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ABSTRACT Intrusion detection is an important and challenging problem that has a major impact on quality
and reliability of smart city services. To this extent, replay attacks have been one of the most common
threats on smart city infrastructure, which compromises authentication in a smart city network. For example,
a replay attack may physically damage smart city infrastructure resulting in loss of sensitive data, incurring
considerable financial damages. Therefore, towards securing smart cities from reply attacks, intrusion
detection systems and frameworks based on deep learning have been proposed in the recent literature.
However, the absence of the time dimension of these proposals is a major limitation. Therefore, we have
developed a deep learning-basedmodel for replay attack detection in smart cities. The novelty of the proposed
methodology resides in the adoption of deep learning based models as an application for detecting replay
attacks to improve detection accuracy. The performance of this model is evaluated by applying it to a real life
smart city dataset, where replay attacks were simulated. Our results show that the proposed model is capable
of distinguishing between normal and attack behaviours with relatively high accuracy. In addition, according
to the results, our proposed model outperforms traditional classification and deep learning models. Last but
not least, as an additional contribution, this paper presents a real life smart city data set with simulated replay
attacks for future research.

INDEX TERMS Smart cities, intrusion detection, replay attack, deep learning, convolutional neural
networks.

I. INTRODUCTION
Internet of things (IoTs) is based on the concept of connecting
any device to the Internet. This sort of technology has lead to
the creation of smart cities [1], in which basic infrastructure
components, such as electricity, health, traffic, agriculture
and water resources are monitored and controlled through the
Internet. It has been shown that this can reduce costs, make
life easier and more comfortable [2]. Smart city data have
unique characteristics as they are collected from a wide range
of different connected smart devices. The data is collected
using different network structures and technologies [3], [4].

The integrity, availability and privacy of data plays a crit-
ical role in the success of implementing IoT technologies
in smart cities [5]. Smart city data play a major role in
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people’s day to day life; for example, people with respiratory
conditions may access environmental data (e.g., air pollution
and CO2 levels) or use this to plan their daily activities
(e.g., walk to work/school vs. taking the car). Unfortunately,
these smart city systems have become valnerable targets
for intruders [6]. Such cyber-attacks represent a significant
threat to smart cities and the lives of their residents. The two
fundamental components for securing smart city infrastruc-
ture are through improved authorization and authentication,
where replay attacks violate the authentication component.
A replay attack targets a system’s authentication by hacking
its configuration, which generates unreliable and misleading
data [7], [8]. There are possible harms that could be caused
by such attacks. In smart vehciles, traffic jams and accidents
could happen by sending false information between vehi-
cles [9], and the disruption of smart meters, which results
in sending incorrect information to the system [10]. These
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serious effects show the importance of developing an intru-
sion detection system. The application of machine learning
approaches, specifically deep learning, to intrusion detection
in smart cities has proven to be efficient at detecting cyber-
attacks. However, the absence of a time dimension, which
was not considered in these deep learning-based detection
approaches is considered a limitation.

In this paper, our proposed model for attack detection
is a deep convolutional neural network with four layers,
designed to detect replay attacks by considering the time
domain in their identification of an attack. The novelty of
the proposed methodology resides in adopting deep learning
models as an application to detect replay attacks in smart
cities to improve detection accuracy. The performance of our
proposed methodology is evaluated based on the accuracy of
classifying the behaviour of either normal or attacked dataset.
In addition, the performance of our proposed methodology is
compared to other typical machine learning and deep learning
models from the literature. The experimental results showed
that our proposed model outperforms traditional classifica-
tion and deep learning models.

The dataset used to evaluate the proposed model is gener-
ated by simulating replay attack over normal generated data
from a real smart city platform in the city of Queanbeyan,
Australia. This smart city infrastructure is deployed based on
a collaboration between the University of Canberra (UC), and
the Queanbeyan-Palerang Regional Council (QPRC) under
the Commonwealth Government’s smart cities and Suburbs
Program in 2017. The QPRC invested the resources to turn
the Queanbeyan city into a smart city, by installing range of
smart sensors and meters to monitor parking areas, lighting,
traffic, weather, water river quality and soil moisture and
temperature.

Themain contributions of the work introduced in this paper
can be summarized as below:

• Proposing a deep learning model for replay attack detec-
tion in smart cities by treating the smart city data as a
multivariate time series alongside attack classification.

• Introducing a smart city benchmark dataset that is gen-
erated by simulating replay attacks on top of real smart
city data.

The remainder of this paper is organized as follows:
Section II discusses the related work. Section III describes the
proposed methodology. Section IV includes the description
of the smart city platform. Section V describes the experi-
mental setups and how the synthetic replay attack datasets
are generated. Section VI explains the results and discussion.
Section VII concludes the paper and Section VIII highlights
future directions.

II. RELATED WORK
The potential for cyber-attacks to threaten various systems
and smart city infrastructures, as well as intrusion detection
systems and frameworks, have been disscussed in the liter-
ature. Intrusion detection systems that have been proposed

recently, in the context of protecting smart city infrastruc-
tures, include: a proposed security protocol for replay attack
detection in telecare medicine information systems and smart
campuses [11]; the proposal of an intrusion detection system
based on an anonymous lightweight authentication protocol
to authenticate legitimate vehicles based on smart cards [12];
and the payload mutual authentication scheme that is added
to the constrained application protocol (COAP) to improve
replay attacks detection [13].

The application of machine learning approaches, specif-
ically deep learning, for intrusion detection in smart cities
have proven to be efficient at detecting cyber-attacks. A deep
dense random neural network-based approach has been
applied for online detection of network attacks that could
be launched against IoT gateways [14]. However, a sim-
ple threshold detector approach is able to achieve the same
results. In [15], a distributed deep learning approach was
applied for attack detection in IoT and fog networks. This
approach showed better performance than shallow learn-
ing models in detecting accuracy. An intrusion detection
approach was proposed in [16], which applied the stacked
deep polynomial network for classifying the dataset into
either normal or attack. For selecting the optimal features to
be used by the deep model, the spider monkey optimization
algorithm was applied. This approach resulted in better per-
formance than typical machine learning approaches.

Deep belief networks were applied in [17] to detect
real-world intrusions effectively. Another application of deep
belief networks was reported in [18], where a grid search
method was applied to obtain the best hyper-parameters for
the deep network. The results showed the ability of deep
belief networks to detect the attacks effectively. In [19],
a deep restricted Boltzmann machines model was combined
with threshold detector for distributedDenial of service attack
detection. Applying the deep component for extracting high
level features from the raw dataset records contributes to
the efficiency of discriminating between normal and attack
traffic.

As with previous works, which combined different mod-
els, deep belief networks were combined with decision tree
models for attack detection [20] and deep restricted Boltz-
mann machines were combined with multi-layer perceptron
of different types, in addition to support vector machines and
random forest models, for the detection of distributed Denial
of service attack [21]. In [20], a deep belief network was used
for dimensionality reduction, selecting required features and
detecting if there was an attack, while a decision tree model
was subsequently applied to classify the attacks and signal
alerts. In [21], deep restricted Boltzmann machines were
used to learn higher features that are used by the different
classification models to discriminate between normal and
different types of attacks.

