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ABSTRACT As a very important passenger transportation model in the era of sharing economy, the online
ride-hailing (ORH) has also caused new traffic management issues while improving resource allocation.
Although regulations and policies have imposed macro-level supervision on the ORH market, they have not
prevented some drivers from cheating on platforms’ subsidies and jeopardizing passengers’ safeties at the
source. In order to realize the voluntary and sustainable ORH supervision, and enable relevant participants to
actively supervise, report and complywith rules, this paper constructs an evolutionary gamemodel among the
platform, passengers and drivers. Based on the bounded rationality and expected benefits of the participants,
the main factors determining the optimal strategies are analyzed. At the same time, the evolution path and
the equilibrium state of the three game groups are studied by numerical simulation. The results show that
important factors of realizing the benign supervision of ORH include minimizing the reporting costs of
passengers, making penalties for drivers who violate the rules far greater than the illicit incomes, realizing
the platform supervision costs less than the sum of penalty incomes and positive social effects. In addition,
improving rewards for reporting can promote the continuity of passengers’ participation but increase the
possibility of false reports. Therefore, the platform needs to consider the cost of identifying false information
when designing the reward amount.

INDEX TERMS Tripartite evolutionary game, online ride-hailing platform, active supervision, passengers
and drivers, numerical simulation.

I. INTRODUCTION
The continuous advancement of mobile internet technology
has promoted the vigorous development of the sharing
economy and promoted the in-depth integration of various
resources. As a new representative of travel modes, online
ride-hailing (ORH) is an extremely effective market-oriented
resource allocation under the theory of sharing economy [1].
ORH refers to the online platform realizes information
integration with the help of mobile internet technology, and
provides timely and matched information for drivers and
passengers in the form of application, so as to meet the
travel need of passengers [2]. Since the establishment of
YiDao in 2010, China’s first online taxi booking service
platform, many ORH platforms, such as DiDi and UCAR,
have gradually emerged in China’s travel market.
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The original intention of the ORH platform is to add
vitality to the passenger transport market and promote the
benign development of the travel industry. However, the ORH
management mode is mainly based on the competition
mechanism of the free market, which has caused some
negative effects in the actual operation [3]. For example,
in order to get extra incomes, some drivers pick up passengers
with the similar route on two different ORH platforms
at the same time, forcing passengers who choose not to
carpool to ride with others. What is more, drivers can set up
public evaluation labels for the passengers they have picked
up, which exposes passengers’ personal information and
increases their security risks. Passengers can also evaluate
the services of the drivers, and some untrue evaluations
will adversely affect the reputation and work of the drivers.
In addition, some ORH platforms lack complete and efficient
supervision systems, which makes them difficult to quickly
handle complaints from drivers and passengers, resulting in
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some personal injuries and property losses that could have
been avoided.

It is very urgent to formulate reasonable and effective ORH
supervision strategies. Most of the existing literatures focus
on strategy research with government participation, but the
strategy should not be formulated solely from the external
perspective of government mandatory intervention [4], [5].
Although the corresponding laws and regulations can main-
tain the order of the industry from a macro perspective [6],
they cannot enable ORH participants to actively implement
supervision and comply rules. Therefore, this paper starts
from the platform’s own plan and combines the expected
benefits of passengers and drivers to formulate supervision
strategies, and explores how to make the ORH supervision
work actively with the cooperation of the platform, passen-
gers and drivers without the help of the government.

In view of the limitations of current statistical methods on
ORHmarket in data acquisition and calculation accuracy, this
paper adopts the game theory to analyze the important factors
affecting supervision from the perspectives of participants’
expected benefits. At the same time, due to the fact that
each participant cannot obtain all the information to make
the optimal decision in the actual situation, that is, they are
all bounded rationality [7], this paper adopts the evolutionary
game theory that satisfies this premise to analyze the
behavioral relationship of the ORH participants. In addition,
the goal of the evolutionary game is to find the evolutionary
stability strategies for participants, which is in line with the
strategic expectation of this paper that the passengers could
actively cooperate with the supervision of the ORH platform
and the drivers could comply with the regulations.

The remainder of this paper is organized as follows:
In Section 2, the existing literatures are reviewed from three
aspects: game groups, the evolutionary game and regula-
tory situation. In Section 3, an evolutionary game model
composed of the ORH platform, drivers and passengers is
designed, and the model parameters, behavior strategies,
payoff matrixes and expected benefits are analyzed in detail.
Section 4 analyzes the evolutionary stability strategies of each
game group based on the replicator dynamics equations, and
analyzes the overall stability of the three groups based on
the equilibrium points and the Jacobian matrix. In Section 5,
the evolution paths of participants in the initial state and
the parameter variation state are discussed by numerical
simulation. Section 6 summarizes the whole paper from three
aspects: research conclusions, improvement suggestions and
future research directions.

II. LITERATURE REVIEW
Firstly, in order to accurately reflect the behavioral rela-
tionships and the expected benefits among game groups,
this section reviews the literatures from the perspectives of
ORH platforms, drivers and passengers. Secondly, in order
to fit in with the research content of this paper on ORH
supervision, this section reviews the literatures of evolu-
tionary game in the field of transportation and regulation.

Finally, in order to ensure the rationality of the proposed
ORH supervision model, this section reviews the literatures
on ORH supervision from two aspects: regulatory policies
and market supervision.

A. GAME GROUPS
From the perspective of ORH platforms, existing litera-
tures mainly study operation modes and market impacts.
Saadi et al. [8] used the machine learning approach for char-
acterizing and forecasting the short-term demand of the ORH
platform, and they proposed a spatio-temporal estimation
function, including traffic, pricing, weather conditions and
other factors. Harding et al. [9] studied impacts of the ORH
platform on the Taxi market, they found that there were
problems such as unstable supply and demand relations, and
they suggested that the possibility of application-oriented
taxi market monopoly and collusion should be reduced.
Watanabe et al. [10] analyzed the platform ecosystem archi-
tecture of Uber, and the research showed that the two sides of
information and communication technology were attributed
to the virtuous cycle of price decline and travel increase.

