a good trade-off between complexity and
performance.

IV. BioCNN HARDWARE IMPLEMENTATION
The hardware implementation of CNN inference engines
is highly application-dependent and under severe resource
constraints, it is very challenging. Due to the remarkable
success that CNN has achieved in solving the object recog-
nition problem, there has been an explosion in academic and
industry R&D for optimizing the CNNhardware architecture
to achieve stringent specifications on power, performance,
bandwidth, area, and inference accuracy. One promising
trend to accelerate CNN hardware is to take advantage of
the sparsity generated by weight pruning, and rectified linear
unit (ReLU) functions. Another approach is to use data
compression at the cost of including encoding and decoding
stages before and after inference. Further performance gain
can be obtained from using special processing units that
operate only non-zero values [24]. The use of fast arithmetic
algorithms such as theWinogradmultiplier [25] has also been
considered although it results in a more complex activation
stage [26]. A thorough tutorial survey on CNN hardware
acceleration with focus on the convolutional layers is given
in [27].

In this section, we report on the architecture, logic design,
and hardware implementation of a specialized Convolutional
Neural Network, called BioCNN, that is optimized for
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biomedical applications such as EEG-based seizure detection
or EEG-based emotion classification. Such applications have
lower bandwidth requirements than for example, computer
vision tasks. Although high-level synthesis tools such as
Mentor’s Catapult can be used for architectural exploration,
BioCNN has relied on a custom design with the objective
of achieving tight integration between the various CNN
stages without sacrificing the flexibility needed for resource
re-use. Fig. 8 illustrates the flowchart of the proposed
BioCNN, highlighting the re-usability feature of the design as
illustrated by the various return paths. In particular, we point
out the usage of data buffer queuing, CNN buffer queuing,
and pipelined dot products with the goal of maximizing
resource usage while increasing throughput. Other usage of
pipelining, especially in terms of concurrently running the
CNN Phase and the maxpooling phase will be described later
in this section.

FIGURE 8. Data flowchart of the proposed BioCNN model ( [15], Fig. 1(a)).

The overall block diagram of the full system, including
training, is presented in Fig. 9. Components such as the signal
pre-processing module, the feature extraction unit, and the
model training, are implemented offline and off-chip. Model
training is based on the subject-dependent paradigm, where
the data used for training is collected and tested for only one
subject [1], [2].

A. BUFFER FILLING
The pseudo-code describing the filling process is presented
in Algorithm 1. The Buffer Filling module in Fig. 8 receives
the individual activation value (AuxReg) from an internal
memory (Stream) or from the pre-processed signals of the
sensor itself. The first condition (Line 3) is in charge of
moving the input values into an internal array (Struct[0 :
M − 1]) of M elements. Once the array is full (Position
x = M ), Struct is displaced one level down inside the internal
buffer (IntBuff [0 : N − 1][0 : M − 1]) to free resources

FIGURE 9. High-level block diagram of the emotion classifier ( [15],
Fig. 1(b)).

Algorithm 1 Pseudo-Code for the Internal Buffer Filling
1: for b=0 to B-1 do F All Buffers
2: AuxReg=Stream
3: if x<M then F Shift Right
4: Struct[0]<=AuxReg
5: Struct[1]<=Struct[0]
6: Struct[2]<=Struct[1]
7: . . .
8: Struct[M-1]<=Struct[M-2]
9: end if
10: if y < N and x =M-1 then F Shift Down
11: IntBuff[0][0:M-1]<=Struct
12: IntBuff[1][0:M-1]<=IntBuff[0][0:M-1]
13: IntBuff[2][0:M-1]<=IntBuff[1][0:M-1]
14: . . .
15: IntBuff[N-1][0:M-1]<=IntBuff[N-2][0:M-1]
16: end if
17: end for
18: // Start Buffer Processing
19: // Conv
20: // ReLU
21: // MaxPool

for receiving the next row. The process is repeated until the
internal buffer is filled (Position y = N ), which triggers
the next stages marked with green color at the end of the
pseudo-code.

The hardware architecture of this block is illustrated
in Fig. 10. The horizontal and vertical displacements are
triggered by the ‘‘Shift Right’’ (1.2) and ‘‘Shift Down’’ (1.3)
signals, respectively. These signals are controlled using the
input value coordinates (x, y) so as to ensure proper filling
without running into overflow exceptions.

The 128 Hz sampling frequency of the EEG cap is
considerably lower than the 100MHz clock used to operate
the classifier. The internal buffer module plays a crucial role
in matching the source data rate with the CNN computational
needs and in achieving the goal of real-time emotion
detection.

B. RECEPTIVE FIELD UPDATES
The receptive field in Fig. 11 corresponds to a dynamical
structure (2.5) slided and filled up with the individual
activations, at every valid position (2.1) of the input frame
during the convolutions. The valid positions are represented
by the black arrows (2.1) and are determined by the stride
of the convolution. The stride movements are selected to be
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FIGURE 10. Hardware diagram of the internal filling module receiving an
input EEG frame.