In summary, most deep learning models report efficient
performance in attack detection either by using deep models
that feature both learning and classification, or combining
these deep learning models with other machine learning
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FIGURE 1. The proposed deep learning architecture for replay attack detection.

approaches to perform the classification step. However, there
are two main limitations in the previous reported models; the
absence of a time dimension, which was not considered in
these deep learning-based detection approaches, and the lack
of a benchmark dataset for smart cities. The next section will
introduce the proposed methodology, which was hypotheti-
cally designed to fill these gaps.

III. THE PROPOSED MODEL
In this section, our proposedmodel for replay attack detection
in smart cities is described. The proposedmodel is a deep con-
volutional neural network (CNN) architecture, which consists
of an input layer, four hidden layers, a global average pooling
layer and an output layer, as shown in Fig. 1.

In smart cities, smart sensors and meters are used to collect
data streams over time, sending them to the centralized IoT
data collection platform. The data collected by the smart
meters is the input to the proposed network architecture as
time series data. Smart city datasets that will be explained
in Section IV have small number of features. A deep-based
architecture is preferred over existing typical machine learn-
ing approaches. The reason behind this is that the time
domain is considered alongside the classification task to
discriminate the attack from normal behaviour. Modelling
time domain and performing a classification is a complex
and challenging task for typical machine learning approaches.
Even with small number of features, deep models outper-
form typical machine learning models such as multi-layer
perceptron [21], [22]. Due to the small number of features,
the proposed network structure starts with a smaller hidden
layer compared to the remaining hidden layers, as shown
in Fig. 1. The reason behind this structure is to learn the high
level features in an incremental way, which starts from a small
number of input features to a large number of learned features
through convolution layers. Handling the feature learning this
way could help to have stable and robust performance during
model training process [23]. The selection of four hidden
layers for the proposed architecture is based on an incre-
mental approach, starting with one hidden layer and eval-
uating the performance. Subsequently, another hidden layer
is added, and the performance compared. If the performance
has improved, more hidden layers are added until no further

improvement is detected. In our trails, adding a fifth layer did
not improve the performance, so we settled on a total of four
hidden layers.

The input layer has N × k neurons, where N is the num-
ber of variates for input time series and k is the length of
each variate. Each hidden layer applies three operations in
sequence: convolution, activation function, and max pooling.
A convolution operation applies one dimensional filters over
the time series data. Convolution for time stamped data is
applied as follows:

Ct = f(ω ∗ Xt−l/2:t+l/2 + b) (1)

where t ∈ [1,T ] and T is the length of one variant time series
X . The Ct is the result of convolution operation of apply-
ing filter ω of length l to X using the non-linear activation
function f() and b is the bias. The parametric rectified linear
unit (PReLU) is the activation function used in the proposed
architecture. The PReLU is a rectified linear unit (ReLU)
activation function with adaptive learned parameters of the
rectifies [24]. The ReLU activation function is calculated as
follows:

f(x) =

{
0, for x < 0
x, for x ≥ 0

(2)

while PReLU is calculated as follows:

f(x) =

{
αx, for x < 0
x, for x ≥ 0

(3)

where α is a parameter that controls the activation function
slope of the negative part. In our proposed architecture, the α
parameter of PReLU activation functions is trained jointly
with network weights towards having specialized activations
that enhance the overall model accuracy.

The last operation applied in each of the hidden layer
blocks is the max pooling operation. This local pooling intro-
duces invariance to small disturbances in the activation result
by taking the maximum value in a local pooling window [25].
After applying the previously explained operations through
the four hidden layers, the outputs are passed to a global
average pooling layer. This layer performs global average
pooling on the convolution feature map generated from the
fourth hidden layer block to produce the final features, which
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are fully connected to the output classification layer. Another
benefit of applying a global average pooling layer, instead of
just a flatten layer, is that it acts as a structural regularizer,
which prevents overfitting during training [26]. The features
generated from the global average pooling layer are passed
to a softmax layer with two neurons representing the normal
and attack classes. Even for a binary classification problem
softmax function could be used. The advantage of using
the softmax activation function over the sigmoid activation
function is that the softmax ensures the sum of the outputs is
one, while the sigmoid just makes the output between zero
and one. Furthermore, in order to increase the probability of
a particular class, the model correspondingly decreases the
probability of the other class, which is not the case if the
sigmoid is used. The softmax outperforms the sigmoid and
other activation functions when it is applied on wide range
of benchmark datasets in different domains [27]–[30]. This
activation function assign a probability distribution for each
class where their summation is equal to one. The softmax
activation function is calculated as follow:

f(x) =
ex∑K
i=1 e

xi
(4)

where K is the number of output neurons in the output classi-
fication layer, and x is the output of one of the output neurons
in the output layer.

The proposed CNN architecture is trained using the back-
propagation algorithm where the Adam optimizer is used
with cross entropy loss function [31]. The Adam algorithm
starts by initializing the learning rate, exponential decays
for moment estimates and a small constant used for numer-
ical stabilization. The network parameters including filter
weights, biases and PReLU activation function coefficients
are initialized. The algorithm runs for a certain number of
epochs by sampling from the training dataset in a minibatch
way. The gradients are then calculated and used to esti-
mate first and second biased moments. Next, the estimated
moments are corrected and used to compute the step size,
which will be used to update the network parameters. The
Adam algorithm has the advantages of being able with sparse
gradients and non-stationary objectives, and requires little
memory. In the next section, the smart city test platform is
explained in details. This platform is used to generate the
datasets applied to evaluate the performance of the proposed
methodology.

IV. THE SMART CITY TEST PLATFORM
A smart city benchmark dataset is characterized by real time
collected periodical data. It is collected based on sensors and
a communication network installed to transmit data into the
cloud to monitor and control daily operations. Examples of
these infrastructures include a deployed smart city infrastruc-
ture in city of Aarhus in Denmark [32]; the smart city model
introduced by IBM, which collects and monitors data from
water resources, traffic, buildings, public safety agents and
energy [33]; a smart city application in [34], which deploys

FIGURE 2. The Queanbeyan smart city map.

air pollution sensors to analyze and predict air quality; and
the smart city Pulse project, which collects data from air and
traffic sensors to monitor air pollution levels [35].

The smart city generated data used for research purposes
should be reliable. Since it must satisfy a number of qualifica-
tion criteria, the installed network infrastructure technology
deployed to transmit information, and the consistency and
robustness of the cloud repositories, which store and manage
the data [36]. Furthermore, the quality of smart sensors and
meters used to collect the data should be considered. The
dataset used to evaluate the proposed methodology in detect-
ing replay attacks in smart cities is generated from real smart
city infrastructure. The IoT Research Group at UC developed
this for the City of Queanbeyan under the Commonwealth
Government’s Smart Cities and Suburbs Program from 2017-
19, as shown in Fig. 2.
The environmental monitoring, weather station, and river

monitoring nodes use a 4G platform to directly upload the
sensor data to the cloud server (Fig. 3). Next sections will
explain in detail the deployed nodes for data collection, which
will form the baseline for our synthetic dataset to evaluate our
proposed model.

