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ABSTRACT Nowadays, multi-view clustering has attracted more and more attention, which provides
a way to partition multi-view data into their corresponding clusters. Previous studies assume that each
data instance appears in all views. However, in real-world applications, it is common that each view may
contain some missing data instances, resulting in incomplete multi-view data. To address the incomplete
multi-view clustering problem, we will propose an auto-weighted incomplete multi-view clustering method
in this paper, which learns a common representation of the instances and an affinity matrix of the learned
representation simultaneously in a unified framework. Learning the affinity matrix of the representation
guides to learn a more discriminative and compact consensus representation for clustering. Moreover,
by considering the impact of the significance of different views, an adaptive weighting strategy is designed
to measure the importance of each view. An efficient iterative algorithm is proposed to optimize the objective
function. Experimental results on various real-world datasets show that the proposed method can improve
the clustering performance in comparison with the state-of-the-art methods in most cases.

INDEX TERMS Adaptive weighting strategy, affinity matrix, common representation, incomplete
multi-view clustering.

I. INTRODUCTION
In recent years, many real-world datasets naturally come
from multiple sources or comprise of multiple modalities,
which are called multi-view data. For instance, in web page
clustering, the web page content and its linkage information
can be regarded as two views; in disease diagnosis, the blood
test, CT, and the neuroimage can be regarded as three views
of each individual; in bi-lingual documents grouping, the two
languages can be seen as two views. Usually, in multi-view
data, these multiple views provide consistent and comple-
mentary information. By exploiting the information present
in the different views, multi-view learningmethods have been
proposed for tasks such as clustering and classification.

In all tasks of multi-view learning [1], [2], multi-view
clustering [3], which exploits multiple views to effectively
learn from unlabeled data, has attracted more and more
attention. The goal of multi-view clustering is partitioning
data points into their corresponding clusters. In the past few
years, a number of multi-view clustering methods have been
proposed. Among these methods, there are two main cluster-
ing categories: spectral based and subspace based. With the
help of some similarity measure between examples, spectral
clustering [4] has been extended to multi-view data. de Sa [5]
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creates a bipartite graph and proposes the spectral clustering
algorithm based on the minimizing-disagreement idea. Based
on the spectral clustering, [6] boosts themulti-view clustering
by exploring the complementary information of multi-view
representations.Wang et al. [7] propose a structured low-rank
matrix factorization-based method to learn low-dimensional
data-cluster representations for all views by preserving the
flexible manifold structures and introducing the divergence
constraint term jointly. Subspace based methods learn a latent
subspace for different views. Canonical Correlation Analysis
(CCA) [8] is a typical subspace-based approach, which has
been proposed for dimension reduction [9] and multi-view
subspace learning [10], [11]. Gao et al. [12] learn a common
and consistent representation of all views. Liu et al. [13] for-
mulate a joint matrix factorization process with the constraint
that pushes the clustering solution of each view towards a
common consensus instead of fixing it directly.

It is noteworthy that existing multi-view clustering meth-
ods make a common assumption that all the views are com-
plete, i.e., each instance presents in all views. However,
in real-world applications, multi-view data tend to be incom-
plete. For example, in bi-lingual documents grouping, the two
languages can be treated as two views and many documents
have only a single language part. Another example is in dis-
ease diagnosis, the blood test, CT, and MRI can be regarded
as three views of everyone, and it often occurs that some
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individuals would only like to take one test. The above-
mentioned cases lead to the incomplete multi-view data. The
multi-view clustering approaches can not be exploited to the
scene of incomplete multi-view data, and thus can not obtain
a satisfactory clustering performance. So how to make use
of the complementary information of the different views and
reduce the impact of incomplete views become the most
challenging problems in incomplete multi-view learning.
Recently, different incomplete multi-view clusteringmethods
have been proposed. Trivedi et al. [14] propose to deal with
incomplete views by utilizing information from one complete
view to refer to the kernel of incomplete views. [15], [16]
attempt to solve multiple incomplete views clustering based
on nonnegative matrix factorization(NMF). Li et al. [15] pro-
pose PVC to learn a common latent subspace for the different
views based on NMF. Zhao et al. [17] propose IMG to learn
the common latent subspace for all the views by integrating a
graph Laplacian term. However, PVC and IMG can only deal
with the two-view incomplete multi-view clustering problem.
Shao et al. [16] propose MIC to learn a latent subspace for
more than two incomplete views based on weighted NMF
and L2,1-Norm regularization [18], [19]. However, there are
some limitations to these methods and incomplete multi-view
clustering still faces significant challenges. The challenges
of incomplete multi-view clustering are: 1) Previous incom-
plete multi-view clustering methods exploit the available
information of the non-missing views to learn a common
representation for all views, ignoring the underlying semantic
information of the missing views. 2) The previous incomplete
multi-view clustering methods, which are offline, require that
the multi-view data can be fitted into the memory. However,
in the data explosion age, the size of individual views data
is often huge. For example, in Web scale data mining, one
may encounter billions of Web pages and the dimension of
the features may be as large as O(106). Data in such scale
is hard to store in the memory and process in offline way.
Therefore, existing offline incomplete multi-view clustering
methods can not handle large-scale data.

