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ABSTRACT It is challenging for a mobile robot to avoid moving obstacles in dynamic environments.
Traditional velocity obstacle methods do not fully consider the obstacles moving with the speeds larger
than the maximum speed of the robot. In this article, a new obstacle avoidance method, named the
maximum-speed aware velocity obstacle (MVO) algorithm, is proposed for a mobile robot to avoid one or
multiple high-speed obstacles. The proposed algorithm expands the velocity obstacle region into two parts,
where one of the parts foresees collisions beyond the time horizon to ensure the feasible solutions of the
current and the next control step. In practical applications, the perception capability of the robot is generally
limited, and a non-holonomic robot can’t move into any direction due to its kinematic constraints. In this
article, the limited sensing field of view and non-holonomic kinematic constraints of the mobile robot are
incorporated into the proposed MVO method. Moreover, continuity, safety, and computational complexity
of the MVO approach are analyzed and presented. Extensive simulations and physical experiments are
conducted to verify the efficacy of the MVO method, where a quadrotor and a differential-drive robot are
used to perform dynamic obstacle avoidance.

INDEX TERMS Motion planning, collision avoidance, high-speed obstacles, limited field of view, kinematic
constraints.

I. INTRODUCTION
Mobile robots are increasingly popular in tasks like trans-
portation, inspection, and surveillance. In these applications,
the robot should autonomously avoid obstacles when navi-
gating to the destination, and path planning algorithms have
been developed to perform obstacle avoidance.

Generally, path planning algorithms are divided into global
path planning and local path planning according to environ-
mental perception information. Global path planning requires
comprehensive perception and high computational capacities.
In the presence of dynamic obstacles, replanning may cause
stops and reduce the maneuverability of the robot. Moreover,
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as the field of view of the robot is limited, local planning
algorithms will observe and avoid obstacles only when the
obstacles are within the perception range of the robot. There-
fore, for mobile robots with limited perception, it is necessary
to take account of high-speed obstacles avoidance into the
path planning.

Considering the speed of the robot to be the perceived
range as well as its limited field of view, [1] proposes a
velocity obstacle (VO) based method to guarantee a smooth
and collision-free action. On the contrary, a relaxed constraint
Model Predictive Control (MPC) framework is constructed
in [2] that guarantees path safety by allowing motions outside
the limited field of view. The core of the method is the
ability to choose motion primitive at the past time step. In [3],
a deep neural network is trained to map uncertain sensor
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measurements to the velocity increment of the robot. A prob-
abilistic variant of the Reciprocal Velocity Obstacle (RVO)
method [4] is proposed, which takes account of uncertain
state estimation and actuation of the robots.

In realistic scenarios, there are many applications where
the speed of the robot is much lower than the speed of the
obstacles, for example mobile service robots and sweeping
robots usually move much slower than human beings or some
pets (e.g. dogs, cats), while these robots are expected to avoid
collision with a careless human.

When there exists high-speedmoving obstacle, the velocity
feasible region may be almost in the velocity obstacle region.
Since the maximum speed of a robot is generally limited,
it may have no ability to flee away from the velocity obstacle
region. In this article, considering the limited field of view
of the robot, we aim to study the robotic navigation prob-
lem in the presence of multiple dynamic obstacles including
high-speed ones.

The mobile robots can be classified as holonomic and
non-holonomic ones according to the kinematic constraints.
Holonomic robots can move in any direction from any state
while non-holonomic robots can’t. Typical holonomic robots
include quadrotors and omnidirectional unmanned ground
vehicles. On the other hand, typical non-holonomic robots
include differential-drive and car-like models. A differential-
drive model can be treated as one type of unicycle kinematic
model, where the body orientation with angular velocity con-
straints is considered. The car-like model is often known as a
bicycle kinematic model, with a steerable front wheel and a
fixed rear wheel for simplification [5]. Usually, the commer-
cial car in daily life can be regarded as a bicycle model, whose
two steerable wheels can be simplified as a whole. Ignoring
the angular speed of the steerable wheel, the turning rate of
the car-likemodel is related to the robot speed and the steering
curvature. The car-like model thus needs high-order planning
and complex control schemes in certain environments.

The VO methods have been applied to non-holonomic
robots. Van’s work [6] and Javier’s work [7], [8] employ
different methods to apply the optimal reciprocal collision
avoidance (ORCA) [9], [10] to the non-holonomic robots
and show the feasibility of the VO methods to handle the
non-holonomic kinematic constraints. In [11] and [12], VO is
redefined to apply to a Dubins-like mobile robot, which is a
non-holonomic system and can only move forward. In this
article, differential-driving and car-like kinematic constraints
are incorporated into the proposed MVO algorithm.