FIGURE 11. Hardware structure of the receptive field (a) Individual
activations at valid positions (b) Receptive field updates (c) Flattened
window activations.

vertical (2.1) so as to complete all the possible calculations
before moving to the next buffer. The calculations at the
right edge are executed by extending the buffer to include the
shared overlap (2.2) between two consecutive buffers. The
overlap required for a 3 × 3 kernel is one column that is
obtained from the adjacent buffer.

The individual selectors (2.4) are in charge of extracting an
individual value to fill up the receptive field (2.5). There are
as many individual selectors as elements in the convolution
kernel. Each selector is responsible for one particular kernel
element (2.3). The receptive field values are flattened (2.6)
and transferred for further calculation with the kernel values
at every stride movement.

C. RECTIFIED CONVOLUTIONAL LAYER
The flattened versions of the kernel and activationwindow are
received by the Pipelined Dot Product and Rectified Linear
Unit which constitute the Rectified Convolutional Layer.
This is shown in Fig. 8. The pseudo-code in Algorithm 2
illustrates the high degree of resource re-utilization during
the convolution with the input frame. Kernel (k for loop)
and buffer (b for loop) queuing over a small number
of hardware branches enables a significant reduction in
logic resources without impacting data consistency. Each
buffer contains one EEG data partition with overlap between

Algorithm 2 Pseudo-Code for the Convolutional Layer
1: for b=0 to B-1 do F All Buffers
2: // Buffer Filling
3: for k=0 to KS-1 do F All Kernels
4: for hs=0 to HS-1 do F All Horizontal Strides
5: for vs=0 to VS-1 do F All Vertical Strides
6: Conv[vs][hs]<=KTXhs,vs F Dot Product
7: end for
8: end for
9: end for
10: end for

adjacent buffers for convolution consistency. As described in
Algorithm 2, the system selects one partition (b = 0) at a
time, and applies all kernels ([0 : KS − 1]) over the selected
partition. The receptive field described in the previous
paragraph is moved across all valid positions (vs, hs), and
the corresponding dot product between the kernel and
the activation window (K · Xvs,hs) is computed for each
position.

Hardware branches to execute convolutions in parallel can
be added to accelerate this step. Lower latencies are achieved
by concurrently taking care of pending kernels in the queue.
Once the results for all kernels are obtained at every valid
position (vs, hs), the next buffer (b = 1) is placed in the buffer
queue, and the process is repeated until the input frame is fully
covered (b = B− 1). The return paths in Fig. 8 illustrate the
use of the same logic resources to execute convolutions on
multiple kernels and multiple buffers.

The hardware architecture of the Convolutional Layer for
a 3 × 3 kernel is illustrated in Fig. 12. The first stage of the
pipeline is composed of a stack of parallel multipliers (3.2)
that generate the individual multiplications of the dot product
operation. The subsequent pipeline stages are the 4 levels
of the hierarchical tree adder (3.2) that is used to complete
the dot product operation. The actual implementation of the
arithmetic operations is sparsity-aware and therefore avoids
unnecessary zero-operand cases. The last stage of the pipeline
is the rectifier linear unit (ReLU) function (3.3) that replaces
negative dot products with zero.

Fig. 13 presents the execution of the six pipeline stages
for the first twelve vertical movements of a 3 × 3 kernel.
Fig. 13 further provides a basis for quantifying the throughput
of the rectified convolutional layer, which is one rectified
dot product per clock cycle. A validity check is made and
non-valid results are flagged using the Conv_Rdy signal.
The number of pipeline stages in the Convolutional Layer is
directly related to the number of elements in the kernel, which
in turn determines the number of levels of the hierarchical tree
adder. Table 3 shows three different scenarios for common
kernel sizes, where M is the number of multipliers, A the
number of adders at each stage, and R the ReLU stage.
Except for the ReLU stage, the numbers on the second row
of Table 3 represent the maximum number of additions or
multiplications at the various pipeline stages. In some cases,
this maximum number is not necessarily required, which
translates in further saving of resources. A case in point is the
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FIGURE 12. Hardware implementation of the rectified convolutional layer
( [15], Fig. 1(d)).

FIGURE 13. Pipeline execution for a 3× 3 kernel ( [15], Fig. 2).

TABLE 3. Convolutional layer dependence on the kernel size.

3× 3 kernel where only 9 multiplications are needed instead
of the 16 required by the design hierarchy.