In this paper, we propose an Auto-Weighted Incomplete
Multi-View Clustering, dubbed as AWIMVC, to address
incomplete multi-view clustering problem. Firstly, we learn
a common representation for all the views in the latent sub-
space where the instances belonging to the same example
are close to each other. Secondly, we propose to learn the
affinity matrix of the learned representation which reveals
the global subspace structure of data and guides to learn a
more discriminative and compact common representation.
Thirdly, an adaptively learned weight vector is introduced to
measure the importance of each view. Experimental results
demonstrate the advantages of the proposed method. In brief,
the proposed AWIMVC has the following contributions.

1) We propose to learn a common representation of the
views in the latent space as well as preserve the global
structure simultaneously. Moreover, due to the affinity
matrix learning, a more discriminative and compact

common representation is obtained which is beneficial
to clustering.

2) Considering the importance of different views, an adap-
tive weight vector is proposed to measure the signifi-
cance of different views.

3) An iterative optimization algorithm for AWIMVC
with a convergent guarantee is proposed. Experi-
mental results on real-world datasets demonstrate its
advantages.

II. RELATED WORK
Li et al. [15] propose Partial Multi-View Clustering (PVC)
which is able to address the case that each view suffers from
missing information. PVC learns a latent subspace based on
NMF. The objective function of PVC is designed as follows:

min
{U (v),P̄(v)}2v=1

O =

∥∥∥∥∥
[
X (1)
c

X̂ (1)

]
−

[
Pc
P̂(1)

]
U (1)

∥∥∥∥∥
2

F

+ λ

∥∥∥P̄(1)∥∥∥
1

+
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[
X (2)
c

X̂ (2)

]
−

[
Pc
P̂(2)

]
U (2)

∥∥∥∥∥
2

F

+ λ

∥∥∥P̄(2)∥∥∥
1

s.t.U (1)
≥ 0,U (2)

≥ 0, P̄(1) ≥ 0, P̄(2) ≥ 0. (1)

where λ is the penalty parameter of the views, U (1), U (2)

are the basis matrix for each view’s latent space, P̄(1) =
[Pc; P̂(1)], P̄(2) = [Pc; P̂(2)] are the latent representation of
instances for two views. The homogeneous feature represen-
tation for all examples can be obtained asP = [Pc; P̂(1); P̂(2)].
Clustering approaches such as k-means can be applied on
such representation.

III. PROPOSED METHOD
In this section, we present the proposed approach
(AWIMVC), which simultaneously learns a common rep-
resentation in the latent subspace and an affinity matrix of
the learned representation. In the following, we propose our
model in three aspects and then give a unified objective
function for implementing AWIMVC.

A. COMMON REPRESENTATION LEARNING
Inspired by nonnegative matrix factorization(NMF) [20],
we propose to learn latent representations in the latent sub-
space of different views by matrix factorization:

min
U (v),V (v)

nv∑
v=1

∥∥∥X (v)
− U (v)V (v)

∥∥∥2
F

s.t. U (v)TU (v)
= I , (2)

where X (v)
∈ Rmv×n denotes the instances from vth view,

U (v)
∈ Rmv×c is the basis matrix for the vth view’s latent

subspace, V (v)
∈ Rc×n is the latent representation of the vth

view in the latent subspace, where c is the dimension of the
latent representation or cluster number. In (2), the orthogonal
constraint U (v)TU (v)

= I is introduced to make the basis
matrix independent. Moreover, we impose the orthogonal
constraint on U (v)

∈ Rmv×c to avoid a trivial solution.