For passengers, preference situation and service satisfac-
tion are the main research contents. Rayle et al. [11] found
that the main reasons why passengers chose the ORH service
were convenient payment, time saving and travel efficiency.
Dawes [12] studied Americans’ perception of technologies
and services towards Uber, and he investigated the reasons
why passengers used the platform and its travel proportion.
Luo et al. [13] proposed a privacy-preserving scheme for
ORH service, this scheme allowed passengers to efficiently
match drivers based on their distances in the road network
without revealing their location privacy.

Most of the literatures about drivers focus on the behavior
characteristic and the rights protection. Xu et al. [14]
examined the factors that affected drivers’ response behavior
to ORH requests, they proved that drivers were more likely
to respond to requests with economic incentives, and those
with a lower spatio-temporal demand intensity or a higher
spatio-temporal supply intensity. Griffin et al. [15] studied
the effectiveness of various ways of hiring ORH drivers,
and they found that media interaction could improve the
registration rate of drivers. Zou [16] thought that the existing
criteria in Chinese labor law for ascertaining the status of the
ORH drivers was useful for addressing the basic question of
whether drivers should be protected.

B. EVOLUTIONARY GAME
In 1978, Taylor and Jonker’s research on the relationship
between stable evolutionary equilibrium and dynamics pro-
moted the development of the evolutionary game theory [17].
Then, through the combination with traditional games such as
Nash equilibrium, the evolutionary game was further applied
to the field of economic management. The evolutionary
stable equilibrium was extended to the stochastic stable
equilibrium, and the replicator dynamics mechanism was
upgraded to the stochastic individual dynamic learning
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mechanism [18]–[21]. The evolutionary game is to achieve
the evolutionary stable state of a system through repeated
games of random pairing among groups and continuous
optimization strategy by using replicator dynamics mecha-
nism [22]. In recent years, the researches on the evolutionary
game theory have been developed in a variety of fields,
including environmental protection, financial development,
transportation management and public supervision.

In the aspect of supervision [23]–[25], Shen andWang [26]
designed two government haze prevention mechanisms
by using the evolutionary game, centralized supervi-
sion and long-term supervision, then they proved that
long-term supervision was superior to centralized supervi-
sion. Shen et al. [27] proposed an evolutionary game model
for studying the behavioral decision-making of stakehold-
ers in construction and demolition waste recycling under
environmental supervision, they found that production cost,
technology, subsidies, and recycling benefits exerted certain
influences on the ideal stable state. Zhang et al. [28] explored
the policy regulation of the conversion of kitchen waste
oil into energy fuel by constructing an evolutionary game
model, and found that the government should eliminate the
garbage disposal fee charged by restaurants and increase the
quantity-based subsidy to biofuel enterprises.

In the aspect of transportation [29], [30], Encarnação et al.
[31] investigated the feasibility of breaking the dilemma
of electric vehicles by resorting to the evolutionary game
mechanism, their findings suggested that full adoption of
electric vehicles required coordination among governments,
companies, and consumers. Xue et al. [32] proposed a private
capital investment method in public transportation consider-
ing passengers’ values, and they constructed an evolutionary
game model to quantify the impacts of private capital
investment. Keivanpour et al. [33] combined the evolutionary
game theory with the fuzzy rule approach to analyze the
green environmental strategies of automobile manufacturers,
so as to fully take into account the competitive advantages
of implementing these strategies and the interaction between
participants.

C. REGULATORY SITUATION
In the researches on the ORH regulation, most scholars
focus on the regulatory policies and market supervision.
Because countries around the world have issued a number of
regulations and policies on the ORH market, there are a lot
of studies on the analysis of government measures. In order
to balance social governance and promote technological
development, the government of Singapore has adopted
a gradually strengthened regulatory approach. And the
intensity and scope of its regulation on ORH enterprises
have been optimized in recent years [34]. The transport
bureau of London, UK, has replaced development restriction
with reasonable regulation, and focused on promoting market
equity, user safety and environmental protection [35]. The
ORH regulatory measures in the United States have been
mainly divided into four aspects: quantity control and fare

control, status recognition of enterprises, job qualification
of drivers and protection of other interest groups such as
passengers [36]. In China, governments in first-tier cities
such as Beijing, Shanghai and Tianjin have imposed strict
restrictions on ORH drivers’ household registration, license
plates and vehicle specifications [37].

Because the ORH industry is in an era of rapid develop-
ment of information technology and market demand, many
scholars have also focused on the innovation of market
supervision. Wyman [38] thought that the governments could
refer to relevant standards of taxis when formulating the
ORH regulatory standards, because they were substitutes for
citizens’ daily travel. At the same time, based on the principle
of benefit maximization, specific regulatory standards could
be formulated for ORH and taxi respectively. Dudley et al. [6]
analyzed that the challenges that governments and regulatory
authorities need to solve were to maintain the expansion
trend of ORH industry and redefine its relevant legal terms.
Posen [39] proposed that the government should accept
the market competition brought by the new industry and
improve the regulatory safety of the ORH industry through
experimental regulatory measures.

D. SUMMARY
A lot of research achievements have been produced on the
ORH industry, but there are still some deficiencies in the
relevant literatures for this complex business field composed
of platforms, passengers, drivers and governments.

Although many scholars have studied the regulatory
policies and measures of the ORH industry in different
national conditions, they mainly conduct qualitative discus-
sions through questionnaire survey and empirical analysis,
and lack objective description and quantitative research
through mathematical models. Secondly, most of the current
studies on ORH participants start from the positive effects
of the industry, but lack the analysis of decision-making
behavior of multiple participants in the case of both positive
and negative effects. Finally, the existing researches are
mainly analyzed from the single perspective of platforms,
users and governments, there is a lack of multi-dimensional
regulatory research on the ORH industry. The research on the
ORH supervision should not only consider the sustainability
and effectiveness of the mechanism, but also consider the
behavioral factors of multiple participants.