A. SOIL MANAGEMENT NODE
A state-of-the-art smart soil management platform is being
designed and installed to provide information to guide the
management of the city’s irrigation system. The sensor board
shown in Fig. 4 is designed to automate data recording of soil
volumetric water content (VWC) at 30 cm and 60 cm depth,
soil temperature at 30 cm and battery levels.

The Therm200 is an analogical sensor probe that can mea-
sure temperatures from −40◦C to 85◦C. It provides a lineal
response to the temperature where the voltage for −40◦C is
0V and the voltage for 85◦C is 3V [37].

The echo EC-5 is an analogical sensor that measures vol-
umetric water content (VWC) at a frequency of 70 MHz.
Volumetric water content, which is the ratio of water vol-

137828 VOLUME 8, 2020



A. A. Elsaeidy et al.: Replay Attack Detection in Smart Cities Using Deep Learning

FIGURE 3. Queanbeyan smart city platform architecture.

FIGURE 4. Custom built sensor board node.

ume to soil volume, is widely used in agriculture. In this
work the following calibration equation was used for each
EC-5 sensor:

VWC = 0.00119Vout − 0.401 (5)

where VWC is the volumetric soil water content in m3/m3

and Vout is the sensor output when excited at 2500 mV [38].

B. ENVIRONMENTAL MONITORING NODE
To assess the impact of traffic on the city environment, two
environmental monitoring nodes have been installed in streets
with a high traffic volume. The sensor board is designed
to automate continuous data recording of noise levels and
CO2 concentration. Environmental noise levels are measured
with an outdoor omnidirectional microphone that operates
across the 10 Hz to 20 kHz frequency range. Measurements
of environmental noise are recorded as decibels (dBA) with
a range of 50 dBA to 100 dBA. Carbon dioxide concentra-
tion, expressed as parts per million (ppm), provides an early
warning of rising CO2 levels due to the traffic. To measure
these levels, a Non-Dispersive Infrared (NDIR) gas sensor

(NE20-CO2P-NCVSP), which has a nominal range of 0 to
5000 ppm with a resolution of 25 ppm was used [39].

C. WEATHER STATION NODE
The weather station node provides data on air tempera-
ture, humidity, atmospheric pressure, solar radiation, ultra-
violet (UV) radiation, wind speed, wind direction, and rain.
Temperature, humidity, and pressure are measured with a
combined digital sensor board, the BME280. This board
operates in a range of 30 to 110 kilopascal (kPa) for the
atmospheric pressure sensor, 0 to 100% of relative humidity
for the humidity sensor and -40◦C to 85◦C for the temperature
sensor. Solar radiation is measured with the SQ-110 sensor,
which operates in the spectral range of 410 to 655 nanome-
ters (nm). This analogical sensor provides an output voltage
propotional to the intensity of the light. The SQ-100measures
UV radiation in the spectral range of 250 to 400 nm. The
sensor provides an output voltage proportional to the light
intensity in the ultraviolet range [40]. The WS-3000 station
integrates an anemometer, a pluviometer, and a wind vane.
The anemometer measures wind speed with a sensitivity
of 2.4 km/h per turn in a range of 0 to 240 km/h. The wind
vane measures wind direction with a resolution of 22.5◦. The
pluviometer comprises a 0.28 mm bucket that triggers the
interruption of the microcontroller once it is filled. After that
it is emptied automatically. The amount of rain is calculated
from the number of bucket emptying events [40].

D. RIVER MONITORING NODE
This node continuously monitors number of water quality
parameters including electrical conductivity, water acidity
(pH), water temperature, and turbidity. Water temperature is
a key in the health of fish and other temperature-sensitive
aquatic microorganisms. Water temperature is monitored by
the Pt-1000 sensor, which measures changes in conductiv-
ity induced by temperature differences ranging from 0◦C
to 100◦C [41]. Electrical conductivity (EC) measures con-
centration of dissolved ions or salts in water. A rise in EC
indicates an increase in pollutants, fertilizers, and other ions
in rivers [42]. A magnetic field between the two electrodes
of the conductivity sensor provides EC readings in Siemens
per centimeter (S/cm) from the Queanbeyan River. Water pH
is a measure of accidity, ranging from 0 and 14, where most
of the rivers and lakes have a pH range of 6.5 to 8.5. The
biological availability of nutrients in the water or chemical
changes of water can be detected through pH variation. The
gravity pH is an analogical sensor that provides an output
voltage proportional to the pH of the water. For example at
pH 7 this sensor provides a 2.048V reading [41]. Turbidity is
an indicator of the clarity of the water. An increase in water
turbidity reveals the presence of pollutants or sediments such
as waste water discharge, soil erosion, agricultural pesticides,
and algae growth. The turbidity probe is an infrared (IR)
optical sensor that measures the light scattered at a 90◦ angle
from an IR light. This sensor reports the measurements in
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Nephelometric Turbidity Units (NTU) with an accuracy of 1
NTU for a range from 0 to 4000 NTU.

E. NODE RADIO INTERFACES
The soil management node integrates the XBEE Pro line,
the Series 3B (900HP) that utilizes the protocol DigiMesh.
This protocol supports a synchronous-sleeping mesh net-
work. It can provide synchronous readings and dynamically
route and exchange data between other sensor nodes, and
relay these data to the gateway in an application program-
ming interface (API) frame. The XBEE Pro S3B has its own
internal 4-channel 10-bit Analog-to-Digital Chip (ADC) [43].
Both soil sensor nodes in the network are synchronized,
meaning the ‘‘wake up’’ and ‘‘sleep’’ cycle sequences follow
the same time pattern to reduce sensor node power con-
sumption [44]. A Raspberry Pi and the XBEE coordinator
constitute the gateway, which is responsible for establishing
the network and receiving data from the two soil sensor nodes.
Data from nodes is then uploaded to the cloud server using a
4G modem, stored in a relational database. The environmen-
tal monitoring, weather station, and river monitoring nodes
are integrated through a 4G module that supports LTE and
HSPA+, thus enabling high-speed connectivity to the Ama-
zon Web Services (AWS) cloud servers [39]. It also incorpo-
rates protocols such as SSL for secure connection with the
cloud server and FTP for managing the files on the nodes.
The nodes are integrated with dual antenna equipped with
MIMO technology that provides excellent signal strength for
maximum performance.

F. DASHBOARDS
The API is built using a node express server package and
is hosted on AWS. When the data is uploaded by the gate-
way, the server is notified and stores the data in a relational
database. The platform’s API uses tier level access control,
allowing only the administrator and other pre-defined high-
level permission clients to modify the node’s data and request
API keys to upload and retrieve data from the server. The rela-
tional database is themaster database that keeps the records of
all sensor data, battery levels, timestamps, tier-level of clients,
and other relevant information with regards to the sensor
node. A real-time database is used to authenticate clients and
update the dashboard in real-time. The dashboard has been
designed and built using React JS framework to graphically
present data from all nodes. The dashboard can be used to
modify node configurations, add new nodes into the network,
and change sampling frequency intervals depending on tier-
level of the client.