VOLUME 8, 2020 138753



W. Deng et al.: Auto-Weighted Incomplete Multi-View Clustering

However, (2) only independently decomposes different
views without considering their consistency information.
To address this problem, we assume that different views have
distinct basis matrices {U (v)

}
nv
v=1, but share the same latent

representation V . As a result, (2) is rewritten as follows:

min
U (v),V

nv∑
v=1

∥∥∥X (v)
− U (v)V

∥∥∥2
F

s.t. U (v)TU (v)
= I , (3)

In common representation learning, the previous works
ignore the hidden information of the missing views [21].
In this paper, we propose to learn a consensus representation
not only with the available information of the non-missing
views but also with the underlying information of the missing
views:

min
U (v),V ,E (v)

nv∑
v=1

(
∥∥∥X (v)

+ E (v)M (v)
− U (v)V

∥∥∥2
F

+
λ1

2

mv∑
j=1

mv∑
i=1

∥∥∥E (v)
i,: − E

(v)
j,:

∥∥∥2
2
W (v)
i,j )

s.t. U (v)TU (v)
= I , (4)

where λ1 is a positive penalty parameter. E (v)
∈ Rmv×n

m
v

denotes the error matrix, which is used to model the miss-
ing instances of the vth view, nmv is the number of missing
instances of the vth view, E (v)

i,: and E
(v)
j,: denote the ith and jth

row vector of matrix E (v).M (v)
∈ Rn

m
v ×n is an index matrix of

the vth view and is defined as follows:

M (v)
i,j =



1, if the j− th instance
is the i− th
missing instance
in the v-th view

0, otherwise.

(5)

In (4), W (v)
∈ Rmv×mv is the nearest neighbor graph of

features from the vth view, which is pre-constructed as:

W (v)
i,j =

{
1, if X̄ (v)

i,: ∈ ψ(X̄
(v)
j,: ) or X̄

(v)
j,: ∈ ψ(X̄

(v)
i,: )

0, otherwise,
(6)

where ψ(X̄ (v)
j,: ) denotes the set of k nearest neighbors of the

jth feature.
The problem (4) can be transformed into the following

equivalent formula:

min
U (v),V ,E (v)

nv∑
v=1

(
∥∥∥X (v)

+ E (v)M (v)
− U (v)V

∥∥∥2
F

+λ1Tr(E (v)TL(v)E (v)))

s.t. U (v)TU (v)
= I , (7)

where L(v) is the Laplacian matrix of the graph W (v) and is
calculated as L(v) = D(v)

−W (v),D(v) is a diagonal matrix and
its ith diagonal element is calculated by D(v)

i,j =
∑mv

j=1W
(v)
i,j .

B. AFFINITY MATRIX LEARNING
Affinity matrix reveals the global subspace structure of
data. The clustering results highly depend on the learned
affinity matrix, so it is significant to preserve the global
structure of data in clustering. In addition, global struc-
ture preserving is beneficial to improve the compactness of
the learned low-dimensional representation. For multi-view
learning problem, global constraints can be easily achieved
because of the complete view setting.While in the incomplete
multi-view learning problem, the global constraints cannot
be easily achieved due to the missing instances of views.
To preserve the compact global structure of data, we propose
to learn the affinity matrix of representation, which is defined
as follows:

min
G

λ2

2

n∑
i=1

n∑
j=1

(
∥∥V:,i − V:,j∥∥22Gi,j)+ λ3 ‖G‖2F

s.t. ∀i,GTi 1 = 1,Gi ≥ 0, (8)

where G ∈ Rn×n denotes the affinity matrix with each
element representing the similarity degree between the corre-
sponding two instances. 1 is a vector with all 1s. Introducing
the constraints Gi1 = 1 and Gi ≥ 0 can guarantee the
probability property of Gi. Minimizing ||G||2F can avoid the
trivial solution.