In addition, there is a literature confirming the feasibility
of applying evolutionary game theory to the problem of
ORH supervision [40], and the literature also took the
ORH platform, drivers, and passengers as the main players.
However, there are still some differences between this paper
and the literature. First of all, the literature still took the
government’s reward and punishment measures as the main
strategic factors in the evolution process, so that it was
impossible to clearly distinguish the role played by the
platform’s own supervision and the government’s external
supervision when achieving the final stable state. This paper
focuses on how to implement an active ORH supervision
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mechanismwithout the influence of government intervention.
Secondly, the simulation experiments in the literature mainly
studied the influence of the different initial proportions of
each group on the strategy evolution path. The simulation
experiments in this paper focuses on the impact of changes
in important parameters on the evolution path of each group
strategy. Finally, there are differences in the setting of group
strategies and model parameters between the literature and
this paper.

In this paper, the government which is commonly used
in regulatory game decision-making is replaced by the
passenger group, so as to form an active supervision model
based on the ORH service and participants themselves.
In addition, the game participants of traffic problems are
added from traditional two groups to three groups, so an
evolutionary game supervision model of ‘‘the platform
- drivers - passengers’’ is constructed. The evolutionary
stability strategy and ideal state of each game group are
studied through model derivation and numerical simulation,
so as to realize the benign and effective supervision of ORH.

III. CONSTRUCTION OF EVOLUTIONARY GAME MODEL
A. MODEL HYPOTHESES
Based on the analysis of the operation situation and
participants’ behavior of the ORH industry, this paper makes
the following three hypotheses:

1) In this supervision model, there are only three game
groups: the ORH platform, drivers, and passengers.

2) The game groups have bounded rationality, and they
cannot make strategies that maximize their own benefits.

3) Passengers and drivers have no way of knowing whether
the ORH platform is under supervision.

The reason for setting the first hypothesis is because these
three game groups are the most suitable for the theme of
this paper to study the active supervision strategies of ORH
through the tripartite evolutionary game.

The reason for setting the second hypothesis is that in the
actual decision-making process, people cannot obtain all the
information related to the decision. Therefore, people cannot
rationally make a strategy to maximize benefits from a global
perspective. But people have the ability to learn and imitate,
and they can constantly adjust strategies to make them better
through changes in the situation, thus forming the evolution
process of strategies.

The reason for setting the third hypothesis is because
if passengers and drivers can clearly know whether the
ORH platform has selected supervision, it cannot reflect
the uncertainty of the decision-making process and it is
difficult to reflect some key factors that affect the supervision
strategies.

The model parameters and definitions of ORH supervision
are shown in Table 1.

B. ANALYSIS OF STRATEGIES
In the tripartite evolutionary game model of ORH supervi-
sion, the platform has two alternative strategies: supervision

TABLE 1. Model parameters and definitions.

and non-supervision. On the one hand, the platform can
choose to implement a supervision mechanism to punish
drivers who violate regulations and reward passengers
who report violations, so that the platform and passengers
maintain a mutually beneficial cooperative relationship [41]
and produce positive social effects. On the other hand,
the platform can choose to ignore violations to reduce the
corresponding management costs. However, in the long run,
some negative social effects will be generated. Such as the
vicious competition among drivers will increase, passengers’
safety and property will be threatened, and the order of the
passenger transport market will be disrupted.

Drivers have two alternative strategies: violation and non-
violation. On the one hand, drivers can follow regulations
of the ORH platform to create a good market environment.
On the other hand, drivers may violate regulations for illicit
incomes, thereby increasing the risk of being reported by
passengers. In order to avoid reputation damage and platform
penalties, drivers who violate regulations would choose to
pay the corresponding costs to make passengers give up
reporting.

Passengers have two alternative strategies: reporting and
non-reporting. In one situation, passengers can cost to
report violations and get rewards [42], or passengers choose
to indulge drivers’ violations and get compromise gains.
However, no matter which choice passengers make, drivers’
violations will cause passengers’ losses, including the losses
of money and time. The other situation is passengers
falsely report when drivers do not break the rules. In this
situation, if the platform carries out supervision, the false
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information will be ascertained and drivers will not be
punished, passengers will also do not be held accountable
because of the service principle. If the platform does not
implement a regulatory mechanism, the improper comments
or extremely low scores posted by passengers on the ORH
platform will cause reputation damage to drivers.

C. EXPECTED BENEFIT AND PAYOFF MATRIX
The tripartite payoff matrix of the ORH supervision is shown
in Table 2. ai, bi, and ci represent payoff decisions of
passengers, drivers, and the platform respectively.

In the initial stage of the three game groups, suppose that
the proportion of passengers selecting reporting is x, then
the proportion selecting non-reporting is 1 − x. Suppose
also that the proportion of drivers selecting violation is y,
the proportion selecting non-violation is 1−y. The proportion
of the platform selecting supervision is z, and the proportion
selecting non-supervision is 1−z. Obviously, 0 < x < 1, 0 <

y < 1, 0 < z < 1.

TABLE 2. The tripartite payoff matrix.

Because the payoff of each game group will be affected by
the strategies of the other two game groups, there are eight
combinations of strategies for passengers, drivers, and the
platform: (reporting, violation, supervision), (reporting, non-
violation, supervision), (non-reporting, violation, supervi-
sion), (non-reporting, non-violation, supervision), (reporting,
violation, non-supervision), (reporting, non-violation, non-
supervision), (non-reporting, violation, non-supervision),
(non-reporting, non-violation, non-supervision). The payoff
decision of each combination is shown as follows:

(a1, b1, c1) = (p1q−C2−C3−m,−p3q+ R1 + (1−k)m,

−p1q+ p3q−R1−C1 + km+ S1) (1)

(a2, b2, c2) = (−C3−m, (1−k)m,−C1 + km+ S1) (2)

(a3, b3, c3) = (p2(Q−q)−C2−m,−p2(Q−q)+ R1
+(1−k)m,−R1 + km−C1) (3)

(a4, b4, c4) = (−m, (1−k)m,−C1 + km+ S1) (4)

(a5, b5, c5) = (−m−C2−C3,R1 + (1−k)m,

−R1 + km−S2) (5)

(a6, b6, c6) = (−m−C3, (1−k)m−L2, km) (6)

(a7, b7, c7) = (−m−C2 + p2(Q−q),R1 + (1−k)m

−p2(Q−q),−R1 + km−S2) (7)

(a8, b8, c8) = (−m, (1−k)m, km) (8)

Suppose that UA1 represents the expected benefit of passen-
gers that adopt reporting,UA2 represents the expected benefit

of passengers that adopt non-reporting, andUA represents the
average expected benefit of passengers, as shown in (9) - (11).