A. RELATED WORK
In this section, a brief introduction of prior works of col-
lision avoidance algorithms is presented, where the robots
are navigated in dynamic scenarios. The obstacle avoidance
algorithms include global and local path planning algorithms
according to environmental perception information

When the knowledge of the environment has been known
in prior, off-line global path planning can be employed to
navigate robots through cluttered environments. Global path

planning is a well-studied research area [13]. Rapidly explor-
ing random trees (RRT) [14] algorithm is efficient to solve
the global path planning problem. The RRT algorithm creates
a tree constructed by the possible actions from the initial
point to the target point. In [15], the RRT-Connect method
is proposed to search the feasible paths, with smaller cal-
culations. The presence of unknown obstacles in a dynamic
environment requires path replanning. In [16], a sampling-
based path optimization method and the positive percep-
tion criterion are combined to minimize the reprogramming
risk by predicting the future uncertainty of the map. This
method ensures a faster and safer path. The graph search-
ing method [17] is a heuristic searching method aiming to
minimize the cumulative cost from the first step to the last
step. A coordination mechanism is proposed in [18] to avoid
the collision among the robots, which solves the problem of
robot path overlap, and the robot’s journey is much less than
the heuristic searching method.

However, in most cases, the whole map information
could not be fully obtained in prior except for the target
direction. Robots can obtain local map information using
onboard sensing. Real-time local path planning to generate
a collision-free path using local map information is desir-
able for mobile robots with limited computational capac-
ities. However, in practical applications, the sensing field
of view (FOV) is usually limited. In [19], the maximum
dispersion algorithm uses a local map in a limited field of
view and backtracking maneuvers. In [20] and [21], motion
primitives are generated to guide a quadrotor through a forest
and evaluated using a local map. Local path planning is
also called on-line path planning. An artificial field (APF)
method [22] and its variants [23] are usually employed to
generate collision-free trajectories. In the APF-based meth-
ods, repulsive forces are computed to push the robot far away
from the obstacles, while attractive forces are computed to
draw the robot to the target positions. In [24], a UAV group
mobility model based on the APF principle is proposed,
where the UAVs cooperate by sharing obstacle data within the
observation range. In this way, the UAV can not only avoid
obstacles within the perceived range but also avoid obstacles
outside the perceived range.

Model predictive control (MPC) [25] is efficient to solve
control problems on dynamic systems with input constraints
or other constraints. For example, the boundary of obsta-
cles can be considered as position constraints. With the
kinematic and dynamic constraints of the robot, the MPC
method can obtain the control values of the next several steps
meanwhile minimizing the objective function. It can also be
combined with other collision avoidance methods, such as
optimal reciprocal collision avoidance (ORCA) method [26].
Yet, the MPC-based method may meet unsolvable situations
because of too many constraints. Considering the uncertainty
of the quadrotor model and the external disturbance, a new
nonlinear model predictive control (NMPC) optimization
technique is proposed in [27], which incorporates the model
parameter and initial state uncertainties into path planning.
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When calculating the quadrotor’s path, the specified safety
margin should be reached to avoid obstacles. This method is
combined with online model identification to ensure robust
obstacle avoidance behavior.

Another flexible method is based on the velocity region.
To solve the multi-agent navigation in cluttered scenarios,
the robot needs to replan local paths and actions in real-time.
Velocity obstacle-based methods are suitable to generate a
series of collision-free actions and also popular in solving
multi-agent navigation.

The VO method and its variants, especially ORCA, are
widely used in real-world tasks. In the work of [28], a method
modified from ORCA has been adopted in the video games
to lead the virtual humans performing collision avoidance
in clustered scenarios. The work by [29] presents a decen-
tralized method for group-based coherent and reciprocal
multi-agent navigation applying ORCA. ORCA is also used
in the field of aerial robots. In [30], ORCA sets a sce-
nario with the AR-Drones which estimates the other UAVs’
positions and velocities by the on-board cameras. Another
work [31] designs a system with the ability to let multiple
UAVs cooperate and track the preset paths under unreliable
velocity estimates. In [32], an exhibit of multiple holonomic
robots system is presented in the National Museum of Math-
ematics, which uses a hybrid ORCA method and improves
the ability of noise tolerance. In [33], a new idea is pro-
posed using discrete motion planning and optimal Finite-time
Velocity Obstacle. In [34], a pedestrian is regarded as an
agent, and the ORCA is applied for the motion planning
process.

The first idea of the VO method is proposed in [35]. After
that, many variants of the VO method are presented, such
as the reciprocal velocity obstacle (RVO) [36], ORCA and
the extended velocity obstacle (EVO) [32], etc. The RVO and
ORCA simplify the velocity obstacle in the VO and avoid the
problem of oscillations. These two methods come up with a
concept of half responsibility in the navigation of multiple
cooperative agents. The VO algorithm and its variants gener-
ate collision-free paths by setting a time window. If the time
window is shorter, it leads to a higher probability of collision;
while the time window is longer, the prediction accuracy of
the obstacle position will be lower. Therefore, setting the
time window of the path planning method is not desirable.
A framework for dynamic risk assessment is proposed in [37],
in which the forward random reachable set is used to predict
the distribution of obstacles in the time window and bal-
ance the risks caused by the near and far obstacles. In [38],
a VO-based algorithm is presented to handle the high-speed
obstacle in dynamic scenarios. In this article, the work [38]
is systematically and thoroughly investigated considering the
limited sensing field of view and kinematic constraints.