For the Eq. (8), we can rewrite it as follows:

min
G

λ2Tr(VLGV T )+ λ3 ‖G‖2F

s.t. ∀i,GTi 1 = 1,Gi ≥ 0, (9)

where LG ∈ Rn×n is the Laplacian matrix of affinity matrix
G, defined by LG = D−G, in which the degree matrix is the
diagonal matrix with Dii =

∑n
j=1Gij.

C. ADAPTIVE WEIGHT VECTOR LEARNING
In multi-view learning, it is crucial to assign a reasonable
weight to each view according to the importance of different
views, which is taken into account in [22], [23]. For multi-
view clustering task, assigning a suitable weight for each
view is beneficial to improve the clustering performance. It is
necessary to employ a group of meaningful weights to mea-
sure the importance of each view. In the case of incomplete
multi-view clustering, the available information of different
viewswill have huge differences because of the number of the
missing instances of multiple views and the different feature
dimensions. It is essential to assign a reasonable weight to
each view according to the importance of the view. To this
end, we introduce a hyperparameter to learn the weight vector
of the views:

min
µ(v)

nv∑
v=1

(µ(v))s3(v)

s.t.
nv∑
v=1

µ(v)
= 1, µ(v)

≥ 0 (10)
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FIGURE 1. Framework of the proposed approach.

where µ(v) is a weight to measure the importance of the
vth view. 3(v) denotes the learning model of the vth view.
Parameter s > 1 is used to smooth the weight distribution.
Finally, by integrating the common representation learn-

ing, affinity matrix learning, and adaptive weight vector
learning into a unified framework, we obtain the final model
as follows:

min
U (v),V ,E (v),G,µ(v)

nv∑
v=1

(µ(v))s

×

∥∥X (v)
+ E (v)M (v)

− U (v)V
∥∥2
F

+λ1Tr(E (v)TL(v)E (v))
+λ2Tr(VLGV T )+ λ3 ‖G‖2F


s.t.U (v)TU (v)

= I ,∀i,GTi 1 = 1,Gi ≥ 0,
nv∑
v=1

µ(v)
= 1, µ(v)

≥ 0 (11)

The framework of the proposed approach is outlined
in Fig.1.

IV. OPTIMIZATION ALGORITHM
In this section, we first solve the objective function of
AWIMVC. Then, we will give the convergence and com-
putational complexity analysis. The algorithm flow will be
presented in detail.

A. OPTIMIZATION
To address the optimization problem (11), we introduce an
alternative optimization algorithm [24].

Step 1: Update variable U (v). Fixing all of the other vari-
ables, the sub-problem to solve variable U (v) is reformulated
as:

min
U (v)TU (v)=I

∥∥∥X (v)
+ E (v)M (v)

− U (v)V
∥∥∥2
F

(12)

We can obtain the optimal solution of U (v)
= LRT by

solving (12), where L and R are the left and right singular
matrices of the matrix ((X (v)

+ E (v)M (v))V T ).
Step 2: Update variable V . Fixing the other variables, the

optimization problem to calculate V is formulated as follows:

ϕ(V ) =
nv∑
v=1

(µ(v))s(
∥∥∥X (v)

+ E (v)M (v)
− U (v)V

∥∥∥2
F

+λ2Tr(VLGV T )) (13)

Then the derivative of ϕ(V ) with respect to V is:

∂ϕ(V )
∂V

=

nv∑
v=1

(µ(v))s[2U (v)T (U (v)V − Y (v))

+λ2(VLTG + VLG)] (14)

Setting the derivative of ϕ(V ) to be 0 with respect to V ,
we can obtain variable V as follows:

V = (
nv∑
v=1

(µ(v))sU (v)TY (v))(I + λ2LG)−1
/ nv∑

v=1

(µ(v))s

(15)

where Y (v)
= X (v)

+ E (v)M (v).
Step 3: Update variable E (v). When fixing the other vari-

ables, the sub-problem to solve variable E (v) is as follows:

min
E (v)

∥∥∥X (v)
+ E (v)M (v)

− U (v)V
∥∥∥2
F
+ λ1Tr(E (v)TL(v)E (v))

(16)

Since all instances of X (v) corresponding to E (v) are zeros,
problem (16) can be rewritten as follows:

ϕ(E (v)) =
∥∥∥E (v)