D. MAXPOOLING
The results produced in the convolutional layer are sequen-
tially received by the Pool window module in Fig. 8.
The pooling process can be initiated even before the first
single kernel convolutions are completed. This pipelining of
maxpooling with convolution helps improve the throughput
of BioCNN while reducing the memory footprint of the
intermediate values. Hardware pooling further eliminates the
need of an additional CPU core to execute software pooling.
The pseudo-code of the hardware pooling algorithm using a

Algorithm 3 Pseudo-Code for Hardware Maxpooling
1: for i=0 to N-1 do F Conv Columns
2: a<=0
3: for j=0 to M-1 do F Conv Rows
4: if j%2==0 then F Even Row Number
5: buffer<=Conv[i][j]
6: else
7: selector<=(Conv[i][j]<buffer)? 1: 0
8: if selector==1 then MaxVertical<=buffer
9: else MaxVertical<=Conv[i][j]
10: end if
11: if i%2==0 then F Even Column Number
12: FIFO[a]<=MaxVertical
13: a<=a+1
14: else
15: selector2<=(FIFO[a]<MaxVertical)? 1: 0
16: if selector2==1 then
17: MaxPool<=MaxVertical
18: else MaxPool<=FIFO[a]
19: end if
20: a <= a+1
21: end if
22: end if
23: end for
24: end for

2 × 2 pool size is given in Algorithm 3. The pseudo-code
has a hypothetical input of an N × M matrix composed of
the convolution dot products (Conv[i][j]). This input is only
for explanatory purposes since as is clear from the previous
subsection, the convolutional layer generates its results one
column at a time.

The pooling module with a 2 × 2 pool size is illustrated
in Fig. 14. Consistent with the convolutional layer pipeline,
the pooling module stores the first convolution value (4.0)
into a buffer (4.2) during the first clock cycle. In the next
clock cycle, the next convolution value (4.1) is comparedwith
the buffer (4.2) to produce the selector signal (4.3) used to
pass theMaxVertical value through the multiplexer (4.4) and
place it in the FIFO buffer (4.5a). This pairwise vertical com-
parison is repeated each vertical stride. All the MaxVertical
values from the even-numbered columns are stored. Parallel
execution of multiple vertical poolings can accelerate the
generation of MaxVertical values with the FIFO buffer split
according to the number of parallel branches. Similarly of
the MaxVertical values of the odd-numbered columns are
generated according to the (4.0)(4.2)(4.1)(4.3)(4.4) sequence
of operations. However, the new MaxVertical (4.4) is now
compared with the old MaxVertical (4.5b) stored in the
FIFO buffer. This comparison produces the selector (4.6) of
the final MaxPool value (4.7) for the current Maxpooling
window. This even-odd column procedure is repeated until
all the pool values from the current activations are generated.
The throughput of BioCNN with a single hardware instance
is 1 MaxPool every 4 clock cycles, which is not as high
as the throughput of the convolutional layer, but it is vastly
better than waiting for all the convolutions to complete
before starting the maxpooling operation. Two concurrent
digital counters are used to track of the MaxPool window
coordinates.
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FIGURE 14. Generation of pooled values using a 2× 2 window ([15],
Fig. 3).

E. FULLY CONNECTED OUTPUT NETWORK
The sequential generation of Maxpool values requires a
special topology for the Dense Network in Fig. 8. The
pseudo-code of the proposed dense network is given in
Algorithm 4. For the first Maxpool value MaxP[0][0],
only the weights associated with its neuron connections,
W_L0 N0{0,0}, . . .W_L0 NZ {0,0}, where L0 is the 0-th layer
and Nk , 0 ≤ k ≤ Z are its neurons, are fetched and deployed
to the parallel multipliers. The multiplication results are then
accumulated in the accumulators Ac_L0 Nk , 0 ≤ k ≤ Z .
When the second Maxpool value MaxP[1][0] is computed,
the new set of weights, W_L0 N0{1,0}, . . .W_L0 NZ {1,0}, for
that pooling position is fetched, and the neuron accumulators
are updated with the new products. The sequential process
is pipelined with the rectified convolutional layer and
maxpooling module to form a single coherent data path
from the input buffer to the output classification. Once all
the Maxpool values are processed, the final accumulators
are rectified, ReLU (Ac_L0 Nk ) with 0 ≤ k ≤ Z , and
the output layer is activated. The output layer has all its
input activations available, which is the typical feed-forward
propagation as in Fig. 15(a). The output layer of the dense
network is considered in Algorithm 4 under ‘‘Dense Layer 1’’
where the Multiply-Accumulate (MAC) values are obtained
directly for the two output neurons. The very final stage is
a comparison between the two accumulators to determine
the classification label (ClassTag). Note that Algorithm 4
presents a more generic case for the dense network where
multiple layers are used. The actual hardware implementation
has a single-layer dense network with the final classification
accumulators activated immediately after ‘‘Dense Layer 0’’
is completed.