B. CONTRIBUTION
In this article, a novel method derived from the traditional
velocity-based method is proposed to avoid collision with
high-speed obstacles. The motion planning of a mobile robot

is investigated considering its limited field of view in the
presence of multiple dynamic obstacles including high-speed
ones. The main contributions of the paper are summarized as
follows.
• A novel algorithm called maximum speed aware VO
(MVO) is presented for a mobile robot to avoid
high-speed obstacles, where the velocity of one or mul-
tiple dynamic obstacles is larger than the maximum
velocity of the robot. Comparedwith the ORCAmethod,
the proposed MVO algorithm expands the velocity
obstacle region into two parts, where the newly intro-
duced region foresees collisions beyond the time horizon
to ensure feasible solutions at the next control step.
Hence, the MVO algorithm achieves better performance
to avoid collision with high-speed obstacles.

• In practical applications, the field of view of the robot
is usually limited, and the local planner can only
avoid obstacles within its perception range. In addition,
non-holonomic robots unable to move into any direction
are much more common due to their lower cost. In this
article, the limited field of view and non-holonomic
kinematic constraints are incorporated into the MVO
framework. The mathematical expressions of kinematic
constraints of car-like and differential-drive robots are
presented, which are employed as kinematic constraints
of the MVO algorithm. Hence, the MVO method can
handle different non-holonomic kinematic models.

• The smoothness of the generated path is examined via
analyzing the continuity of the MVO approach. In addi-
tion, safety related to the limited sensing distance as well
as the computational complexity of the MVO method
are analyzed and presented. Extensive simulations and
physical experiments are conducted to verify the effi-
ciency of the MVO method. In physical experiments,
robotic platforms including a holonomic quadrotor and
a differential-drive robot are used to perform dynamic
obstacle avoidance.

C. PAPER STRUCTURE
The paper is organized as follows. Sect. II states the problem
concerned in this article. The main method is presented in
Sect. III, in which the usage of our method is fully discussed.
In Sect. IV, we discuss the efficacy of the algorithm on the
practical usage scenarios in the multi-obstacle scenarios and
combine this method with the holonomic and non-holonomic
kinematicmodels. In Sect. V, we present the continuity analy-
sis, safety analysis and computational complexity analysis on
the MVOmethod. Sect. VI presents the results of simulations
and experiments, in which the UAV and Jackal differential
drive platforms are used to perform collision avoidance in the
clustered scenarios. In Sect. VII we conclude the work in this
article and present the future expectation.

II. PROBLEM FORMULATION
In this section, the navigation problem concerned in this
article is defined. In order to make the problem definition
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FIGURE 1. Configurations of a robot A and a dynamic obstacle O.

more understandable, we describe the entire scene in a global
framework. The robot often has a perception distance and a
limited field of view. For velocity-based method, the veloc-
ity estimation should be within the perception range. Ref-
erence [1] proposes a method which focus on the limited
sensing velocity obstacle method. They provide sufficient
proof for guaranteeing collision avoidance motion. Here is
the problem formulation of a single robot and multi obstacles
situation for example. There is a 2D scenario where a robot
A moves to its target point and may run into the obstacles
Oi (i = 1, 2, . . .) with high velocity moving in any probable
direction.

For simplicity, the shapes of robot and obstacles are
regarded as discs, which center at pA and pOi with radii rA
and rOi (Fig.2(a)). Suppose that the speed remains fixed for
a short time, and can be observed by external or on-board
sensors. The robot A also has a heading angle θA, and a
heading direction dA = [cos(θA), sin(θA)]T . The allowed
velocity set is defined as the:

UA = D(0, vmax
A ) ∩ SA, (1)

where vmax
A is themaximum speed of robotA. SA is the sensing

constraint for the robot, which is shown later. The limited
field of view of the robot is defined as:

FA = {p | ‖p− pA‖ < rsA, | 6 (dA,p− pA)| ≤ αsA}, (2)

where rsA is the sensor distance range and αsA is the sensor
angle range within (π2 , π). p is the position of robot or obsta-
cle. Therefore, to keep the obstacle within the robot’s sensing
range and to control the robot Amove away from the obstacle
O, we define the sensing constraint set for the robot’s velocity
as follows when the obstacle is detected by the robot:

SA = {v | |6 (v,dA)| ≤ αsA −
π

2
}. (3)

As shown in Fig. 2, here define a line L⊥ (pO − pA)
with the distance of |pO−pA|2 between robot A and obstacle
O, respectively. With the velocity in the set SA, a robot tends
to choose a velocity near the detection direction to make the
angle of velocity change smoothly.

FIGURE 2. The limited field of view of the robot.

FIGURE 3. Flowchart of proposed algorithm.

The preferred speed vprefA is used to guide the robot to
move in the direction of the target point. The robot gen-
erates the new optimal velocity as input in every control
period, by considering these following factors: the position
and velocity information of the robot and obstacles, the pre-
ferred velocity vprefA , the radii, the time horizon τ , and sensor
constraints SA.

vnewA = F(vA,pA,
{
vOi
}
,
{
pOi
}
, rA,

{
rOi
}
,

vprefA , vmax
A , τ, SA). (4)

Here Maximum-speed Aware Velocity Obstacle Method
framework which is presented in Sect. III generates a velocity
obstacle and chooses a new robot velocity which is nearest to
the preferred velocity vprefA .
The whole process can be briefly summarized in three

parts(Fig. 3):
• In the section III, we discuss how to build the velocity
obstacle setCτA = MVOτA∩VO

τ
A, which contains our new

method MVO. The velocity obstacle set means the set
of velocities where a robot cannot choose a new desired
velocity therein.