− U (v)VM (v)T
∥∥∥2
F
+ λ1Tr(E (v)TL(v)E (v))

(17)
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Algorithm 1 AWIMVC(solving (11))

Input: Incomplete multi-view data X = {X (v)
}
nv
v=1 with

missing views filled in 0s, index matrix of missing views
M = {M (v)

}
nv
v=1, nearest neighbor graph W = {W

(v)
}
nv
v=1,

parameters λ1, λ2, λ3, s.
Initialization:µ(s)

= 1
/
nv,U (v) is an orthogonal matrix

with random values, random matrix E (v), random graph G.
while not converged do
1. Update V using (15);
2. Update G using (20);

for v from 1 to nv
3. Update U (v) by solving (12);
4. Update E (v) by solving (18);

end
5. Update µ(v) using (22).

end while
Output:V ,U (v),G,E (v)

Then we can obtain E (v) by setting the derivative of ϕ(E (v))
with respect to E (v) to 0 as follows:

∂ϕ(E (v))
∂E (v) = 2(E (v)

− U (v)VM (v)T )

+λ1(L(v)E (v)
+ L(v)TE (v)) = 0

⇔ E (v)
= (I + λ1L(v))−1U (v)VM (v)T (18)

Step 4: Update variable G(LG). Fixing the other variables,
the sub-problem of the variable G is in the following form:

min
G
λ2Tr(VLGV T )+ λ3 ‖G‖2F

s.t.∀i,GTi 1 = 1,Gi ≥ 0 (19)

We divide problem (19) into a set of sub-problems Gi

according to samples index i as

Gi = argmin
Gi∈{α|αT 1=1;α≥0}

∥∥∥Gi + S i∥∥∥2
F
, (20)

where S i is a vector with its element j defined as S ij =
λ2
∥∥V :,i−V :,j∥∥2F

4λ3
. The detailed deduction is described in [25].

Step 5: Update variable µ(v). Fixing all of the other vari-
ables, we can calculate µ(v) by minimizing the following
problem:

min
µ(v)>0,

∑nv
v=1 µ

(v)=1

nv∑
v=1

(µ(v))sf (v), (21)

where f (v) =
∥∥X (v)

+ E (v)M (v)
− U (v)V

∥∥2
F + λ1Tr(E

(v)TL(v)

E (v))+ λ2Tr(VLGV T )+ λ3 ‖G‖2F .
The optimal solution of µ(v) is given by [26]:

µ(v)
= (f (v))1/(1−s)

/∑nv

v=1
(f (v))1/(1−s) (22)

The entire algorithm of the proposed method is summa-
rized in Algorithm 1.

B. CONVERGENCE AND COMPUTATIONAL COMPLEXITY
Convergence Analysis. As shown byAlgorithm 1, an iterative
algorithm is exploited to optimize the optimization prob-
lem. The optimization of AWIMVC is divided into five sub-
problems, which are all convex w.r.t. each parameter. And
the five sub-problems have the closed-form solution w.r.t.
each parameter. It is concluded that the objective function is
monotonically decreasing towards a stationary point. More-
over, the objective function is lower bounded. The above two
factors ensure the proposed optimization method to finally
find the local optimal point of the objective problem, which
guarantees the convergence property.

Computational Complexity. For the calculation of the vari-
ables in Steps 1 and 5, it can be found that the highest com-
putational costs are the singular value decomposition (SVD)
in Step 1 and inverse operation in Steps 2 and 3. For an m×n
matrix, the computational complexity operation of SVD is
O(mn2). For an n×nmatrix, the computational complexity of
the inverse operation is O(n3). For Step 3, the computational
complexity can be ignored since the inverse operation of
(I +λ1L(v))−1 can be calculated outside the loop. For Step 4,
the computational complexity of updating G is O(n3). Thus
the total computational complexity of Algorithm 1 is about
O(
∑nv

v=1 tmvc
2
+ 2tn3), where t is the iteration times.

V. EXPERIMENTS AND ANALYSIS
In this section, we perform experiments on five datasets
to prove the effectiveness and efficiency of the proposed
method.

A. EXPERIMENTAL SETTINGS
In this section, we first give the detailed information of the
datasets and the incomplete multi-view data construction.
The baseline methods which are used to compare with the
proposed method are presented. Finally, we choose three
criteria to evaluate the clustering performances of different
methods.