V. EXPERIMENTAL EVALUATION
A. SYNTHETIC REPLAY ATTACK DATASET
In this section, we describe the generation of synthetic replay
attack datasets based on the normal behaviour of the smart
city test platform. These datasets will be used for evaluating
the proposed model’s performance. Smart city benchmark

datasets that contain actual and attack data cannot be easily
found in the literature. Moreover, when such datasets are
available, permission to experimentally run attacks is not
easily obtained, the process is costly, and there are complex
security and privacy issues. Consequently, most of the work
reported in the literature is based on artificially generated
datasets [36], [45]. In this paper, we have the advantage of
having access to a real dataset. In a real-world scenario, replay
attacks violate data authentication in order to make physi-
cal damage. This is accomplished by generating misleading
data based on the normal behaviour. Therefore, in this paper
replay attack behaviour is mimicked to generate the synthetic
datasets based on the estimated probability distributions of
the normal data [9].

Two platforms are selected, generating two different
datasets that have been used one by one for experimental
evaluation; the soil management node and environmental
monitoring node, as described in Sections IV-A and IV-B,
respectively. These two nodes were selected for the reliability
of the generated data and the low error rate associated with
reading and uploading the data to the cloud. The time series
data collected from the soil management node range from
09/07/2018 - 00:37 to 01/05/2019 - 00:37 (dd/mm/yyyy -
hh:mm format) with readings per minute. This soil node
dataset has five features: soil temperature, soil moisture at
30 cm depth, soil moisture at 60cm depth, battery levels and
samples, which indicates the number of packets reached the
gateway successfully. The time series data collected from
the environmental monitoring node range from 03/09/2019
- 11:26 to 04/03/2020 - 12:23 (dd/mm/yyyy - hh:mm format)
with readings per minute. This environmental monitoring
node dataset has five features: noise amplitude, air temper-
ature, humidity, air pressure, and CO2 levels.

The datasets were cleaned by removing all NULL or zero
values, as these indicate an error in sensor reading. The
probability distributions for each feature were then estimated
and used to generate the synthetic replay attack data. All
features for the soil management dataset were drawn from
a normal distribution. For the environmental dataset, noise
amplitude and CO2 levels were drawn from a normal distri-
bution, air temperature was drawn from a Weibull max dis-
tribution, humidity was drawn from Weibull min distribution
and air pressure was drawn from a genextreme distribution.
Given these estimated distributions, we started from the start
date-time and incremented the time by minutes. If the next
date-time does exist in the normal dataset, we skipped it
to the next one. If the current date-time does not exist in
the normal dataset, it was considered as a candidate entry
for an attack filed. Based on a comparison between a ran-
dom number generated and a pre-defined threshold, it was
determined whether or not this candidate will be added as
an attack field to the dataset. This threshold value controls
the percentage of attack instances to the number of normal
instances. Figs. 5 and 7 show the time series observations and
the probability distributions for the soil management node
synthetic dataset features, respectively. While Figs. 6 and 8
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FIGURE 5. A sample of a multivariate time series from the soil
management node dataset after generating synthetic replay attacks with
5 sub-plots corresponding to the dataset features: air temperature, soil
moisture 30 cm, soil moisture 60 cm, samples and battery level.

FIGURE 6. A sample of a multivariate time series from the environmental
monitoring node dataset after generating synthetic replay attacks with
5 sub-plots corresponding to the dataset features: noise, air temperature,
humidity, air pressure and CO2 level.

show the time series observations and the probability distri-
butions for the environmental node synthetic dataset features,
respectively.

B. EXPERIMENTAL SETUPS
For comparative evaluation, we selected five state-of-the-art
methods including: multi-layer perceptron (MLP) [46], deep
multi-layer perceptron (DMLP) [47], deep residual network
(DRN) [47], time LeNet (TLN) model [48], and echo state
network for classification (ESNC) [49]. The MLP is a fully
connected feedforward model with an input layer, one hid-
den layer an and output layer, where dropout operations are
applied on hidden and output layers. The DMLP model is a
fully connected feed forward neural network with an input
layer, three hidden layers and an output layer, where the
hidden and output layers are preceded by a dropout operation.
The DRN is a deep CNN model with 9 convolutional layers
followed by a batch normalization operation for each layer,
and a global average pooling layer, which is fully connected
to the output layer. The TLN model has two convolutional
layers with a max pooling operation, followed by a fully
connected layer that is connected to the output layer.

The ESNCmodel applies typical echo state network model
to map the input features into a higher dimension, and the

results of the dynamical reservoir are passed into the fully
connected layer that is connected to the output layer. The ESN
model is a special type of recurrent neural networks with a
straightforward design and training procedure. It overcomes
the issues of exploding and vanishing gradients when training
typical recurrent neural networks (RNNs) using backpropa-
gation algorithm [50]. Typical ESN architecture contains an
input layer, a hidden layer called reservoir, and an output
layer. In ESN model, only output weights are trained in
strightforward way, while the remaining weights are fixed.
The weights between the input layer and dynamical reser-
voir are initialized with random values within a predefined
scale. The dynamical reservoir weights are designed to main-
tain an echo state property by generating initial random
sparse weights within the [−1, 1] range. Finally, the reservoir
weights matrix is multiplied by a chosen value called spectral
radius [51]. The ReLU activation function is used for all
these five models’ hidden layers and the softmax activation
function is used for the output layer. The Adam algorithm is
used as the optimization algorithm with cross entropy as the
loss function.

The generated synthetic datasets were normalized to have
zero mean and unit variance. In addition, the outliers were
detected and removed. The soil management dataset had a
total of 89,566 instances, while the environmental dataset
had 178,211. Each dataset was divided into training and
testing subsets where 20% of the dataset was used for the
testing. The training subset was further divided into train
and validation subsets with 20% for the validation subset.
This training/validation split was used to search for the best
combination of hyper-parameters for each model, including
the proposed model. Once the best parameters were found
for each model, we trained each model using the whole
training subset and evaluated its performance on the testing
subset. This evaluation process using the training/testing split
was applied with 30 runs with different random seeds and
1000 epochs. The reported result for each model was the
average performance over the 30 random runs.

To find the best hyper-parameters for each model, a grid
searchmethodwas applied [52]. For eachmodel we identified
a range for each model hyper-parameter and searched for
the combination that provided the greatest accuracy on the
validation dataset. For all models, the range for learning rate
was [1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001] and for batch
size the range was [8, 15, 32, 64, 128]. For the proposed
model, the size of the filters for convolution layers range was
[8,16,32,64]. For MLP and DMLP models, hidden layer size
range was [250, 500, 750], hidden layer dropout range was
[0.1, 0.2, 0.3, 0.4] and output layer dropout range was [0.2,
0.3, 0.4, 0.5]. For the DRN model, the size of the filters for
convolution layers range was [32, 64, 128, 256]. For the TLN
model, size of the filters for convolution layers range was
[5, 10, 15, 20, 25, 30] and flatten layer size range was [250,
500, 750].

For the ESNC model, reservoir size range was [50, 100,
150, 200], spectral radius range was [0.3, 0.59, 0.6, 0.85],
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FIGURE 7. Soil management node dataset features probability distributions after adding the synthetic replay attacks. All features are drawn from
normal probability distribution, which provides the best fitting.