• In the section IV, we discuss how to use the
MVO method on different kinematic robot models by
adding a kinematic constrains UNH. Here we take the
differential-drive robot and car-like robot for example.
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FIGURE 4. (a) When vO is higher than the robot’s maximum velocity,
the relatively feasible cycle does not contain the original point. (b) When
vO gets higher, the relatively feasible velocity cycle may be fully
contained by the velocity obstacle.

• At last, a new velocity vnewA ∈ V permit
A which should be

the closest to the preferred velocity vprefA is chosen for
robot A.

III. MAXIMUM-SPEED AWARE VELOCITY OBSTACLE
METHOD
Due to the limited field of view of a robot, the obstacles can
only be observed and avoided when they are close enough
to the robot. This also means that the robot only has a short
reaction time when avoiding obstacles, especially high-speed
obstacles, and the collision probability increases. Hence,
for robots with a limited perception, it is necessary to take
account of the ability to avoid obstacles at high speed into
path planning. In this section, the maximum-speed aware
velocity obstacle (MVO) method is proposed. MVO com-
plements the velocity obstacle region in optimal reciprocal
collision avoidance (ORCA). Therefore, a brief review of the
ORCA and its velocity obstacle region is necessary.

A. OPTIMAL RECIPROCAL COLLISION AVOIDANCE
METHOD
For robot A and obstacle O, VOτA|O is defined as the velocity
obstacle of A for obstacle O. It means that if the relative
velocity is chosen in theVOτA|O, the collisionwill occur within
the time interval τ . The set of relative velocities which will
cause collision within τ can be represented as follow:

VOτA|O
(
pO|A

)
= {v

∣∣∃t ∈ [0, τ ] , tv ∈ D
(
pO|A, rAO

)
}, (5)

whereD (p, r) is a disc of radius r centered at p, rAO is the sum
of rA and rO. If a robot keepsmovingwith a velocity out of the
velocity obstacle, the collision will occur (Fig. 4(b)). In the
ORCA method, the collision-free velocity set is formulated
as

ORCAτA|O =
{
v|
(
v−

(
vnewA + λu

))
· n ≥ 0

}
, (6)

where the vnewA is the current velocity of the robot. u denotes
the minimum velocity change which leads the relative veloc-
ity out of VOτA|O and n is the outward normal (Fig. 1(b)).
Coefficient λ is the responsibility coefficient, which deter-
mines how much responsibility the robot should undertake.

For robot A, the control input vnewA of next step is a velocity
nearest to the preferred velocity vprefA ,

vnewA = argmin
v∈ORCAτ

∥∥∥v− vprefA

∥∥∥ . (7)

The ORCA method has been popularly used in many
multi-agent scenarios. It solves the oscillation between the
multiple agents and enlarges the feasible velocity set. In most
situations, the feasible velocity set of robot D

(
-vO, vmax

A

)
must be considered in the navigation task. When vO gets
higher, the D

(
-vO, vmax

A

)
becomes more distant from the

ordinate origins, like Fig. 4(a). For even higher velocity vO,
the feasible velocity set of robot A would have a higher
probability of being fully contained in the velocity obstacle
region (in Fig. 4(b)), which makes the robot cannot escape
the velocity obstacle region. It should keep awareness of
unsolvable situations. The following sections bring a new
conception to solve this kind of problem.

B. AVOIDING HIGH-SPEED OBSTACLE METHOD
The ORCA method proposes an idea to address the problem
of avoiding multi-agents collision and oscillations. But when
τ is set at the beginning, the ORCA method has not taken the
high-speed obstacles and the limited maximum robot’s veloc-
ity into account. In this section, we give a concise description
of our method to handle this kind of problem, by increasing
the additional velocity obstacle.

Since the limited field of view of the robot is independent
of the analysis of avoiding high-speed obstacles problems,
the analysis of MVO algorithm in this section assumes that
the robot only has the maximum speed limit, i.e.:

UA = D(0, vmax
A ). (8)

1) BASIC INTRODUCTION
To avoid the situation unsolvable, here we consider the choice
of optimal velocity at the current step. Suppose that there
is a feasible velocity set when we choose a new velocity,
meanwhile, we want to have a solution at the next control
step. Here we denote the new velocity obstacle region as
MVOτA|O

(
pO|A

)
, which is a set of relative velocity bringing

collision in the next time horizon.