1) DATASETS
We conduct experiments on five real-world datasets. Table 1
describes the statistics of the five datasets. The detailed infor-
mation of the datasets is as follows.

TABLE 1. Statistics of the datasets.

1) Handwritten digit dataset [27]: The handwritten digit
dataset consists of 2000 handwritten digits (0-9). Two views
are used in our experiments: 1) 240 pixel averages in win-
dows, 2) 76 Fourier coefficients of the character shapes.
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2) BUAA-visnir face dataset (BUAA) [28]: Following the
experimental settings in [17], we conduct our experiments on
a subset of BUAA which is composed of 90 visual images
and 90 near infrared images of the first 10 classes.

3) 3 Sources dataset: This dataset is collected from three
online news sources: 1) BBC; 2) Reuters; and 3) The
Guardian. Each source can be regarded as a view. There are
948 news articles in total. A subset of 3 Sources dataset is
extracted for evaluation in our experiments, which contains
169 stories of six topical labels and the 169 stories are
reported in all of the three sources.

4) BBCSport dataset: The original BBCSport dataset con-
tains 737 documents about the sport news articles collected
from BBCSport website. These documents are described by
2–4 views and categorized into five classes.We select a subset
to conduct our experiments which consists of 116 samples
described by all of the four views.

5) Cornell dataset: The Cornell dataset is one of the popular
WebKB datasets, which contains 195 documents over the five
labels, i.e., student, project, course, staff, and faculty. Each
document is described by two views: the content view and
the citation view.

2) INCOMPLETE MULTI-VIEW DATA CONSTRUCTION
Following [21], we construct two types of incomplete multi-
view data in our experiments.

1) For the BUAA, Handwritten, and Cornell datasets,
we randomly select 10%, 30%, 50%, and 70% samples from
the datasets as the paired samples. For the half of the remain-
ing samples, we remove the first view. While for the other
half of the samples, we remove the second view to construct
the incomplete multi-view data.

2) For the BBCSport and 3 Sources datasets, we randomly
remove 10%, 30%, and 50% instances of each view to con-
struct the incomplete multi-view data.

3) BASELINE METHODS
We select the following methods to compare with the pro-
posed method.

1) BSV (Best Single View): Following [16], BSV fills
in the missing views with the average of instances of the
corresponding view, and then performs k-means on each view
independently, and reports the best result.

2) Concat: Same as BSV, Concat fills in the missing views
with the average of instances of the corresponding view.
Differently, Concat concatenates all views into a single view,
and then performs k-means to obtain the clustering results.

3) Partial multi-view clustering (PVC) [15]: PVC learns a
common representation for all views based on the NMF(non-
negative matrix factorization), and then performs k-means on
the learned representation to obtain the clustering results.

4) Partial multi-view clustering using graph regularized
NMF(GPMVC) [29]: GPMVC extends PVC in two direc-
tions. First, GPMVC extends PVC for the k partial-view
scenario. Second, GPMVC extends the algorithm to include
view specific graph Laplacian regularization. Same as PVC,

GPMVC learns a common representation for all views, and
then performs k-means on the learned representation to obtain
the clustering results.

5) Incomplete multi-modality grouping (IMG) [17]: IMG
uses the matrix factorization technique to learn a common
latent representation for all views. Moreover, IMG learns a
similarity matrix for the learned representation.

6) MIC [16]: MIC first fills the missing instances in each
incomplete view with the average features, and then based on
weighted non-negative matrix factorization with L2,1-norm
regularization, MIC learns a common latent representation.

7) Doubly aligned incomplete multi-view clustering
(DAIMC) [30]: DAIMC uses the weighted semi-NMF to
learn a common representation for all views, and then per-
forms k-means on the learned representation to obtain the
clustering results.

8) Online multi-view clustering (OMVC) [31]: OMVC
processes the data chunk by chunk and learns a common
feature matrix simultaneously.

9) UEAF [21]: Based on recovering the missing views and
reverse graph regularization, UEAF learns a common repre-
sentation for all views. And then UEAF performs k-means on
the learned representation to obtain the clustering results.