FIGURE 8. Environmental monitoring node dataset features probability distributions after applying the synthetic replay attacks. Noise amplitude and
CO2 level are drawn from normal distribution, air temperature is drawn from weibull max distribution, humidity is drawn from weibull min
distribution and air pressure is drawn from genextreme distribution, where all these distributions provide the best fit.

reservoir connectivity range was [0.25, 0.5, 0.75, 0.9], input
weights scale range was [0.1, 0.3, 0.5, 0.8], and hidden layer
connected to the output layer range was [250, 500, 750]. After
applying the grid searchmethod for tuning themodels’ hyper-
parameters, the best combinations for each model found were
as follows: for the proposed model, learning rate was 0.001,
batch size was 16, 16 filters for first convolution layer, and
32 filters for the the remaining three convolution layers; for
MLP, learning rate was 0.001, number hidden units for the
hidden layer was 250, dropout rate for the hidden layer was
0.1 and dropout rate for the output layer was 0.2; for DMPL,
the learning rate was 1.0, number of hidden units for each of
the three hidden layers was 750, dropout rate for first hidden
layer was 0.3, dropout rate for the second and third hidden
layers was 0.4 and dropout rate for the output layer was 0.5;
for DRN, the learning rate was 0.01 and the number of filters
for the 11 convolution layers was 32; for TLN, the learning
rate was 0.001, the number of filters for the first layer was
10, the number of filters for the second convolution layer
was 25 and the number of units for the dense layer was
500; and for ENSC, the learning rate was 0.01, the reser-
voir size was 100, the reservoir spectral radius was 0.6,
the reservoir connectivity was 0.25, the input weights scale
was 0.1, and number of units for the fully connected layer
was 500.

All models are all implemented using Python 3.7 andKeras
library with Tensorflow framework as the backend [53]. The
experiments are run on an Intel(R) Xeon(R) Silver 4116 CPU
2.10GHz 2.10GHz (2 processors), with 128 GB of RAM and
Windows 10 (64 bit) machine.

VI. RESULTS
This section presents the results obtained from applying the
proposed methodology and the other deep models for replay
attack detection using the synthetic datasets. First, we visual-
ized the average accuracy measure averaged over the 30 runs,

FIGURE 9. Average accuracy measure for proposed model compared with
state-of-the-art models in both soil and environmental datasets.

as shown in Fig. 9. The mean and standard deviation for accu-
racy, false positive rate, sensitivity, specificity, and precision
measures were calculated for all learning models averaged
over the 30 runs for each dataset, as shown in Tables 1 and 2.
These measures used were calculated as follows:

Accuracy =
TP+ TN

TP+ FN+ FP+ TN
(6)

FPR =
FP

FP+ TN
(7)

Sensetivity =
TP

TP+ FN
(8)

Specificity =
TN

TN+ FP
(9)

Precision =
TP

TP+ FN
(10)

where FPR is false positive rate, and TP, TN, FP and FN are
the true positives, true negatives, false positives, and false
negatives, respectively.

Each one of these five measures quantify a different aspect
of the models performance. Accuracy measures show how
accurate the model is by calculating the ratio of number
of correct predictions to the total number of input samples.
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TABLE 1. Reported performance measures (accuracy, false positive rate, sensitivity, specificity and precision) for learned models compared with
proposed model for soil management node dataset. The mean and standard deviation is calculated for each measure (mean±std). Bold indicates the best
reported model performance for each measure.

The FPR measure is the ratio of negative predictions that
are incorrectly identified as positive predictions. Sensitivity
measures the portion of actual positives that are correctly pre-
dicted. Specificity measures the portion of actual negatives
that are correctly predicted. Precision measures the classifier
exactness by calculating the ratio of positive predictions to
the total number of positive classes.

The Wilcoxon signed-rank test [54] is applied with alpha
0.05 correction to determine whether there is a statistically
significant difference between the learning models, as shown
in Table 3 for the soil dataset and in Table 4 for the envi-
ronmental dataset, where the accuracy performance measure
is used. The null hypothesis (H0) assumes that there is no
significant difference between two machine learning algo-
rithms, so both performance samples are drawn from the
same distribution. In Tables 3 and 4, the cells where the
H0 is rejected, shown in bold, indicate a significant difference
between the performance of two compared algorithms. In all
other cells, the null hypothesis was accepted. In addition,
we plot the correlation between the testing accuracymeasures
for the learning models for both smart soil dataset (Fig. 10)
and smart traffic dataset (Fig. 11).

The reported performance accuracy in Fig. 9, and
Tables 1 and 2 show that the proposed model is the best
model with the highest accuracy values in both datasets.
There is a significant difference in performance between the
proposed model and other models in both datasets, as shown
in Tables 3 and 4. However, the performance reported for
the proposed model in the soil dataset is better than the
performance reported in environmental dataset. This could
be related to the probability distributions for the features of
environmental dataset, which contains three features out of
five drawn from generalized extreme value distribution. The
DMLP model reports the worst performance over all models
in both datasets, as shown in Fig. 9 and Tables 1 and 2. This
was not expected since this model has more hidden layers
than the MLP model. However, it seems that increasing the
hidden layers in the typical MLP model overfits the training
dataset and reports poor results in the testing subset. When
comparing the other CNN models, DRN and TLN, DRN
outperforms the TLNmodel in both datasets. TheDRNmodel
has 11 layers and global average pooling layers, while the
TLN model has only two layers with smaller filters and
a flatten layer. The global average pooling layer acts as a
generalized factor to prevent overfitting, and the large number

FIGURE 10. Correlation between the learned models and the proposed
model based on the average accuracy measure for the soil management
node dataset.

of layers in DRN compared to just two layers with small
filters in TLN could be the reasons for DRNperforming better
than TLN. Both DRN and the proposed model have a global
average pooling layer, but the proposed model has four layers
with gradual increase in number of filters compared to fixed
filter sizes over the 11 layers in the DRN model. This large
number of layers in DRN could affect the performance of the
DRN model by increasing the overfit factor compared to the
proposed model. The accuracy of the ESNC model is very
close to the TLNmodel, but it is still lower than the DRN and
MLP models. The ESN model is a type of recurrent neural
network that learns higher complex time-domain relations
between input features by mapping the input time series into
the reservoir sparse dimension. A possible explanation for
why typical MLP outperforms the ESNC model is the large
difference between the number of features and the reservoir
size. This difference could have an opposite affect by map-
ping the input features to a complex high dimensional space,
which makes the classification task hard. Same behaviour for
the ESNC performance was observed for the environmental
node dataset, where the CNN models outperforms the ESNC
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TABLE 2. Reported performance measures (accuracy, false positive rate, sensitivity, specificity and precision) for learned models compared with
proposed model for environmental node dataset. The mean and standard deviation is calculated for each measure (mean±std). Bold indicates the best
reported model performance for each measure.

TABLE 3. The results of Wilcoxon tests between pairwise combinations of
the models for the soil management node dataset, represented by W
statistic and the alpha value: W statistic(p-value). Cells in bold indicate
that the null hypothesis H0 is rejected. Accuracy measure is used for the
statistical analysis.