MVOτA|O(pO|A) = {v|D(−vO, v
max
A )

⊂ VOA|O(pO|A − v · τ )}. (9)

For robot A and obstacle O, the relative position is denoted
as pO|A = pO − pA. Thus, the new relative position at the
next control step would be pnewO|A = pnewO − pnewA and because
the velocity of the obstacle is supposed as a constant in a
single period, pnewO = pO + vO · τ . Thus, the new relative
position pnewO|A = pO|A − vnewA|O · τ . There, we can see the
relationship between the chosen velocity vnewA|O and the new
relative position pnewO|A is:

vnewA|O = (pO|A − pnewO|A)/τ, (10)
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FIGURE 5. The derivation of a new velocity obstacle.

where vnewA|O is nearest to its preferred velocity vprefA|O amongst
all velocities inside the feasible velocity region. According to
the concept of the VO method, the position of the velocity
obstacle depends on the relative position pnewO|A. To prevent
the whole feasible velocity set D

(
-vO, vmax

A

)
from being all

contained in theVOA|O
(
pnewO|A

)
, the new relative position pnewO|A

should be specially selected.
As is shown in Fig. 5(a) and Fig. 5(b), the D

(
-vO, vmax

A

)
is fixed and we can adjust the velocity obstacle by selecting
the pnewO|A. ll and lr are the upper and lower bound of the p

new
O|A,

which are also the boundary tangent to the discD
(
-vO, vmax

A

)
.

If pnewO|A falls between ll and lr , the robot will have no chance
to escape the new velocity obstacle region. The two half-lines
ll and lr together with the two segments 0 − pl and 0 − pr
encompass the largest set of points (Fig. 5(c)).

According to Eq.(10), we can get MVOτA|O
(
pO|A

)
in Fig. 5(d). l ′l and l ′r are the boundary of MVOτA|O

(
pO|A

)
which are mapped from lr and ll . p′c is the intersection of
l ′l and l

′
r . And the boundary of MVOτA|O

(
pO|A

)
is tangent to

the cycle D
(
pO|A/τ, r /τ

)
with p′l and p

′
r.

It is more likely to occur when vmax
A is far smaller than vO,

as is shown in Fig. 4. From another perspective, if each step
the robot chooses a velocity that is outside MVOτA|O

(
pO|A

)
andVOτA|O

(
pO|A

)
, the robot will always have solutions. So the

set of velocity obstacle regions is the intersection of MVOτA
and VOτA.

V permit
A|O = {v|v ∈ D

(
−vO, vmax

A
)
∩ SA,

v /∈
(
MVOτA|O∩VO

τ
A|O

)
}. (11)

FIGURE 6. Two kinds of simplification.

The new velocity of robot A is given by the calculation in
following and the sensor constraints should also be consid-
ered.

vnewA|O = argmin
v∈V permit

A|O

∥∥∥v− vprefA|O

∥∥∥ ,
vnewA = vnewA|O + vO. (12)

When enlarging τ , the velocity obstacle area will become
larger and the robot tends to be farsighted. But it will bring
the risk of getting no feasible velocity area when the number
of obstacles become larger. On the other side, when the
parameter τ gets smaller, the robot will react quickly to other
robots and obstacles in its path [9], [10].

However, a small τ may result in less smooth paths as well,
since the robot may have to frequently rotate to achieve its
target orientation. In practice, choosing τ as three times the
planning period can yield good results.

2) SIMPLIFICATION
To simplify the calculation and avoid the concave set, here we
do some simplification. See Fig. 6(a) and Fig. 6(b), these two
kinds of situations often happen when choosing an optimal
velocity. In Fig. 6(a), when the feasible velocity set makes
intersection with D

(
−vO, vmax

A

)
, it appears a concave region

constructed byORCAboundary lORCA, MVOboundary lMVO,
and the arcs. Here, we choose to prolong the lORCA or lMVO
to make a new velocity region, which is a convex set. And
in Fig. 6(a), the VO set intersects the circle D

(
−vO, vmax

A

)
at

two points p1 and p2. For convenience, we connect lp1p2 as a
new boundary of the VO region.

The MVO algorithm also has limitations, that is, the set of
feasible speeds of the robot is reduced due to the additional
velocity obstacle area in the second prediction period, which
may cause the absence of a feasible solution. This limitation
would become more apparent as the number of obstacles
increases.

IV. PRACTICAL USAGE OF MVO METHOD
To show the efficacy of the algorithm on the practical usage
scenarios, here we discuss the practical usage of this method
in the multi-obstacle scenarios and combine this method
with the holonomic and non-holonomic kinematic models,
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including differential-drive and car-likemodels. After consid-
ering the limited field of view of the robot, the whole method
shows efficacy in the practical usage scenario.

A. MULTIPLE OBSTACLES AVOIDANCE SCENARIO
The abilities of collision-free navigation and smooth action
planning in multiple obstacle scenarios are among the basic
requirements for every working robot. Therefore, our MVO
method should also consider the increase of robot density and
cooperative interaction, and avoid collision and oscillation.
A method similar to the case of a single robot can be applied
to the collision avoidance scenarios of multiple robots. As the
same to the single-obstacle scenario, the robot here is sup-
posed to have a continuous cycle of sensing and the time
horizon τ . In every control step, it can detect the information
of obstacles’ positions, velocities and radius. When the robot
encounters a collision, each obstacle makes the robot generat-
ing these two velocity obstacle regions,MVOτA|Oi

(
pOi|A

)
and

VOτA|Oi
(
pOi|A

)
.