4) EVALUATION
In our experiments, we choose the clustering accuracy (ACC),
normalized mutual information (NMI), and purity as the cri-
terion to compare these methods [27]. For the above baseline
methods except BSV and Concat, the grid search approach
is exploited to find the optimal parameters of these methods
and the best clustering results of these methods are reported,
respectively. For each dataset, we perform all methods on
the same 5 randomly constructed incomplete cases and report
their average results for fair comparison.

B. EXPERIMENTAL RESULTS AND ANALYSIS
Experimental results on the above datasets are shown
in Tables 2-6 and Figs. 2-6. From these tables and figures,
we can obtain the following points.

1) From Tables 2-6 and Figs. 2-6, it can be observed that,
compared with the other methods, BSV and Concat base-
line methods perform worst in most cases. The experimental
results of BSV and Concat prove that simply fills in the miss-
ing views with the average of instances of the corresponding
view is not a good method to solve the incomplete multi-view
clustering problem.

2) It can be found that, by exploiting the complementary
information of the views to learn a consensus representation,
PVC, GPMVC, IMG, DAIMC, UEAF, and the proposed
method can achieve much better performance than BSV and
Concat in most cases from Tables 2-6 and Figs. 2-6.

3) From Tables 2-4 and Figs. 2-4, we can find that IMG,
GPMVC, UEAF, and AWIMVC outperform PVC in most
cases, which proves the effectiveness of preserving the geo-
metric structure of data in incomplete multi-view clustering.
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TABLE 2. Mean NMIs (%), ACCs (%), and purities (%) of different methods on the handwritten dataset.

TABLE 3. Mean NMIs (%), ACCs (%), and purities (%) of different methods on the BUAA dataset.

TABLE 4. Mean NMIs (%), ACCs (%), and purities (%) of different methods on the CORNELL dataset.

TABLE 5. Mean NMIs (%), ACCs (%), and purities (%) of different methods on the bbcsport dataset.

4) From Tables 5-6 and Figs. 5-6, AWIMVC, UEAF
and DAIMC achieve much better performance than
MIC and OMVC, which proves that AWIMVC, UEAF
and DAIMC can capture more complementary and

compatible information from the incomplete multiple
views.

5) From Tables 2-4 and Figs. 2-4, AWIMVC and UEAF
perform much better than IMG, which demonstrates that
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TABLE 6. Mean NMIs (%), ACCs (%), and purities (%) of different methods on the 3sources dataset.

FIGURE 2. ACC, NMI, and purity of different methods on handwritten dataset with different rates of paired
samples.

FIGURE 3. ACC, NMI, and purity of different methods on BUAA dataset with different rates of paired
samples.

FIGURE 4. ACC, NMI, and purity of different methods on CORNELL dataset with different rates of paired
samples.

learning a weight vector for the views to measure the impor-
tance of the different views and taking into account the under-
lying information of the missing views are beneficial to the
incomplete multi-view clustering.

6) From Tables 2-6 and Figs. 2-6, AWIMVC outperforms
UEAF in most cases, which demonstrates that learning the
common representation and affinity matrix of the learned

representation simultaneously, which guides to learn a more
discriminative and compact consensus representation, is a
good choice for incomplete multi-view clustering.

C. PARAMETER SENSITIVITY ANALYSIS
In this section, we focus on analyzing the sensitivity of the
tunable parameters. We first fix parameters k = 9 and s = 3,
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FIGURE 5. ACC, NMI, and purity of different methods on BBCSport dataset with different rates of
incomplete samples.

FIGURE 6. ACC, NMI, and purity of different methods on 3sources dataset with different rates of incomplete
samples.

FIGURE 7. ACC(%) v.s. (a) parameter λ1 by fixing parameters λ2 and λ3
and (b) parameters λ2 and λ3 by fixing parameter λ1 on the BUAA dataset
with 30% paired samples.

FIGURE 8. ACC(%) v.s. (a) parameter λ1 by fixing λ2 and λ3 and
(b) parameters λ2 and λ3 by fixing parameter λ1 on the BBCSport dataset
with 30% missing instances of each view.

and conduct some experiments on the BUAA and BBCSport
datasets to analyze the sensitivity of ACC w.r.t. λ1, λ2 and λ3.
From Fig. 7, we can see that AWIMVC can obtain encour-
aging results when λ1, λ2, and λ3 are located in the ranges
of [10−5, 10−1], [10−5, 10−3], and [101, 105], respectively.