UA1 = yza1+(1− y) za2+y (1− z) a5
+(1− y)(1− z)a6 (9)

UA2 = yza3+(1− y) za4+y (1− z) a7
+(1− y)(1− z)a8 (10)

UA = xyza1+x (1− y) za2+x (1− z) ya5
+x (1− y) (1− z) a6+(1− x) yza3
+ (1− x) (1− y) za4
×(1− x)(1− z)ya7+(1− x)(1− y)(1− z)a8 (11)

Suppose thatUB1 andUB2 respectively represent the expected
benefit for the strategies ‘‘violation’’ and ‘‘non-violation’’
of drivers, and UB indicates the average expected benefit of
drivers, as shown in (12) - (14).

UB1 = xzb1 + x (1−z) b5 + (1−x) zb3
+(1−x)(1−z)b7 (12)

UB2 = xzb2 + x (1−z) b6 + (1−x) zb4
+(1−x)(1−z)b8 (13)

UB = xyzb1 + xy (1−z) b5 + (1−x) yzb3
+y (1−x) (1−z) b7 + x (1−y) zb2
+x (1−y) (1−z) b6
+ (1−x) (1−y) zb4 + (1−x)(1−y)(1−z)b8 (14)

Similarly, UC1 and UC2 are the expected benefits of
the platform employing the strategies of ‘‘supervision’’
and ‘‘non-supervision’’. U c indicates the average expected
benefit of the platform, as shown in (15) - (17).

UC1 = xyc1 + x (1−y) c2 + (1−x) yc3
+(1−x)(1−y)c4 (15)

UC2 = xyc5 + x (1−y) c6 + (1−x) yc7
+(1−x)(1−y)c8 (16)

UC = xyzc1 + x (1−y) zc2 + (1−x) yzc3
+ (1−x) (1−y) zc4 + xy (1−z) c5
+x (1−y) (1−z) c6
+ (1−x) y (1−z) c7 + (1−x)(1−y)(1−z)c8 (17)

IV. EQUILIBRIUM ANALYSIS OF THE EVOLUTIONARY
GAME MODEL
A. REPLICATOR DYNAMICS
The replicator dynamics equation of ORH passengers is
shown in (18).

F (x) =
dx
dt
= x (UA1 − UA) = x (1− x) (UA1 − UA2)

= x(1− x)[yz(p1q)− C3 − yp2(Q− q)] (18)

The replicator dynamics equation of ORH drivers is shown
in (19).

G (y) =
dy
dt
= y (UB1 − UB) = y (1− y) (UB1 − UB2)
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= y(1− y)[xz(−p3q− L2)+ x[p2(Q− q)+ L2]

−p2(Q− q)] (19)

The replicator dynamics equation of the ORH platform is
shown in (20).

H (z) =
dz
dt

= z (Uc1 − Uc) = z (1− z) (Uc1 − Uc2)

= z(1− z)[xy(−p1q+ p3q+ S1)− y(S1 − S2)

−C1 + S1] (20)

In order to get the equilibrium solution of the tripartite
evolutionary game under the ORH supervision, simultaneous
replicator dynamics equation set is required as shown in (21).

F(x) = x(1− x)[yz(p1q)− C3 − yp2(Q− q)] = 0
G(y) = y(1− y)[xz(−p3q− L2)+ x[p2

(Q− q)+ L2]− p2(Q− q)] = 0
H (z) = z(1− z)[xy(−p1q+ p3q+ S1)
−y(S1 − S2)− C1 + S1] = 0

(21)

In (21), there are eight special equilibrium points (0,0,0),
(0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1), (0,1,1), (1,1,1)
constituting the boundary in R = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤
y ≤ 1, 0 ≤ z ≤ 1}, the equilibrium solution domain of the
evolutionary game [23]. In addition, E(x∗, y∗, z∗) is also in
this domain, which can be obtained by solving (22). Because
the solution of E(x∗, y∗, z∗) is complex, numerical simulation
can be carried out based on practical meanings and given
conditions.

y∗z∗(p1q)− C3 − y∗p2(Q− q) = 0
x∗z∗(−p3q− L2)+ x∗

[p2(Q− q)+ L2]− p2(Q− q) = 0
x∗y∗(−p1q+ p3q+ S1)− y∗

(S1 − S2)− C1 + S1 = 0

(22)

The derivative of the replicator dynamics equation of each
game group can be obtained as follows:

F(x)′ =
dF(x)
dx
= (1− 2x)[yz(p1q)− C3 − yp2(Q− q)]

(23)

G′(y) =
dG (y)
dy
= (1− 2y)[xz(−p3q− L2)+ x[p2(Q− q)

+L2]− p2(Q− q)] (24)

H ′(z) =
dH (z)
dz
= (1− 2z)[xy(−p1q+ p3q+ S1)

−y(S1 − S2)− C1 + S1] (25)

According to the evolutionary game theory [43], the equi-
librium point is substituted into (23) - (25). If F (x)′ <

0,G (y)′ < 0,H (z)′ < 0, the strategy represented by
this equilibrium point is the evolutionary stability strategy
(ESS) of the ORH supervision. Based on this, the following
paragraphs respectively analyze the ESS of each game group.

B. EVOLUTIONARY STABILITY STRATEGIES
For the passenger group, ESS can be inferred from its
replicator dynamics equation (18) and other two groups’
replicator dynamics equations (19) (20).

1) When z = C3+yp2(Q−q)
yp1q

,F(x) ≡ 0 can be got, all levels
are in the stable state. The stability of x depends on the initial
state.