TABLE 4. The results of Wilcoxon tests between pairwise combinations of
the models for the environmental monitoring node dataset, represented
by W statistic and the alpha value: W statistic(p-value). Cells in bold
indicate that the null hypothesis H0 is rejected. Accuracy measure is used
for the statistical analysis.

model. However, in this dataset the ESNC outperforms the
accuracy reported by typical MLP model. As mentioned
previously, this could be related to the complex probability
distributions for the environmental dataset.

At the level of the datasets, the MLP model performs
better in the soil dataset than the other models, except for the
proposed model, as shown in Tables 1 and 2. However, MLP
performance is still close to both the DRN and TLN models.
The MLP is a simple model with just one hidden layer, which
results in fewer hyper-parameters to tune, and this reduces the
chances of overfitting. Another reason why the MLP model
performs better is that all features in the soil dataset are drawn
from a normal probability distribution, which makes the task
of modeling this dataset easier. In the environmental dataset,
the MLP performed less well than the DRN and TLN mod-
els, while even DRN, TLN and ESNC model’s performance
dropped compared to their performance in the soil dataset.
As mentioned previously, the environmental dataset has three
features out of five drawn from a generalized extreme value
distribution, which is a more complex distribution that com-
bines the Gumbel, Frechet and Weibull maximum extreme
value distributions [55]. Given the nature of this dataset,

FIGURE 11. Correlation between the learned models and the proposed
model based on the average accuracy measure for the environmental
monitoring node dataset.

MLP in this case cannot not handle this complexity with one
hidden layer. This is why the DRN, TLN, and ESNC models
outperform MLP in the environmental dataset compared to
the reported performances in the soil dataset. The reported
performance measures (Tables 1 and 2) showed a stability in
the performance of all models. The differences were minor
between the accuracy and other measures that concentrates in
measuring portions of positive and negative predictions to the
total number of positive and negative targets. No correlation
was detected between the testing accuracy reported by the
learning models in both datasets, as shown in Figs. 10 and 11;
however, in the environmental dataset, most of the correlated
plots were scattered to indicate no sign of correlation at
all.

VII. CONCLUSION
The proposed model introduced in this paper for replay attack
detection is a part of our ongoing research toward securing
smart city infrastructure and services. The proposed model
is a deep convolutional neural network with four hidden
layers, a global average pooling layer, and an output layer.
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Previous works have evaluated intrusion detection models by
creating test beds in small scale and controlled conditions.
The performance of the proposed methodology in this paper
was evaluated by synthetically generating replay attacks on
real-life normal behaviour generated fromQueanbeyan smart
city infrastructure in Australia. Two data nodes, soil man-
agement and environmental monitoring, were selected to be
used to evaluate the performance of the proposed methodol-
ogy. These datasets are multivariate time series with replay
and normal behaviours. The performance of the proposed
methodology was compared with typical neural network
models, typical convolutional neural networks models, and
a well known recurrent neural network model called echo
state networks. The experimental results showed that our
proposedmodel outperforms all other models with high accu-
racy. However, modelling the environmental monitoring node
dataset was more challenging than the soil management node
dataset as the former is drawn frommore complex probability
distributions. A typical neural networkmodel was able to out-
perform other convolutional neural networks in the soil man-
agement dataset only. In addition, the performance of echo
state network was expected to perform better than observed
here, and it appears that applying this type of recurrent neural
network for time series classification is not a straightforward
task.

VIII. FUTURE WORK
Modelling smart city data is a challenging task and different
aspects need to be considered such as data complexity, time
domain, and heterogeneity in the data types generated from
different sensors and meters. The work in this paper provides
valuable insights into how deep learning models might con-
tribute to the detection of replay attacks on smart cities. The
work proposed in this paper will be extended in the following
future directions:

• Including more node data, either in separate evaluation
or combined with large complex datasets.

• Combining the deep learning model into an ensemble
learning paradigm aimed at enhancing the overall detec-
tion performance.

• Integrating applied machine learning approaches in
security frameworks for reliable attack detection in
smart cities.

• Generating real replay attacks in real smart city infras-
tructure rather than generating synthetic attacks.

REFERENCES
[1] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,

M. Shafie-Khah, and P. Siano, ‘‘Iot-based smart cities: A survey,’’ in Proc.
16th Int. Environ. Electr. Eng. Conf. (EEEIC), Florence, Italy, Jun. 2016,
pp. 1–6.

[2] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, ‘‘Long-range com-
munications in unlicensed bands: The rising stars in the IoT and smart city
scenarios,’’ IEEE Wireless Commun., vol. 23, no. 5, pp. 60–67, Oct. 2016.

[3] Y. Sun, H. Song, A. J. Jara, and R. Bie, ‘‘Internet of Things and big data
analytics for smart and connected communities,’’ IEEE Access, vol. 4,
pp. 766–773, 2016.

[4] M. Banerjee, J. Lee, and K.-K.-R. Choo, ‘‘A blockchain future for Internet
of Things security: A position paper,’’ Digit. Commun. Netw., vol. 4, no. 3,
pp. 149–160, Aug. 2018.

[5] Z. A. Baig, P. Szewczyk, C. Valli, P. Rabadia, P. Hannay, M. Chernyshev,
M. Johnstone, P. Kerai, A. Ibrahim, K. Sansurooah, N. Syed, and
M. Peacock, ‘‘Future challenges for smart cities: Cyber-security and digital
forensics,’’ Digit. Invest., vol. 22, pp. 3–13, Sep. 2017.

[6] E. O’Dwyer, I. Pan, S. Acha, and N. Shah, ‘‘Smart energy systems for sus-
tainable smart cities: Current developments, trends and future directions,’’
Appl. Energy, vol. 237, pp. 581–597, Mar. 2019.

[7] Y. Lu and L. D. Xu, ‘‘Internet of Things (IoT) cybersecurity research: A
review of current research topics,’’ IEEE Internet Things J., vol. 6, no. 2,
pp. 2103–2115, Apr. 2019.

[8] Y. Zhang and W. Lee, ‘‘Intrusion detection in wireless ad-hoc networks,’’
in Proc. 6th Mobile Comput. Netw. Annu. Int. Conf., Boston MA, USA,
Aug. 2000, pp. 275–283.

[9] A. Dua, N. Kumar, A. K. Das, and W. Susilo, ‘‘Secure message communi-
cation protocol among vehicles in smart city,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 5, pp. 4359–4373, May 2018.

[10] T.-T. Tran, O.-S. Shin, and J.-H. Lee, ‘‘Detection of replay attacks in
smart grid systems,’’ in Proc. Int. Conf. Comput., Manage. Telecommun.
(ComManTel), Jan. 2013, pp. 298–302.

[11] M. Safkhani and A. Vasilakos, ‘‘A new secure authentication protocol for
telecare medicine information system and smart campus,’’ IEEE Access,
vol. 7, pp. 23514–23526, 2019.

[12] B. Ying and A. Nayak, ‘‘Anonymous and lightweight authentication for
secure vehicular networks,’’ IEEE Trans. Veh. Technol., vol. 66, no. 12,
pp. 10626–10636, Dec. 2017.