Then calculate the velocity obstacle regions based on
MVOτA=

⋂
(MVOτA|Oi

(
pOi|A

)
⊕ VOi ) (i = 1, 2, . . .) and

VOτA =
⋂
(VOτA|Oi

(
pOi|A

)
⊕ VOi ) (i = 1, 2, . . .), where

suppose X ⊕ Y is the Minkowski sum of X and Y.

X ⊕ Y = {x + y|x ∈ X , y ∈ Y } . (13)

Let VOi =
{
vOi
}
. Every velocity region produces a feasible

velocity set. So the set of velocity obstacle regions is the
intersection ofMVOτA and VOτA.

V permit
A = {v|v ∈ D

(
0, vmax

A
)
∩ SA, v /∈

(
MVOτA∩VO

τ
A
)
}.

(14)

B. SCENARIO WITH KINEMATIC CONSTRAINTS
Non-holonomic robots are much more common in practical
applications due to their lower cost. Typical non-holonomic
robots include differentially-driven and car-like vehicles.
As non-holonomic robots cannot move to any direction
from any state, differential-drive and car-like kinematic con-
straints are incorporated into the MVO method such that
the proposed method can be applied to different kinematic
models. In [7], an ORCA-based method is proposed con-
sidering differential-drive kinematic model. Motivated by
the work [7], the non-holonomic constraint formulas of
differential-drive and car-like vehicles are derived, which can
be easily used as the kinematic constraints of the MVO algo-
rithm. Hence, the MVO approach can be applied to different
kinematic models.

1) DIFFERENTIAL-DRIVE ROBOT
Since the non-holonomic constraint formula of the
differential-drive vehicle has been derived in [7], it is briefly
described here. For more details, it can be referred to [7].
As shown in Fig. 7(a), the differential-drive robot’s position
in the two-dimension space can be described by three state
parameters, including the position of center (x, y) and the
orientation θ .

FIGURE 7. Two kinds of non-holonomic robots.

FIGURE 8. Two kinds of kinematic model constraints.

The final motion constraint UNH which is derived by the
different kinematic constraint model is shown in Fig. 8(a),
the red line boundary reveals that it is not a linear calcu-
lation in the velocity obstacle. To simplify the calculation,
we choose the inscribed polygon to replace the non-linear
space. Because of rotational invariance, the constraint-
rectangle can be computed at zero orientation and rotated to
match the robot’s current orientation θ . After that, the black
box is the final motion constraintUNH . And then, we combine
this velocity constraint area into the feasible velocity region
calculated by MVO, which is shown in Fig. 9(a).

2) CAR-LIKE ROBOT
The car-like robot, as the name implies, is similar to a car.
We often simplify the car model with a fixed rear wheel and
a steerable front wheel like a bicycle, as shown in Fig. 7(b).
Consider the car-like robot rotates at the midpoint between
steering and rear wheel. ẋẏ

θ̇

 =
 cos (θ)− tan (ϕ) sin (θ)

sin (θ)+ tan (ϕ) cos (θ)

2 tan (ϕ) /l

 v, (15)

where l is the distance between the steering wheel and rear
wheel. The car-like robot has three state variables [x, y, θ],
and the control inputs are [v, ϕ]. ϕ ∈ [-ϕmax, ϕmax] is
the steering wheel angle and v ∈ [−vmax, vmax] is the
rear wheel’s velocity. Because of the kinematic model,
angular velocity is depended on ϕ and v. Let ω=θ̇ ∈
[-2v tan (ϕmax) /l, 2v tan (ϕmax) /l]. When ϕ reaches ϕmax,
the maximum of angular velocity still changes along with
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v. Here we suppose that in the permitted range, the steer-
ing wheel can reach any angle immediately. Like the
differential-drive robot, it needs a curved path to reach the
needed angle, which will bring errors. The curved path brings
the tracking error and here are several constraints in these
variables as below. And we can find that the equation is
quadratic for the v or ω,

ε2 = v2d t
2
−

2vd t sin (θd )
ω

v+
2 (1− cos (θd ))

ω2 v2. (16)

We control the error within a given ε and add the velocity
constraints into two-period velocity obstacle regions. Herewe
suppose that the desired speed has a higher priority.

v = min (vm, vmax) ,

ω = min
(
θd

T
,
2v tan (ϕmax)

l

)
. (17)

T is the maximum time in which the robot needs to reach
the desired velocity direction. Thus we can get the maximum
path tracking error for the following conditions [a, b, c, d].

vmax
d

=



min

(
εmax

T

√
2 (1− cos (θd ))

2 (1−cos (θd ))−sin2 (θd )
, vmax

)
, (a)

min

(
−β1 +

√
β1

2
− 4α1γ1

2γ1
, vmax

)
, (b)

min

(
−β2 +

√
β2

2
− 4α2γ2

2γ2
, vmax

)
, (c)

min

(
−β3 +

√
β3

2
− 4α3γ3

2γ3
, vmax

)
, (d)