2) When z 6= C3+yp2(Q−q)
yp1q

, x = 0 and x = 1 are the two
solutions of F(x) = 0, namely the two stability states of x.
Therefore, in order to obtain passengers’ equilibrium strategy,
dF(x)
dx < 0 should be satisfied, as shown in the following

analysis.
a. When C3 > p1q − p2(Q − q), under the constraints of

0 < y < 1 and 0 < z < 1, yz(p1q) − C3 − yp2(Q − q) < 0
can be got. Therefore, F ′(0) < 0, and x = 0 is the ESS.
It indicates that when drivers violate rules, and reporting
costs to the platform is greater than the difference between
reporting rewards and compromise gains, then not reporting
is the ESS of passengers.

b. WhenC3 < p1q−p2(Q−q), there are the following two
situations.

When 0 < z <
C3+yp2(Q−q)

yp1q
, F ′(0) < 0 can be got,

so x = 0 is the ESS. In other words, when drivers’ violations
are discovered, most passengers are willing to compromise.

When1 > z >
C3+yp2(Q−q)

yp1q
,F ′(1) < 0 can be got, so x = 1

is the ESS. In other words, passengers tend to choose to report
drivers’ violations.

Given that the other two groups remain invariant, the repli-
cator dynamics phase diagram of passengers is shown
in Figure 1. In Figure 1(b), the arrows point to the direction
x = 0, it means that the passenger group tends to select
non-reporting when C3 > p1q − p2(Q − q). In Figure 1(c),
the blue arrow points to the direction x = 0, it means that
the passenger group tends to select non-reporting when 0 <

z <
C3+yp2(Q−q)

yp1q
. In Figure 1(c), the gray arrow points to the

direction x = 1, it means that the passenger group tends to
select reporting when 1 > z >

C3+yp2(Q−q)
yp1q

.
For the driver group, ESS can be inferred from its replicator

dynamics equation (19) and other two groups’ replicator
dynamics equations (18) (20).

1) When z = p2(Q−q)−x[p2(Q−q)+L2]
−x(p3q+L2)

,G(y) ≡ 0 can be got,
all levels are in the stable state. The stability of y depends on
the initial state.

2) When z 6= p2(Q−q)−x[p2(Q−q)+L2]
−x(p3q+L2)

, y = 0 and y = 1
are the two solutions of G(y) = 0, namely the two stability
states of y. Therefore, in order to obtain drivers’ equilibrium
strategy, dG(y)

dy < 0 should be satisfied, as shown in the
following analysis.

Obviously, the total penalties p3q paid by drivers to the
platform, and the losses L2 caused to drivers by passengers’
false reports are both greater than zero, that is, −x(p3q +
L2) < 0.
a. When x[p2(Q − q) + L2] − p2(Q − q) < 0,G′(0) <

0 can be got. Therefore, y = 0 is the ESS. It indicates
that when compromise costs paid by drivers to passengers
for concealing violations are greater than losses caused by
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FIGURE 1. Replicator dynamics phase diagram of passengers.
(a) z=

C3+yp2(Q−q)
yp1q . (b) C3>p1q−p2(Q−q) x→ 0. (c) 0 <z<

C3+yp2(Q−q)
yp1q

x→ 0, 1 >z>
C3+yp2(Q−q)

yp1q x→ 1.

false reporting, drivers are more willing to choose the non-
violation strategy.

b. When x[p2(Q− q)+ L2]− p2(Q− q) > 0, there are the
following two situations.

When 1 > z >
p2(Q−q)−x[p2(Q−q)+L2]

−x(p3q+L2)
,G′(0) < 0 can be

got. So y = 0 is the ESS, and the driver group can eventually
evolve to comply with regulations.

When 0 < z <
p2(Q−q)−x[p2(Q−q)+L2]

−x(p3q+L2)
, G′(1) < 0 can be

got. So y = 1 is the ESS, and the ORH drivers can eventually
evolve into violations.

Given that the other two groups remain invariant, the repli-
cator dynamics phase diagram of drivers is shown in Figure 2.
In Figure 2(b), the arrows point to the direction y = 0,
it means that the driver group tends to select non-violation
when x < x ′ = p2(Q−q)

p2(Q−q)+L2
. In Figure 2(c), the blue

arrow points to the direction y = 0, it means that the
driver group tends to select non-violation when 1 > z >
p2(Q−q)−x[p2(Q−q)+L2]

−x(p3q+L2)
. In Figure 2(c), the gray arrow points

to the direction y = 1, it means that the driver group tends to
select violation when 0 < z <

p2(Q−q)−x[p2(Q−q)+L2]
−x(p3q+L2)

.

FIGURE 2. Replicator dynamics phase diagram of drivers.
(a) z=

p2(Q−q)−x[p2(Q−q)+L2]
−x(p3q+L2) . (b) x<x ′ =

p2(Q−q)
p2(Q−q)+L2

y→ 0.

(c) 1 >z>
p2(Q−q)−x[p2(Q−q)+L2]

−x(p3q+L2) y→ 0, 0 <z<
p2(Q−q)−x[p2(Q−q)+L2]

−x(p3q+L2)
y→ 1.

For the platform group, ESS can be inferred from its
replicator dynamics equation (20) and other two groups’
replicator dynamics equations (18) (19).

1) When y = C1−S1
x(−p1q+p3q+S1)−S1+S2

, H (z) ≡ 0 can be got,
all levels are in the stable state. The stability of z depends on
the initial state.

2) When y 6= C1−S1
x(−p1q+p3q+S1)−S1+S2

, z = 0 and z = 1
are the two solutions of H (z) = 0, namely the two stability
states of z. Therefore, in order to obtain equilibrium strategy
of the platform, dH (z)

dz < 0 should be satisfied, as shown in
the following analysis.

a. When C1−S1 > −p1q+p3q+S2, under the constraints
of 0 < x < 1 and 0 < y < 1, xy(−p1q+ p3q+ S1)− y(S1 −
S2) − c1 + S1 < 0 can be proved. Therefore, H ′(0) < 0
can be got, so z = 0 is the ESS. This indicates that when
total costs of the platform supervision are greater than the
difference between the penalty revenue by drivers and the
reward expenditure for passengers, as well as the negative
social effect, the platform will prefer the non-supervision
strategy.
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b. When 0 < C1 − S1 < −p1q + p3q + S2, there are
two situations. It should be noted that when drivers violate
regulations, the negative effect of the platform deregulation
S2 will be greater than the positive effect of the platform
regulation S1. This is because the damage on passengers’
property and personal safety cannot be totally remedied, and
it could even cause the public to lose confidence in the ORH
industry.