FIGURE 9. NMI(%) v.s. parameter s of the proposed approach on
(a) BUAA dataset with 30% paired samples and (b) 3sources dataset with
30% missing instances of each view.

From Fig. 8, when λ1, λ2, and λ3 are located in the ranges
of [102, 105], [10−5, 10−2], and [101, 103], respectively,
AWIMVC achieves a satisfactory clustering performance.
In the experiments, the grid search strategy is exploited to find
the three optimal parameters [32]. Moreover, we show the
NMI(%)w.r.t. s on the BUAA and 3 Sources datasets in Fig. 9.
From Fig.9, it can be found that the proposed method obtains
a satisfactory clustering result with a small parameter s and
we set s = 3 in all experiments.

For different datasets, it is still an open problem to adap-
tively select the optimal values for these parameters. In this
paper, we use the following strategy to find the optimal
parameters for the proposed method. We fix the parameters k
and s. And then we determine the parameters λ1, λ2, and λ3.
When determining parameters λ1, λ2, and λ3, we define a
candidate set {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102,
103, 104, 105} for the three parameters. From Figs. 7 and 8,
we can find that the proposed method is relatively insensitive
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to the selection of parameter λ1 to some extent. Thus we
can fix parameter λ1 at first, and define a candidate param-
eter range {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102,
103, 104, 105} for parameters λ2 and λ3. By performing
the proposed method with different combinations of param-
eters λ2 and λ3 selected from the candidate range, we can
obtain a best combination of these two parameters. Then
we fix the two parameters with the obtained best values
and use the similar approach to find the optimal value from
the candidate parameter range for parameter λ1. Finally, we
can find the optimal combinations of these three parameters
from the 3D space formed by the candidate parameters of
λ1, λ2, and λ3. When determining parameter s, we fix the
parameters λ1, λ2, and λ3 with the obtained best values and
parameter k . We define a candidate set {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13 } for parameter s. Then perform the proposed
method with different values of parameter s. In this way,
we can find the best value of parameter s. When determining
parameter k , we fix the parameters s, λ1, λ2, and λ3 with the
obtained best values. We define a candidate set {1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12 } and use the similar approach to find the
optimal value from the candidate set for parameter k .

D. EXPERIMENTAL CONVERGENCE STUDY
In this subsection, we conduct the experiments on the BUAA
and 3 Sources datasets to show the convergence of the pro-
posed algorithm [33]. ACC and the objective function value
v.s. iterations on the BUAA and 3Sources datasets are shown
in Fig. 10. In Fig. 10, the blue curve shows the objective
function value and the red curve indicates the ACC of our
method. It can be observed that the objective function value
is not increasing after 20 iterations and efficiently converges
to the stationary point.

FIGURE 10. Objective function value and ACC(%) v.s. iteration on
(a) BUAA dataset with 30% paired samples and (b) 3sources dataset with
30% missing instances of each view.

E. RUNTIME ANALYSIS
In this section, we conduct experiments on Handwritten,
BUAA, BBCSport, 3Sources, and Cornell datasets to report
the runtime of different methods on these five datasets. From
Table 7, we can see that BSV and Concat are much faster
than the other methods since the two methods fill the missing
instances in every view with the average of instances in
the corresponding view and perform k-means on the views.

TABLE 7. Runtime(seconds) of different methods.

However, PVC, GPMVC, IMG, MIC, DAIMC, OMVC,
UEAF, and AWIMVC learn a common representation for all
views and perform k-means on the learned representation.
AlthoughAWIMVCdoes not cost the least time, the proposed
method achieves much better performance than the other
methods in most cases.

VI. CONCLUSION
Wedeveloped amethod for incompletemulti-view clustering.
The proposed method simultaneously learns a common latent
representation for all the views, an affinity matrix of the
learned representation, and an adaptive weight vector for
different views in a unified framework. Furthermore, learning
the affinity matrix of the learned representation guides to
learn a more discriminative and compact consensus repre-
sentation, which is beneficial to clustering. Extensive exper-
imental results demonstrate the effectiveness of our method
in dealing with the incomplete multi-view clustering tasks.
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