(18)

where [αi, βi, γi] (i = 1, 2, 3) are the quadratic term,
linear term and coefficient term of the Eq.(18). Similarly,
the black box is the final motion constraint UNH , which
is shown in Fig. 8(b). The robot feasible velocity set UNH

should be combined with V permit
A concerned above. As shown

in Fig. 9(b), the new permitted velocity set is:

V permit
A = {v|v ∈ D

(
0, vmax

A
)
∩ SA ∩ UNH,

v /∈
(
MVOτA∩VO

τ
A
)
}. (19)

After getting the permitted velocity of the robot, it should
choose the new desired velocity which is closed to the pre-
ferred velocity. The preferred velocity is used to guide the
robot tomove in the direction of the target point to the greatest
extent.

vnewA = argmin
v∈V permit

A

∥∥∥v− vprefA

∥∥∥ . (20)

V. ANALYSIS
In this section, the continuity analysis of the MVO method
is presented, which ensures the smoothness of the generated
actions. Safety analysis of the MVO approach is also pre-
sented in the scenario with the limited sensing distance range.
Furthermore, by analyzing and comparing the computational

FIGURE 9. Combine a feasible velocity region with MVO. The green region
in the figures shows the intersection of kinematic constraints UNH and
velocity feasible region by generated by MVO. We can observe the shapes
of the differential-drive and the car-like model constraints.

complexity of ORCA and MVO algorithms, it is shown
that the MVO algorithm will not increase the computational
complexity.

A. CONTINUITY ANALYSIS OF MVO METHOD
Like the ORCA method, our MVO could also generate the
collision-free and smooth actions in the position region,
in other words, the selected velocities are continuous.

First, we denote 1t as a small-time step and vA (t) as the
current velocity in the sequence of vA. And vA (t +1t) is the
velocity in the next time step, but also the selected velocity
at the current time step. To analyze the continuity of vA,
it needs to deduce the vA (t +1t) ≈ vA (t), when 1t → 0.
By the method of induction, from vA (t +1t) ≈ vA (t),
we will get vA (t + 21t) ≈ vA (t +1t), when the 1t is
small. So, to prove vA (t +1t) ≈ vA (t), it needs to prove
that vA (1t) ≈ vA (0). As yet, it is clear that we should
focus on the method to get vA (t +1t) and the initialization
velocity vA (0).
The selected optimal velocity of the robot vnewA =

vA (t +1t) is based on the MVO method can be generated
by the function vA (t +1t) = f (h (t) , g (t) , q (t)), where
the h (t)=vprefA (t) and g (t)=MVOτA (t), q (t)=VO

τ
A (t).

The preferred velocity vprefA (t) is calculated by the current
position pA (t) and the target position p

goal
A . It is clear that the

pA (t) is continuous and the pgoalA is fixed. So the preferred
velocity h (t)=vprefA (t) is also continuous, where vprefA (t) ≈
vprefA (t+1t).

The MVOτA (t) is the intersection of the velocity
region MVOτA|Oi (t). So it needs to prove MVOτA|Oi (t) ≈
MVOτA|Oi (t+1t). As the introduction proposed above,
MVOτA|Oi (t) is inferred from the velocity obstacle region
based on the continuous position pA (t) and the velocity
vA (t). So, if vA (t) is continuous, the MVOτA|Oi (t) is also
continuous. Similarly, VOτA|Oi (t) is also continuous. Thus,
f (h (t) , g (t) , q (t)) ≈ f (h (t+1t) , g (t+1t) , q (t+1t)).

On the other aspect, to make vA (1t) ≈ vA (0), it will occur
when the robot’s initial condition is beginning with vprefA (0).
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When vA (0)=v
pref
A (0), the vA will begin with continuity

and make the next sequence of MVOτA|Oi (t) and VO
τ
A|Oi (t)

continuous.
As is concerned above, if a robot can keep vprefA (0) as the

initial velocity, the sequence of vA (t) is continuous and the
MVO method will generate a smooth collision-free action
series.

B. SAFETY ANALYSIS CONSIDERING LIMITED SENSING
DISTANCE RANGE
Generally, the robot has limited perception capability includ-
ing limited sensing distance and sensing angle. It is dangerous
for the robot if the obstacle runs towards its blind spot when
they are passing to each other. On the other hand, according to
continuity analysis of theMVO approach discussed in section
V-A, if the feasible velocity circle has been fully contained
at the beginning, the robot has no chance to escape from the
velocity obstacle in the next steps. In this section, the effect of
the limited sensing distance range on the safety of the MVO
approach is analyzed. Suppose that the robot has a limited
perception distance rs (Fig.10(a)). The following theorem 1
shows the maximum velocity of a dynamic obstacle with
respect to the maximum velocity of the robot, beyond which
the MVO approach cannot avoid the dynamic obstacle under
the condition of limited sensing distance.
Theorem 1: The extreme situation is discussed when the

obstacle rushes to the robot in the velocity vO. When the
obstacle enters into the boundary of detection, there exists
a maximum velocity of an obstacle for the robot to avoid
collision.

|vO|upper = vmax
A · rs/r, (21)

where vmax
A is the maximum velocity of robot, r is the sum

of radii of robot and obstacle, rs is the limited perception
distance.