When 0 < y < C1−S1
x(−p1q+p3q+S1)−S1+S2

,H ′(0) < 0 can be
got. So z = 0 is the ESS, the platform will be more willing to
opt out of regulation.

When 1 > y > C1−S1
x(−p1q+p3q+S1)−S1+S2

, H ′(1) < 0 can be
got. So z = 1 is the ESS, the platform is more willing to
implement the supervision strategy.

FIGURE 3. Replicator dynamics phase diagram of the platform.
(a) y=

C1−S1
x(−p1q+p3q+S1)−S1+S2

. (b) C1−S1> −p1q+p3q+S2 z→ 0.

(c) 0 <y<
C1−S1

x(−p1q+p3q+S1)−S1+S2
z→ 0, 1 >y>

C1−S1
x(−p1q+p3q+S1)−S1+S2

z→ 1.

Given that the other two groups remain invariant, the repli-
cator dynamics phase diagram of the platform is shown
in Figure 3. In Figure 3(b), the arrows point to the direction
z = 0, it means that the platform group tends to select
non-supervision when C1 − S1 > −p1q + p3q + S2.
In Figure 3(c), the gray arrow points to the direction
z = 0, it means that the platform group tends to select

non-supervision when 0 < y < C1−S1
x(−p1q+p3q+S1)−S1+S2

.
In Figure 3(c), the blue arrow points to the direction z = 1,
it means that the platform group tends to select supervision
when 1 > y > C1−S1

x(−p1q+p3q+S1)−S1+S2
.

C. ANALYSIS OF MODEL STRATEGIES
From the evolutionary stability strategies of the three game
groups, it can be seen that the proportion of reporting
x, the proportion of violation y, and the proportion of
supervision z influence and restrict each other along with
the evolution process. At the same time, the stability of
the equilibrium state is easily disturbed by the decision
proportion of each game group, and it is difficult to promote
the evolution of the three groups to the anticipated state
only by adjusting initial conditions. Therefore, participants’
decisions can be guided to the ideal directions by adjusting
relevant parameters. The optimal evolution directions of
passengers, drivers, and the platform are truly reporting,
legally driving, and actively supervising, respectively.

when C3 < p1q − p2(Q − q) and 1 > z >
C3+yp2(Q−q)

yp1q
,

ORH passengers tend to report violations. With the increase
of p1q, the greater the denominator is, the more likely the
inequality is to be established, which is conducive to the
evolution of the passenger group to the positive decision-
making. Therefore, the platform should increase the rewards
for reporting true information, and encourage passengers to
actively report violations. In addition, the platform should
try to reduce reporting costs of passengers and improve the
feedback efficiency of reporting results. For example, the
platform could establish a special complaint channel for
solving problems at any time to ensure the efficient and
convenient service. And specific handling plans could set
up for different levels of reports, and reports involved the
personal safety of passengers should be listed as the most
urgent cases.

When x[p2(Q − q) + L2] − p2(Q − q) < 0, or when
x[p2(Q − q) + L2] − p2(Q − q) > 0 and 1 > z >
p2(Q−q)−x[p2(Q−q)+L2]

−x(p3q+L2)
, ORH drivers will be more willing

to follow the platform rules. Therefore, it is necessary to
increase the probability of investigation and punishment
when drivers violate regulations, and protect the legitimate
rights and interests of drivers asmuch as possible. At the same
time, the platform should increase violation penalties. The
penalties should include not only higher fines and the longer
time limit for driving bans, but also cancellation of welfare
benefits and implementation of criminal penalties for serious
cases. What is more, it is necessary to reduce regulatory costs
of the platform and give full play to the positive social effects
brought by supervision.

when C1 + p1q < p3q + S1 + S2 and 1 > y >
C1−S1

x(−p1q+p3q+S1)−S1+S2
, the ORH platform will lean towards

the regulatory strategy. And as p3q goes up, the probability
of this inequality being true increases. This once again
demonstrates the importance of the platform to strengthen the
punishment of drivers who violate rules.
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D. STABILITY ANALYSIS OF EQUILIBRIUM POINTS
By separately analyzing the stable states of passengers,
drivers and the platform, it is possible to find the methods to
make each group tend to the desired strategy. On this basis,
this paper further analyzes the prerequisites for the three
groups to be all in the stable state through the equilibrium
points and the Jacobian matrix. According to the concept of
evolutionary equilibrium proposed by Hirshleifer [44], in a
dynamic system, the trajectory starting from any adjacent
field of an equilibrium point eventually evolves toward the
equilibrium point, then the equilibrium point is the ESS.
At the same time, because the solution of asymptotic stability
must be a strict Nash equilibrium solution [45], [46], this
paper only considers the asymptotic stability of the pure
strategy equilibrium points (E1-E8). By solving the partial
derivatives of x, y, and z for the replicator dynamics equations
of the three game groups, the Jacobian matrix can be obtained
as shown in (26).