As illustrated in Fig. 15(a), if a traditional dense network
(6.1) is used, all the Maxpool values (6.11), (6.12), (6.13),
(6.14), and (6.15) must be processed at the same time, which
forces the network to have a high number of weights (6.16)
buffered within the FPGA. The intermediate neural layers
of the traditional (6.17)(6.18) and the proposed (6.24)(6.25)

Algorithm 4 Pseudo-Code for the Dense Output Network
1: for b=0 to B-1 do F All Buffers
2: // Buffer Filling
3: for k=0 to KS-1 do F All Kernels
4: // All Horizontal Pool Strides
5: for ph=0 to (HS/2)-1 do
6: // All Vertical Pool Strides
7: for pv=0 to (VS/2)-1 do
8: // Convolutional Layer
9: // ReLU
10: // MaxPool
11: // Dense Layer 0
12: Ac_L0N0<=MaxP[ph][pv]×W_L0N0{ph,pv}

+Ac_L0N0
13: Ac_L0N1<=MaxP[ph][pv]×W_L0N1{ph,pv}

+Ac_L0N1
14: . . . . . . . . .
15: Ac_L0NZ<=MaxP[ph][pv]×W_L0NZ{ph,pv}

+Ac_L0NZ
16: // ReLU
17: Ac_L0N0<=ReLU{Ac_L0N0}
18: Ac_L0N1<=ReLU{Ac_L0N1}
19: . . . . . . . . .
20: Ac_L0NZ<=ReLU{Ac_L0NZ}
21: // Dense Layer 1
22: Ac_L1N0<=Ac_L0N0×W_L0N0_L1N0

+Ac_L0N1×W_L0N1_L1N0
. . . . . . . . .
+Ac_L0NZ×W_L0NZ_L1NZ

23: Ac_L1N1<=Ac_L0N0×W_L0N0_L1N1
+Ac_L0N1×W_L0N1_L1N1
. . . . . . . . .
+Ac_L0NZ×W_L0NZ_L1N1

24: // Softmax or Comparison
25: ClassTag<=(Ac_L1N0< Ac_L1N1)? 1: 0
26: end for
27: end for
28: end for
29: end for

dense networks look the same to the pooled values of the
first layer. The hardware implementation of the proposed
dense network of Algorithm 4 is presented in Fig. 15(b). The
network accepts a serial stream of pooled values (6.21)(6.22)
and processes them one at a time. This single stream requires
only one weight connection per each intermediate neuron
to be available at the input layer (6.23), which results in a
significant reduction in the required FPGA buffer resources.
In turn, this serialization requires a specific read sequence to
fetch the appropriate weights such as the one described in
Algorithm 4.

A full hardware implementation including all the stages
is illustrated in Fig. 16. The hardware features two par-
allel branches to execute convolutions and a dense output
network feeding into two neurons for classification. Aside
from the hardware parallelism, massive pipelining amongst
the individual modules is used to guarantee a coherent,
high-throughput data path. Another level of hardware par-
allelism is further used as the architecture of Fig. 16 is
duplicated to classify the valence and arousal concurrently.

V. PROTOTYPE EVALUATION
To the best of our knowledge, BioCNN is the most compact
hardware classifier of emotions that has been reported in the
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FIGURE 15. (a) Traditional approach to execute dense layers (b) Proposed
approach to integrate sequential maxpool values.

FIGURE 16. Hardware architecture of BioCNN. This architecture is
duplicated twice for valence and arousal classification.

literature. It features a highly optimized architecture with
maximum module reuse and minimum resource utilization.
The optimization is such that the whole BioCNN design,
including both valence and arousal classification, fits within
the low-end Atlys Spartan-6 FPGA Board. The design has
been conceptualized and optimized without using high-level
synthesis tools. In this section, the BioCNN hardware imple-
mentation is evaluated from the viewpoints of functionality,
accuracy, latency, and throughput. The important features of
resource re-utilization and data quantization are addressed in
the next section.

A. FUNCTIONALITY
The hardware functionality of each architectural module is
evaluated on its own first using simulations and then using
the experimental setup. The modules being assessed are the
Rectified Convolutional Layer, Maxpooling, and the Dense
Output Layer.

1) RECTIFIED CONVOLUTIONAL LAYER
As shown in Fig. 13, the six-stage pipeline takes six
clock cycles to produce the first result. The simulation of
this behavior is illustrated in Fig. 17. Once the internal
buffer is filled up, a ready signal (3.1) is broadcast to
start the convolutions. The first stage comprises the parallel
multipliers between the kernel weights and the activations
within the sliding window. It is executed in the first clock

FIGURE 17. Logic simulation of the rectified convolutional layer.

cycle and is identified with a blue square (3.2). The next
four clock cycles correspond to the tree adder execution
(3.2), whereas the last clock cycle, identified with a green
square (3.3), corresponds to the ReLU stage. After the ReLU
function is applied, the Output Ready signal (3.5) is asserted
to indicate a valid result at the output rectified convolutional
layer. The Output Ready signal remains asserted as long
as there is a valid output result at the end of the six-stage
pipeline.