[13] M. A. Jan, F. Khan, M. Alam, and M. Usman, ‘‘A payload-based mutual
authentication scheme for Internet of Things,’’ Future Gener. Comput.
Syst., vol. 92, pp. 1028–1039, Mar. 2019.

[14] O. Brun, Y. Yin, and E. Gelenbe, ‘‘Deep learning with dense random neural
network for detecting attacks against IoT-connected home environments,’’
Procedia Comput. Sci., vol. 134, pp. 458–463, Oct. 2018.

[15] A. A. Diro and N. Chilamkurti, ‘‘Distributed attack detection scheme using
deep learning approach for Internet of Things,’’ Future Gener. Comput.
Syst., vol. 82, pp. 761–768, May 2018.

[16] Y. Otoum, D. Liu, and A. Nayak, ‘‘DL-IDS: A deep learning—Based intru-
sion detection framework for securing IoT,’’ Trans. Emerg. Telecommun.
Technol., vol. 30, no. 11, p. 3803, Nov. 2019.

[17] G. Thamilarasu and S. Chawla, ‘‘Towards deep-learning-driven intrusion
detection for the Internet of Things,’’ Sensors, vol. 19, no. 9, p. 1977,
Apr. 2019.

[18] B. A. Tama and K.-H. Rhee, ‘‘Attack classification analysis of IoT network
via deep learning approach,’’ Res. Briefs Inf. Commun. Technol. Evol.,
vol. 3, pp. 1–9, Nov. 2017.

[19] A. Elsaeidy, I. Elgendi, K. S. Munasinghe, D. Sharma, and A. Jamalipour,
‘‘A smart city cyber security platform for narrowband networks,’’ in
Proc. 27th Int. Telecommun. Netw. Appl. Conf. (ITNAC), Nov. 2017,
pp. 1–6.

[20] M. Aloqaily, S. Otoum, I. A. Ridhawi, and Y. Jararweh, ‘‘An intrusion
detection system for connected vehicles in smart cities,’’ Ad Hoc Netw.,
vol. 90, Jul. 2019, Art. no. 101842.

[21] A. Elsaeidy, K. S. Munasinghe, D. Sharma, and A. Jamalipour, ‘‘Intrusion
detection in smart cities using restricted Boltzmann machines,’’ J. Netw.
Comput. Appl., vol. 135, pp. 76–83, Jun. 2019.

[22] I. Kok, M. U. Simsek, and S. Ozdemir, ‘‘A deep learning model for air
quality prediction in smart cities,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2017, pp. 1983–1990.

[23] S. Han, Z. Meng, Z. Li, J. O’Reilly, J. Cai, X. Wang, and Y. Tong, ‘‘Opti-
mizing filter size in convolutional neural networks for facial action unit
recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 5070–5078.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[25] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Müller,
‘‘Deep learning for time series classification: A review,’’ Data Mining
Knowl. Discovery, vol. 33, no. 4, pp. 917–963, Mar. 2019.

[26] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

VOLUME 8, 2020 137835



A. A. Elsaeidy et al.: Replay Attack Detection in Smart Cities Using Deep Learning

[27] P. T. Krishnan, P. Balasubramanian, and S. Umapathy, ‘‘Automated heart
sound classification system from unsegmented phonocardiogram (PCG)
using deep neural network,’’ Phys. Eng. Sci. Med., vol. 43, no. 2,
pp. 505–515, Feb. 2020.

[28] A. Arami, A. Poulakakis-Daktylidis, Y. F. Tai, and E. Burdet, ‘‘Prediction
of gait freezing in parkinsonian patients: A binary classification augmented
with time series prediction,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 9, pp. 1909–1919, Sep. 2019.

[29] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[30] R. Memisevic, C. Zach, M. Pollefeys, and G. E. Hinton, ‘‘Gated softmax
classification,’’ in Proc. Adv. Neural Info. Process. Syst. Conf., Vancouver,
BC, Canada, Dec. 2010, pp. 1603–1611.

[31] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. 3rd Int. Learn. Represent. Conf., San Diego, CA, USA, May 2015,
pp. 1–15.

[32] M. I. Ali, F. Gao, and A. Mileo, ‘‘Citybench: A configurable benchmark to
evaluate RSP engines using smart city datasets,’’ in Proc. 14th Int. Seman-
tic Web Conf. (ISWC), Bethlehem, PA, USA, Oct. 2015, pp. 374–389.

[33] S. Schaefer, ‘‘Smarter cities series: A foundation for understanding IBM
smarter cities,’’ IBM Redbooks, Armonk, NY, USA, Tech. Rep., 2011.

[34] A. R. Honarvar and A. Sami, ‘‘Towards sustainable smart city by par-
ticulate matter prediction using urban big data, excluding expensive air
pollution infrastructures,’’ Big Data Res., vol. 17, pp. 56–65, Sep. 2019.

[35] P. Barnaghi, R. Tönjes, J. Höller, M. Hauswirth, A. Sheth, and
P. Anantharam, ‘‘CityPulse: Real-time IoT stream processing and large-
scale data analytics for smart city applications,’’ in Proc. Eur. Semantic
Web Conf., Trentino, Italy, Oct. 2014, pp. 1–2.

[36] S. Mallapuram, N. Ngwum, F. Yuan, C. Lu, and W. Yu, ‘‘Smart city: The
state of the art, datasets, and evaluation platforms,’’ in Proc. IEEE/ACIS
16th Int. Conf. Comput. Inf. Sci. (ICIS), May 2017, pp. 447–452.

[37] J. A. Pardiñas-Mir, L. Rizo-Dominguez, and L. E. Pérez-Bernal, ‘‘A wire-
less sensor network as a living lab for the development of solutions for IoT
and smart cities,’’ in Proc. 15th Int. Joint Conf. e-Bus. Telecommun., 2018,
pp. 469–474.

[38] EC-5 Sensor User Manual, Decagon Devices Inc., Pullman, WA, USA,
2019.

[39] 4G Networking Guide, Libelium Comunicaciones Distribuidas SL,
Zaragoza, Spain, 2020, p. 94.

[40] Smart Agricult. 3.0. Tech. Guide, Libelium Comunicaciones Distribuidas
SL, Zaragoza, Spain, 2020, p. 88.

[41] Smart Water Tech. Guide, Libelium Comunicaciones Distribuidas SL,
Zaragoza, Spain, 2019, p. 94.

[42] R. Das, N. R. Samal, P. K. Roy, and D. Mitra, ‘‘Role of electrical conduc-
tivity as an indicator of pollution in shallow lakes,’’ Asian J. Water Environ.
Pollut., vol. 3, no. 1, pp. 143–146, Dec. 2006.

[43] UserGuide-XBee-PRO900HP/XSCRFModules, Digi. International, Hop-
kins, Minnesota, 2017.

[44] C. Bell, Beginning Sensor Networks With Arduino and Raspberry Pi.
New York, NY, USA: Spinger/Sci-Tech/Trade, 2013.