J =

 J11 J12 J13
J21 J22 J23
J31 J32 J33

 (26)

The parts of (26) are shown as follows:

J11 = (1− 2x)[yz(p1q)− C3 − yp2(Q− q)] (27)

J12 = x(1− x)[z(p1q)− p2(Q− q)] (28)

J13 = x(1− x)[y(p1q)] (29)

J21 = y(1− y)[z(−p3q− L2)+ p2(Q− q)+ L2] (30)

J22 = (1− 2y)[xz(−p3q− L2)+ x[p2(Q− q)+ L2]

−p2(Q− q)] (31)

J23 = y(1− y)[x(−p3q− L2)] (32)

J31 = z(1− z)[y(−p1q+ p3q+ S1)] (33)

J32 = z(1− z)[x(−p1q+ p3q+ S1)− (S1 − S2)] (34)

J33 = (1− 2z)[xy(−p1q+ p3q+ S1)− y(S1 − S2)

−C1 + S1] (35)

The eigenvalues corresponding to each equilibrium point can
be obtained by solving the Jacobian matrix [47], and then
the asymptotic stability of each equilibrium point is analyzed,
as shown in Table 3. From Table 3, it can be seen that only
E1(0, 0, 0) and E4(0, 0, 1) have the possibility to become the
ESS, the phase diagram of these two equilibrium points is
shown in Figure 4. The remaining 6 equilibrium points are
saddle points.

The strategies represented by E1(0, 0, 0) are that passen-
gers do not report, drivers do not violate regulations, and
the platform does not supervise. The prerequisite for these
three groups to achieve long-term stability is −C1 + S1 < 0,
that is, the social positive effects generated when the ORH
platform implements supervision are less than the supervision
costs. This prerequisite does not match the actual situation
and this stability is obviously not conducive to the sustainable
development of the ORH industry.

The prerequisite for E4(0, 0, 1) to become the ESS is C1−

S1< 0, that is, the social positive effects generated when

FIGURE 4. Phase diagram of the equilibrium points. (a) when −C1+S1< 0,
E1(0, 0, 0) is the ESS. (b) when C1−S1< 0, E4(0, 0, 1) is the ESS.

the ORH platform implements supervision are greater than
the supervision costs. This prerequisite can prompt the ORH
platform to implement supervision, and eventually enable the
driver to evolve into non-violation and passengers to evolve
into non-reporting. The equilibrium point is the final stable
state expected by this paper, and the prerequisite for the ESS
shows the costs and benefits of the ORH platform when
passengers have no reports and drivers have no violations.

In addition, E6(1, 0, 1) is the expected decision state
of this paper at the beginning of the evolution process.
Through eigenvalues analysis, it can be seen that passengers
report, no driver violation and platform supervision cannot
achieve long-term stability. When drivers do not violate the
regulations, the platform can identify the false reports of the
passengers through supervision, thereby gradually reducing
the passenger’s report rate, and eventually evolves into a state
where the passengers do not report and the drivers have no
violations under the platform supervision.

V. NUMERICAL SIMULATION OF ORH SUPERVISION
A. NUMERICAL SIMULATION OF THE INITIAL STATE
In order to verify analysis results of the supervision evolu-
tionary game model, the evolutionary paths of passengers,
drivers, and the platform can be simulated numerically.
Based on the demand of simulation, the replicator dynamics
equation of each game group is discretized to analyze the
asymptotically stable running trajectory of the evolutionary
game. Let the time step be1t , then (36) - (38) can be obtained
from the definition of derivative.

dx(t)
dt
≈

x(t +1t)− x(t)
1t

(36)

dy(t)
dt
≈

y(t +1t)− y(t)
1t

(37)

dz(t)
dt
≈

z(t +1t)− z(t)
1t

(38)

In accordance with (36) - (38), the influence of related
parameters on the evolutionary game can be further studied
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TABLE 3. The stability analysis of the equilibrium points.

by usingWolframMathematica 9. In order for the three game
groups to finally achieve ideal states, the initial parameter
setting should meet C3 < p1q − p2(Q − q),C1 + p1q <

p3q+S1+S2,C1 < S1 and S1 < S2. The initial parameters are
set as follows: p1q = 4.5,p2(Q− q) = 2.5, p3q = 6.5,C1 =

5,C3 = 0.4,L2 = 1, S1 = 5.5,S2 = 6.
Set all the initial proportions of passengers, drivers, and

the platform as 0.5, so as to objectively evaluate the evolution
path of the ORH supervision game from the neutral starting
point. The initial evolution path is shown in Figure 5. As can
be seen from this figure, under the dual influences of the
platform’s supervision and drivers’ compliance, passengers
gradually evolve into the strategy of not reporting.

FIGURE 5. Initial evolution path.

The stable strategy of drivers reaching no violation around
2 periods means that there is no illegal behavior in the ORH
market in the following periods. However, it takes about
12 periods for passengers to reach the stable strategy of
not reporting, indicating that passengers are still actively

participating in the supervisionwithin the 2-12 periods. At the
same time, passengers gradually evolve into the strategy of
not reporting as the number of wrong complaints reminded
by the platform increases. This evolutionary path is in line
with the ideal decision-making of reporting by passengers,
non-violation by drivers, and supervision by the platform.
Finally, the best state is realized, which is that drivers do not
violate regulations and passengers do not complain under the
supervision of the platform.

B. NUMERICAL SIMULATION OF PARAMETER VARIATION
Among all the parameters, there are three parameters that
affect the certain two groups in the game: passengers’ rewards
received from the platform for reporting violations p1q,
drivers’ penalties received from the platform for violations
p3q, and passengers’ compromise gains received from drivers
for not reporting violations p2(Q − q). Therefore, the influ-
ences of these three parameters on the decision-making of
participants will be studied respectively in the following
paragraphs.

For the analysis of these three parameters, this paper sets
the initial proportion of passengers selecting reporting to
be 0.5, that is, the passenger group is initially neutral. This
paper sets the initial proportion of drivers selecting violation
to be 0.9, that is, the driver group initially prefers to violate
the regulations to obtain illicit incomes. This paper sets the
initial proportion of the platform selecting supervision to be
0.1, that is, the platform initially prefers to be unsupervised
to reduce the corresponding costs.

Keeping other parameters and the initial proportions of the
three game groups unchanged, increase the value of p1q to
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6 and decrease it to 3. Because this parameter is not included
in the replicator dynamics equation of drivers, it will not
change the drivers’ evolution path. The evolution paths of
passengers and the platform are mainly observed as shown
in Figure 6.

FIGURE 6. The influence of p1q on the evolution path.