2) MAXPOOLING
The Maxpooling hardware is based on the pseudo-code
presented in Algorithm 3. The logic simulation in Fig. 18
shows how a sequence of rectified values captured in the
rectified_value trace is processed in this module. In the test-
ing scenario, the rectified signals are intentionally adjusted
to have the same values of 160 and 156, for the even- and
odd-numbered columns, respectively in order to visualize
column changes and illustrate the hardware functionality.

FIGURE 18. Logic simulation of the Maxpooling layer.

The first value (4.0) of a particular column is buffered
(4.2) and held for one clock cycle. The following rectified
value (4.1) is compared against the previously buffered one
(4.2), and a selector signal is generated (4.3). The selector
broadcasts the MaxVertical value (4.4), which is the greater
of the two rectified values (4.0) and (4.1). As stated in
Algorithm 3, if the originating column is even, MaxVertical
is buffered in a FIFO, otherwise it is held for one more clock
cycle and subsequently compared against its corresponding
pair inside the FIFO. The odd-or-even action is controlled
with enable_odd signal, which is asserted high for an odd
column.

Fig. 18 shows the operations for an odd-numbered column.
The MaxVertical (4.4) is compared against the value (4.5b)
of the FIFO, to generate MaxHorizontal (4.7), which is the
pooled result. A valid_max_pool signal is asserted to indicate
the availability ofMaxPool (4.7).When only oneMaxpooling

140906 VOLUME 8, 2020



H. A. Gonzalez et al.: BioCNN: A Hardware Inference Engine for EEG-Based Emotion Detection

instance is used, it may become a throughput bottleneck.
However, even a singleMaxpooling instance can be pipelined
with the Rectified Convolutional Layer to form a coherent
datapath with the pipeline stages being essentially stall-free.

3) DENSE OUTPUT LAYER
The Dense Output Layer (DOL) is based on the dot product
between the weights and the inputs for each connection. The
inputs are the serialized Maxpool values (6.21) and (6.22)
in Fig. 15. The dense multipliers in Fig. 19 are triggered
by MaxPool (4.7) as previously described, and the product
(6.23) is added to the general accumulator (6.235) in the next
cycle. In contrast to the dot product implementation of the
Rectified Convolutional Layer, the DOL multipliers receive
sequences ofMaxPool values that are staggered in time. The
DOL dot product algorithm, shown in Algorithm 3, maintains
accumulators to store the final results passing consistent
values to the output Softmax stage for classification.

FIGURE 19. Logic simulation of the dense output layer.

The DOL multipliers are edge-triggered and the blue
circles (6.23) in Fig. 19 highlight the rising edges that enable
them, whereas the valid_accum signal indicates when a
product value is added to an accumulator. Other accumulator
control signals are shown in Fig. 20, including accumulate
and StoreRestore. The final accumulator values (6.25) for
each neuron, [180320, 293972], are available only after the
last product (6.235) is generated using the lastMaxPool value
(4.7). The final classification result is obtained by comparing
the accumulators of the two output neurons and generating
the classif _TAG signal (6.255) to encode the two classes.

FIGURE 20. Logic simulation of the final accumulators for a given EEG
frame.

In addition to the TensorFlow prototype, an emulation
program has been written in Python to debug the hardware

FIGURE 21. Final accumulator state for a given EEG frame using the
Python reference emulator.

implementation at every node. Such debug information is
given in Fig. 21 for the accumulators of the two output
nodes.

4) EXPERIMENTAL TESTBED
The experimental setup used to test the full system and evalu-
ate hardware accuracy is shown in Fig. 22. The starting point
is the collection, labeling, and saving of EEG recordings.
Two Python programs are used for this stage, and the data
is saved in a CSV file. Subsequently, the signals are filtered,
artifacts removed using Independent Component Analysis,
and the PSD+Welch features extracted. The 14-channel,
frequency-domain EEG frame is dispatched to the FPGA
through a UART interface using Matlab. The data inside the
FPGA is transformed according to the hardware architecture
of Fig. 16.

FIGURE 22. BioCNN experimental testbed.

B. ACCURACY
The hardware CNN classifier of this article is tested using the
FEXD dataset which comprises 60 subjects. The individual
10-fold cross-validation results are presented in Fig. 23
for all subjects. However, for an apple-to-apple comparison
with state-of-the-art, the most popular dataset (DEAP) is
used for the figures of merit. All the accuracies of the
state-of-the-art classifiers for EEG emotion detection are
summarized in Table 4 where the SD acronym refers to the
Subject-Dependent approach.

C. LATENCY AND THROUGHPUT
The input frame size without partitions is 14×129, where 14
represents the number of channels and the 129 corresponds to
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FIGURE 23. Valence and Arousal accuracy for all FEXD subjects using
10-fold cross validation.