[45] M.A. Ferrag, L.Maglaras, S.Moschoyiannis, andH. Janicke, ‘‘Deep learn-
ing for cyber security intrusion detection: Approaches, datasets, and com-
parative study,’’ J. Inf. Secur. Appl., vol. 50, Feb. 2020, Art. no. 102419.

[46] M. W. Gardner and S. R. Dorling, ‘‘Artificial neural networks (the multi-
layer perceptron)—A review of applications in the atmospheric sciences,’’
Atmos. Environ., vol. 32, nos. 14–15, pp. 2627–2636, Aug. 1998.

[47] Z. Wang, W. Yan, and T. Oates, ‘‘Time series classification from scratch
with deep neural networks: A strong baseline,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 1578–1585.

[48] A. Le Guennec, S. Malinowski, and R. Tavenard, ‘‘Data augmentation for
time series classification using convolutional neural networks,’’ in Proc.
Adv. Anal. Learn. Temporal Data Workshop, Porto, Portugal, Sep. 2016,
pp. 1–9.

[49] Q. Ma, L. Shen, W. Chen, J. Wang, J. Wei, and Z. Yu, ‘‘Functional echo
state network for time series classification,’’ Inf. Sci., vol. 373, pp. 1–20,
Dec. 2016.

[50] H. Jaeger, Tutorial on Training Recurrent Neural Networks, Cov-
ering BPPT, RTRL, EKF and the’ Echo State Network’ Approach,
GMD-Forschungszentrum Informationstechnik Bonn, Sankt Augustin,
Germany, 2002.

[51] H. Abdelbari and K. Shafi, ‘‘Learning structures of conceptual models
from observed dynamics using evolutionary echo state networks,’’ J. Artif.
Intell. Soft Comput. Res., vol. 8, no. 2, pp. 133–154, Apr. 2018.

[52] R. Liu, E. Liu, J. Yang, M. Li, and F. Wang, ‘‘Optimizing the hyper-
parameters for SVM by combining evolution strategies with a grid
search,’’ in Proc. Int. Intell. Comput. Conf., Kunming, China, Aug. 2006,
pp. 712–721.

[53] Keras: The Python Deep Learning Library, Astrophysics Source Code
Library, USA, 2018.

[54] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[55] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Appli-
cations, 1st ed. Singapore: World Scientific, 2000.

ASMAA A. ELSAEIDY (Graduate Student Mem-
ber, IEEE) received the M.Sc. degree in infor-
mation systems and technology from the Faculty
of Computers and Informatics, Zagazig Univer-
sity, Egypt. She is currently pursuing the Ph.D.
degree with the Faculty of Science and Technol-
ogy, University of Canberra, Canberra, Australia.
Her Ph.D. research focuses on developing security
frameworks and intrusion detection systems for
smart cities applications using machine learning

approaches. Her research interests include smart cities, the Internet of
Things, cybersecurity, machine learning, and deep learning. She received
the Best Paper Award for a 2017 published conference paper from her Ph.D.
work.

NISHANT JAGANNATH received the master’s
degree in network engineering from the Faculty of
Science and Technology, University of Canberra,
where he is currently pursuing the Ph.D. degree
with the Science and Technology Department. His
doctoral research investigates the current issues in
adopting blockchain technology, given the diverse
nature of its implementations from financial mar-
kets to supply chain. He is also a part-time Faculty
Member with the Science and Technology Depart-

ment, University of Canberra. His research interest includes developing
solutions for interoperability issues that are hindering standardization of
blockchain technology for a variety of applications. He received the pres-
tigious Dean’s Excellence Award for his outstanding academic performance
from the Faculty of Science and Technology, University of Canberra.

ADRIAN GARRIDO SANCHIS is currently a
Chemical Engineer that works as an Associate
Lecturer at the School of Science, UNSW Can-
berra, Canberra. He specializes on developing new
technologies for environmental monitoring and the
purification and sterilization of wastewater from
bench to commercial-scale applications. He has
pioneered the development of a novel sterilization
process, which has been adopted by Australian
Pork Ltd. (APL), who have recently funded his

research and have funded the development and construction of a small-scale
water treatment pilot unit, which has been trialed at a piggeries water
treatment plant in NSW. He submitted a provisional patent application via
UNSW to seek protection for this new process. He has substantial experience
in commercial research and development and a unique range of abilities
and skill set in water treatment and automation/environmental monitoring
through the IoT devices.

137836 VOLUME 8, 2020



A. A. Elsaeidy et al.: Replay Attack Detection in Smart Cities Using Deep Learning

ABBAS JAMALIPOUR (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from
Nagoya University. He is currently a Professor
of ubiquitous mobile networking at The Univer-
sity of Sydney. He has authored nine technical
books, 11 book chapters, and over 550 technical
articles and holds five patents, all in the area of
wireless communications. He is a Fellow of the
Institute of Electrical, Information, and Commu-
nication Engineers (IEICE) and the Institution of

Engineers Australia, an ACM Professional Member, and an IEEE Distin-
guished Speaker. He is the President of the IEEE Vehicular Technology
Society. He held the positions of the Executive Vice-President and the
Editor-in-Chief of VTS Mobile World and has been an elected member of
the Board of Governors of the IEEE Vehicular Technology Society, since
2014. He was a recipient of a number of prestigious awards, such as the
2019 IEEE ComSoc Distinguished Technical Achievement Award in Green
Communications, the 2016 IEEEComSoc Distinguished Technical Achieve-
ment Award in Communications Switching and Routing, the 2010 IEEE
ComSoc Harold Sobol Award, the 2006 IEEE ComSoc Best Tutorial Paper
Award, and 15 Best Paper Awards. He has been the General Chair or the
Technical Program Chair for a number of conferences, including the IEEE
ICC, GLOBECOM, WCNC, and PIMRC. He was the Editor-in-Chief of
the IEEE WIRELESS COMMUNICATIONS, the Vice President-Conferences, and a
member of the Board of Governors of the IEEE Communications Society.
He serves as an Editor for IEEE ACCESS, the IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, and several other journals.

KUMUDU S. MUNASINGHE (Senior Mem-
ber, IEEE) received the Ph.D. degree in telecom-
munications engineering from The University of
Sydney. He is currently an Associate Professor
in network engineering and the Leader of the
IoT Research Group, Human Centred Research
Centre, University of Canberra. He has over
100 refereed publications with over 860 citations
(H-index 17) in highly prestigious journals, con-
ference proceedings, and two books to his credit.

His research interests include next-generation mobile and wireless networks,
the Internet of Things, green communication, smart grid communications,
and cyber-physical security. He has secured over $1.6Million dollars in com-
petitive research funding by winning grants from the Australian Research
Council (ARC), the Commonwealth and State Governments, the Department
of Defence, and the industry. He has also received the highly prestigious
ARC Australian Postdoctoral Fellowship, served as the Co-Chair for many
international conferences, and served as an editorial board member for a
number of journals. His research has been highly commended through many
research awards, including two VC’s Research Awards and three IEEE
Best Paper Awards. He is a Charted Professional Engineer, an Engineering
Executive, and a Companion (Fellow Status) of Engineers Australia.

VOLUME 8, 2020 137837