As can be seen from Figure 6., when rewards received from
the platform are increased, passengers will be encouraged
to report violations more actively, but at the same time,
the proportion of passengers reporting false information for
getting more rewards will be increased. The decrease of
reporting rewards will accelerate the strategy evolution of not
reporting for passengers, but it will also reduce the frequency
of false reporting.

For the ORH platform, improving reporting rewards means
the increase of regulatory costs, which will lead to the slower
evolution of the platform towards the supervision strategy.
On the contrary, the reduction of incentive costs will make
the platform more incline to choose the supervision strategy.

In addition, when increasing p1q, the evolution path of pas-
sengers will have a smooth and slight upward process, but the
evolution path of the platform does not fluctuate significantly,
which means that the change of p1q has a greater impact
on passengers’ decision than the platform’s decision. So,
the platform should carefully weigh the relationship between
passenger incentive and cost acceptability when setting the
reward amount.

Keeping other parameters and the initial proportions of the
three game groups unchanged, increase the value of p3q to
10 and decrease it to 5. Because this parameter is not included
in the replicator dynamics equation of passengers, it will not
change the passengers’ evolution path. The evolution paths
of drivers and the platform are mainly observed as shown
in Figure 7.

FIGURE 7. The influence of p3q on the evolution path.

As can be seen from Figure 7., when the platform reduces
the punishment for violations, it will slow down the evolution

of drivers to the non-violation strategy, because the reduction
of risk costs will increase the fluke mind of drivers to avoid
punishment. Therefore, the platform should severely punish
the drivers who violate rules, which can not only restrict
illegal behaviors of drivers but also offset partial supervision
costs of the platform and promote the evolution of the two
game groups to the ideal decision-making.

Keeping other parameters and the initial proportions of
the three game groups unchanged, increase the value of
p2(Q− q) to 4 and decrease it to 1. Because this parameter
is not included in the replicator dynamics equation of the
platform, it will not change the platform’ evolution path. The
evolution paths of drivers and passengers are mainly analyzed
as shown in Figure 8.

FIGURE 8. The influence of p2(Q−q) on the evolution path.

As can be seen from Figure 8., When the offending drivers’
compromise gains for passengers decreases, passengers tend
to choose the reporting strategy, and the total time to
participate in supervision is extended by two time periods
compared to Figure 6. and Figure 7. At the same time,
compared with other parameter changes, the reduction of
compromise gains is the only parameter change that makes
the reporting proportion of passengers higher than 0.5 in the
early stage. Therefore, the reporting proportion of passengers
is significantly negatively correlated with compromise costs
paid by drivers. When compromise gains increase, although
passengers are more likely to cover up drivers’ misconduct,
the corresponding higher violation costs will cause drivers to
accelerate the evolution to the non-violation strategy.

VI. CONCLUSION
The ORH industry plays a crucial role in developing sharing
economy, improving resource allocation and enriching travel
modes. However, the violations of some ORH drivers have
disrupted the healthy operation of the market and the normal
order of the society. Because most of the violations occurred
in the presence of passengers, the construction of the active
supervision based on the platform, passengers and drivers
can reduce the occurrence of problems at the source through
mutual restriction and cooperation.

A. RESEARCH CONCLUSIONS
On the premise of the bounded rationality of the decision-
making participants, this paper constructs the tripartite
evolutionary game model on the basis of considering the
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benefits of the ORH platform, drivers and passengers.
Through analyzing the evolutionary stability strategy of each
game group and the eigenvalues of each equilibrium point,
it shows that the effectiveness and sustainability of the ORH
supervision are largely determined by the reward amount and
the reporting cost of passengers, the supervision cost and the
social benefit of the platform, the punishment degree and the
violation risk of drivers.

At the same time, in order to further study the evolutionary
path of the stable state, this paper analyzes how different
parameters change the evolution behaviors of the three game
groups by numerical simulation, and draws the following two
conclusions.

First, no matter how the relevant parameters change,
passengers will ultimately evolve a non-reporting strategy.
Although improving reporting rewards can enhance the
continuity of passengers’ participation, it is difficult to
really promote the huge increase of passengers’ enthusiasm,
which shows that the platform is still the core pillar of
ORH supervision, and the passenger group can only play a
supporting role.

Second, when both drivers and the platform reach the
ideal stable states, passengers still have a period of decision
evolution. The reason why passengers still choose the
reporting strategy when drivers do not violate the regulations
may be that some passengers who want to get the rewards
misjudge the drivers’ compliance, and the duration of this
situation is positively correlated with the amount of reporting
rewards. Therefore, the platform should take the cost of
detecting false information into consideration when it designs
reporting rewards.

B. IMPROVEMENT SUGGESTIONS
As the implementer of ORH supervision, the platform should
ensure the stable development of the internet passenger trans-
port industry from the inside out. Therefore, the following
two suggestions are proposed based on the research results of
this paper.

On the one hand, the platform should increase the rewards
for true reports, such as offering large discounts on fares
and freely upgrading to high-grade cars. Punishments for
drivers who violate regulations should be strengthened
comprehensively. The platform should set different levels of
fines and directly dismiss seriously violators, so that they
cannot earn incomes and enjoy travel services through the
platform.

On the other hand, the platform should build good user
relationships, and the users referred to here are not only
passengers, but also drivers. While strengthening the man-
agement of service terminals andmaintaining long-term good
passenger experiences, the platform should also safeguard
the legal rights of drivers and guarantee their information
security. The platform can establish the special complaint
mechanism for drivers and passengers respectively, improve
the whole complaint channel on the basis of reducing the
cost of user complaints, so that each complaint can be solved

quickly and fairly. Protect the information and personal safety
of users from the source.

C. FUTURE RESEARCH DIRECTIONS
Because behaviors and decisions of participants will change
in the complex evolution process of ORH services, it is
necessary to further consider the psychological variables such
as the willingness of passengers, the subjective norms of
drivers and the perceived value of the platform in future
studies. At the same time, most of the current game studies
on the ORH supervision only include the government and
the platform. In the future, third-party regulatory agencies
or associations of ORH enterprises can be included in
the regulatory research, so as to further analyze the game
strategies of the ORH industry.
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