TABLE 4. Accuracy comparison with the state of the art using the DEAP
database.

the number of frequency bins. Assume the proposed BioCNN
prototype has K kernels, B buffer partitions, and N parallel
branches, then its latency Lt in number of clock cycles is
given by

Lt =
BK
N

[14× 44+ C +M + S + D+ (N − 1)+ R] (3)

where the product 14 × 44 is the number of clock cycles
taken by the kernel to move across all valid positions within
one buffer, B is the number of partitions on the buffer, C
the number of stages in the convolutional layer within each
buffer, M the Maxpooling overhead, S the kernel swapping
overhead, D the Dense Output Layer overhead, (N − 1) the
number of clock cycles needed to combine the accumulators
of the N parallel branches, and R the overhead of the final
classification. In the proposed architecture,M = S = D = 2
clock cycles, C = 6, B = 3 clock cycles, and R = 1 clock
cycle.

FIGURE 24. Latency contour plots of as a function of parallel branches
and convolution kernels.

The latency is plotted in Fig. 24 to show the dependency on
the numbers of kernels and parallel branches. As expected,
the addition of parallel branches reduces latency, with the
worst-case latency obtained for a single branch, and even
in this case, the latency is about two orders of magnitude
less than the fastest human interactive time, which is
150ms seconds for a touch stimulus. For the BioCNN
prototype with two parallel branches and 100 kernels,
the latency is 0.93ms.

An estimation of the BioCNN throughput Th is given by

Th = N
22× 7Accum + 5AccumPrevK
14× 44+ C +M + S + D

(4)

where Accum represents a single accumulation result and
is scaled with 22 × 7, which is how many of those are
generated since BioCNN starts to process one particular
kernel through a single branch. AccumPrevK is an accumulator
from the previous kernel and is scaled with 5, which is the
number of hierarchical pipeline stages in the convolutional
layer in Fig. 12. N corresponds to the number of parallel
kernel branches, whose value is 1 for the single-branch
estimation. The numerator in (4) expresses the total number
of accumulators produced in a single kernel branch. The
denominator counts the number of clock cycles it takes to
produce those accumulators, which is the same as the time
needed for scanning valid buffer locations and executing
the pipelined convolutions along with the overhead due to
Maxpooling, Kernel Swapping, and Dense Output Layer.
Note that only the pipelined stages are considered for
throughput calculation because the last stage accounts for
only a comparison of the accumulators.

The throughput presented in (4) only accounts for the
number of outputs or accumulators produced. However,
in order to compare the BioCNN performance with the CNN
state of the art, all operations involved need to be reported.
Additionally, the clock cycles need to be replaced by time
units (seconds). The fixed-point operations involved in the
Convolutional and Dense Layers are summarized in Table 5,
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TABLE 5. Operations performed in the rectified convolutional and dense
output layers.

where N represents the number of parallel kernel branches
available and Lt represents the latency. These fixed-point
operations are used to derive the number of operations
per second as

Op = Fclk [6N + 0.25N + 0.5NeuronsN

+ 0.5NeuronsN ]+ Fclk (1Accum/Lt ) (5)

where Fclk is the clock frequency, which is 100 MHz for the
Atlys board. With N = 2, B = 1 and K = 100, MAC’s and
comparison values are generated every Lt = 630 clock cycles
as can be verified from (3). Higher hardware parallelism (N )
will decrease this number. Subsitituing into (5), we get

Op = (100× 106)[6× 2+ 0.25× 2+ 0.5× 2× 2

+ 0.5× 2× 2]+ (100× 106)× 1/630 (6)

Op = 1.65GOp/s (7)

Fig. 25 presents the throughput corresponding to multiple
hardware configurations of parallel branches and convolu-
tional kernels. In contrast to the latency, Fig. 24, which is
impacted by both the number of branches and the number of
kernels, the number of operations per second does not depend
on the number of kernels. On the other hand, it increases
almost linearly with the number of parallel branches.

FIGURE 25. Throughput contour plots as a function of hardware parallel
branches and kernels in the queue.

VI. MODULE RE-UTILIZATION AND DATA QUANTIZATION
One of the most important principles used in the BioCNN
design is that of resource re-utilization. In this section,

more details are given regarding the various design options
for two important re-utilization features of the BioCNN
design, namely, buffer swapping and kernel swapping. The
important issue of data quantization and its impact on
BioCNN performance is also discussed in this section.

A. BUFFER SWAPPING
Buffer swapping is embedded in the BioCNN architecture
by partitioning the input of a given frame into multiple
parts as illustrated in Fig. 26. The different partitions are
handled according to Algorithm 2, and their results are
time-multiplexed to the output of the frame. As described
Subsection IV-B, the multiple partitions are overlapped (7.5)
to include edge computations and ensure consistency. Fig. 26
also shows the zero paddings (7.6) at the external boundaries
of the full frame.

FIGURE 26. Buffer swapping layout.

The impact on logic resource utilization for various
partition options is illustrated in Fig. 27. Only the case having
three partitions is within the limits of the Atlys board.

FIGURE 27. Logic utilization for different buffer partitions.

B. KERNEL SWAPPING
As described in Algorithm 2, adding a hardware branch
such as (7.1) in Fig. 28 boosts the throughput due to the
concurrent processing of pending kernels in the queue. The
pending kernel queue is equally divided into two sub-queues
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FIGURE 28. Hardware implementation of kernel swapping.

(7.2) and (7.3). The elements from the two sub-queues are
sent to the parallel branches through a series of multiplexers
(7.4), and the overall BioCNN controller ensures the proper
assembly of the output results of each branch.

1) PARALLEL BRANCH OPTIONS
An architecture exploration study has been conducted to
evaluate the logic cost of adding parallel branches to
BioCNN. Architectures with 1 to 10 parallel branches
have been implemented and evaluated. Fig. 29 shows the
linear dependence of various FPGA logic resources on the
number of hardware branches. The Atlys board imposed a
limit of 10 hardware branches for BioCNN. The Lookup
Tables (LUTs) usage is 90% when the limit is reached.

FIGURE 29. Resources impact of adding a parallel branch to the BioCNN
architecture.

2) SEQUENTIAL KERNEL OPTIONS
Another BioCNN architectural study has been conducted to
evaluate the logic cost of increasing the number of kernels in
a single branch. The results have been summarized in Fig. 30
which shows that such impact is quite minimal and that

FIGURE 30. Resources impact of adding a sequential kernel to a single
branch in the BioCNN architecture.

more kernels can be handled with no effect on the logic
resources, but of course with a visible impact on the BioCNN
throughput.

C. DATA REPRESENTATION IMPACT
The initial TensorFlow prototype of BioCNN used the
FP32 option, which is the original TensorFlow option based
on the assumption of pure software learning models, and
abundant hardware resources. When a hardware implemen-
tation on a constrained edge node is sought, such choice may
become prohibitive. This is evident in Table 6 for the memory
estimation expressed for a single kernel and two cases
with different number of representation bits n. The memory
required to hold an EEG frame needs to consider 16 × 132
values, where 16 corresponds to the 14 channels plus the two
padding rows, and 132 corresponds to the 129 frequency bins
plus 3 padding columns to ensure even distribution in the
three buffer partitions. Regarding the convolutional weights,
it is required to allocate the size of the kernel (3×3) plus one
bias value, all multiplied by the number of kernels K . For
the dense weights, it is required to consider a single weight
per each unit in the flattened output of the maxpooling layer,
which is 8×66 because it is half of the initial EEG Frame plus
one bias. This needs to be considered for each kernel valueK ,
and for each neuron in the dense layer.

TABLE 6. Memory estimation for three different modules.
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TensorFlow provides a methodology for data quantization
that helps to evaluate the impact of finite-precision arithmetic
on the inference phase. The training phase is typically
performed using full data representation. In the testing phase,
the data representation size may be lowered to a 16-bit or
8-bit integer. Quantization is treated as an additional noise
source distorting the input data. Fortunately, the convolutions
used in convolutional neural networks often possess filtering
properties that can address quantization noise quite appropri-
ately. When data quantization is considered in the context
of image recognition, it amounts to assigning high-quality
pictures to the training phase, and low-quality pictures to the
recognition phase. Table 7 contrasts the BioCNN accuracy on
the FEXD dataset when FD16 is used instead of FP32. The
accuracy degradation is about 6% for the valence and arousal
classification.

TABLE 7. Quantization on classification accuracy for FEXD and DEAP.

VII. DISCUSSION
To the best of our knowledge, this article is the first detailed
report on the fine-grained hardware design of a compact,
real-time emotion classifier using EEG signals and the
emerging paradigm of intelligent edge computing. Most of
the prior research has focused on software implementations
under the assumption of abundant hardware resources and
off-line operation. The main goals of almost all prior work
have been accuracy improvements and the generation of
standard benchmarks for evaluating and comparing various
emotion detection algorithms. Table 4 summarizes the most
significant contributions and compare them with ours using
the metrics considered in this article. Even though the present
work is focused on a hardware emotion detector using a
constrained edge node, its classifier is competitive with the
top software emotion classifiers under the DEAP benchmark,
and has the potential to provide a low-footprint hardware
implementation to the top DEAP classifier reported so far,
which is based on an ensemble of CNNs [4].

To the extent of our knowledge, there is only one
publication in the open literature that reports on a hardware
implementation of an EEG-based emotion classifier [14],
in which two approaches for labeling the classes have been
considered: (1) Binary, in which only the valence is reported,
and (2) Quaternary, in which a single classifier addresses
both the valence and arousal dimensions. As presented
in Table 4, most of the state-of-the-art contributions report
the valence and arousal independently, which is in line with
our own BioCNN results. An accuracy comparison with [14]
is possible only for the valence classifier. Additionally, in [14]
a bias has been introduced on the DEAP dataset by removing

samples whose manual ratings were close to the center of
the emotion circumplex. Unfortunately, such bias makes the
reported DEAP accuracy of [14] unsuitable for comparison
with our work or any other state-of-the-art contribution.
Setting this bias issue aside, the on-chip valence accuracy
of [14] is 83.36% using a fixed point (FP) representation
of 24 bits, whereas it is 77.57% in this work where a fixed
point representation of 16 bits is used. Although BioCNN
uses FP16 vs. FP24 in [14], its accuracy is still quite
competitive.

TABLE 8. Figure of merit among hardware classifier of emotions.

As for throughput, power, and energy efficiency, the com-
parisons between our results and those of [14] are hampered
due to the following considerations:

1) Throughput: In [14], the specific throughput (Opera-
tions per second) of the classifier is not provided.

2) Energy efficiency: The absence of throughput in [14]
further prevents the energy efficiency comparison,
which is calculated based on how much power is
needed to achieve a particular number of operations per
unit of time.

3) Power: The power consumption of the two hardware
implementations is not directly comparable since
the FPGA typically consumes more power than an
equivalent ASIC design.

4) Resources: The number of standard cells in the ASIC
design of [14] is not directly comparable with the
number of LUTs in our FPGA. However, our BioCNN
is implemented in the low-end Spartan-6 LX45, whose
total number of equivalent logic gates does not exceed
3840 cells. This number is small relative to the number
of neuron bits and logic gates needed in [14] for
implementing its CNN training and testing engines.

Among CNN hardware implementations, BioCNN is
unique in that it emphasizes module re-utilization to satisfy
the stringent resource constraints of the edge node. BioCNN
minimizes logic resources using aggressive pipelining not
only within the CNN module itself but also across all the
BioCNN modules, including the maxpooling and output
modules. The result is a coherent data path from the feature
map input to the classifier output with minimum memory
footprint, competitive energy efficiency, and an inference
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accuracy that is at par with software systems. Note that
BioCNN does not use any CPU cores anywhere along the
data path. Both BioCNN latency and throughput are well
within the specifications of a wearable biomedical device
for real-time classification. BioCNN has further provided
another reference design point for CNN hardware that is
based on massive pipelining, data partitioning, and hardware
parallelism. This reference point is to be contrasted with
the other CNN hardware approaches based on distributed
near-memory computing. The comparisons given in Table 9
with the state-of-the-art use a BioCNN clock frequency
of 100MHz.

TABLE 9. Figures of merit and BioCNN comparisons with the
state-of-the-art.

Through its features of kernel queuing, data partition-
ing, and hardware parallelization, BioCNN enables precise
quantification of the tradeoff between throughput and FPGA
resource utilization. Different applications are expected to use
different points of the tradeoff curve, with many biomedical
applications such as wearable EEG-based emotion detection,
trading off throughput for more compact architectures in
line with the constraints of edge nodes. As Table 9 shows,
BioCNN uses 10X to 100X fewer hardware resources than
competing FPGA-based CNN’s, under a competitive energy
efficiency of 11GOps/W , and achieves a throughput of
1.65 GOps that is in line with the real-time specification
of the wearable device. Its emotion inference accuracies are
competitive with the top software-based emotion detectors.

VIII. CONCLUSION
In this article, BioCNN, a novel FPGA-based CNN imple-
mentation specifically geared toward wearable biomedical
applications has been presented. In contrast to themainstream
near-memory computing paradigm of high-throughput
CNN’s, BioCNN emphasizes aggressive pipelining, low
memory footprint, and resource re-utilization. The CNN
architecture is prototyped on a low-end FPGA board
(Xilinx Altys) to mimic the constraints of a wearable,
biomedical edge node. It features two novel algorithms
for pipelined maxpooling and the serialized processing of
maxpooled values in a dense output layer. BioCNN does
not require any CPU cores, thus reducing further its area
and logic requirements. A crucial step in the application

of BioCNN to various biomedical domains is the feature
engineering needed in each domain and the feature map
that needs to be generated as input to BioCNN. Potential
candidates for exploring the generation of feature maps that
are BioCNN-compatible include ECG diagnostics, blood
pressure monitoring, and hearing aids. In the context of
the EEG-based emotion detection application, the BioCNN
classifier achieves a classification accuracy of 77.57% and
71.25% for valence and arousal, respectively, using the
DEAP dataset. These hardware accuracies are achieved with
a reduced FP16 representation and hardware classifier with
a small footprint, yet they are competitive with the state-
of-the-art software classifiers. BioCNN is the first hardware
emotion classifier to report hardware accuracies for the binary
arousal problem. The BioCNN throughput of 1.65GOps is in
line with the real-time requirement of a wearable device with
an energy efficiency of 11 GOps/W and power consumption
of 150mW . Finally, BioCNN latency of less than 1 ms
is much smaller than the 150 ms required for human or
human-machine interactions.
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