Proof: In the ORCA method, the extreme situa-
tion is that the feasible velocity circle D

(
−vO, vmax

A

)
of a

robot is contained by D
(
−pO|A/τ, r/τ

)
(Fig.10(b)). When

D
(
−vO, vmax

A

)
is tangent with the bottom arc of the velocity

obstacle, it is the upper bound for the obstacle velocity:

|vO|upper = (|pO|A| − r)/τ + vmax
A . (22)

In theMVOmethod, because of the additional part, the fea-
sible velocity set should not be contained by the original and
additional velocity obstacle. When the obstacle rushes to the
robot straightly, the feasible velocity circle D

(
−vO, vmax

A

)
may first meet the additional velocity obstacle MVOτA|O (t),
as shown in Fig.10(c). When the circle is tangent with the
boundary ofMVO, it can be calculated that T0 = −

r/τ
vmax
A
·vO+

pO|A/τ , T1 = pO|A/τ + vO, T2 = −vO, r1 = r/τ − vmax
A , and

r2 = vmax
A . Based on homothetic triangle theory, it is found

that the upper bound of obstacle’s velocity in this situation,

|vO|upper = vmax
A · |pO|A|/r, (23)

FIGURE 10. The extreme situation with a limited perception distance.

where r is the sum of radii of robot and obstacle. When there
exist a detection limits rs, the relative distance |pO|A| between
robot and obstacle can be replaced by rs.
Considering the kinematic constraints of the robot, mod-

els of the robot can be divided into the holonomic and
non-holonomic ones. Therefore, the following corollaries can
be derived from Theorem 1.
Corollary 2: If the robot is holonomic and omnidirec-

tional, with radius rH . The upper bound of the vO can be
applied to the holonomic robot.

|vO|upper = vmax
A · rs/rH . (24)

Corollary 3: If the robot is non-holonomic as concerned
in section IV-B, the trajectory error is controlled within the
maximum error εmax. It is equal to the increasing radius of
the holonomic robot so that rNH = rH + εmax. The upper
bound of the vO can be also applied to the non-holonomic
robot.

|vO|upper = vmax
A · rs/rNH . (25)

C. COMPUTATION COMPLEXITY ANALYSIS
Like the ORCA algorithm, theMVO algorithm still maintains
a low computational complexity and is suitable for quadro-
tor platforms with limited computational capacities. In the
ORCA algorithm, the velocity obstacle area is firstly con-
structed referred to Eq.(6). For limited operations of the equa-
tion, the computational complexity is O(n), where n is the
number of obstacles. Referring to Eq.(7), it is a QP problem to
calculate the optimal speed, and the computational complex-
ity isO(n2). In the MVO algorithm, the velocity obstacle area
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FIGURE 11. Average computing time of constuction of MVO region per
execution vs the number of obstacles.

is expanded into two parts referred to Eq.(11), where the com-
putational complexity of the construction of the VO region
is O(n), the computational complexity of the construction
of the MVO region is O(n). The computational complexity
after synthesis is still O(n) (Fig.11 ). Similarly, after the
obstacle area is obtained, it is a QP problem to calculate
the optimal speed referred to Eq.(12), and the computational
complexity is O(n2). Besides, the limited sensing constraint
and kinematics constraint are designed as linear constraints
of the QP problem, which will not increase the computational
complexity. Therefore, the MVO algorithm does not increase
the computational complexity and applies the complex envi-
ronment with high-frequency and high-speed obstacles.

VI. SIMULATIONS AND EXPERIMENTS
In this section, simulation and experimental results are pre-
sented to illustrate the performance of the MVO approach
in the presence of one and multiple dynamic obstacles. Var-
ious numerical simulations are conduceted to evaluate the
proposed method. Moreover, physical experiments are per-
formed using a holonomic unmanned aerial vehicle platform
Parrot Bebop 2 and a differential-drive vehicle Jackal. Exper-
imental results comparing between the MVO and the ORCA
are also presented in the presence of dynamic obstacles.

A. SIMULATION
In Fig. 12, the simulations are conducted for the scenario
where a robot starts at the original point and moves to
the target point with a maximum speed of 1 m/s. Mean-
while, the obstacle rushes to the robot with an average speed
of 15 m/s. For comparison, the MVO and ORCA method are
both implied in the simulations. There are four snapshots to
show these two methods’ different appearances. Using the
MVO method, the robot generates effective actions before
the feasible velocity cycle D

(
−vO, vmax

A

)
is fully contained

by the velocity obstacle. After that, the robot moves to the
target point with maximum speed. But when using the ORCA
method, the robot tends to move in the same direction of
the obstacle. And because the vO is much larger than the
robot’s,D

(
−vO, vmax

A

)
can be easily contained in the velocity

obstacle. In Fig. 12(b), the region surrounded by blue lines is
the MVO velocity obstacle, which makes it move aside.

FIGURE 12. The red and blue cycle represents the robot and the obstacle,
respectively. The speed of the obstacle is almost 15 m/s and the
maximum speed of robot is 1 m/s. (a) The robot is navigated with the
MVO method, and at 3s, the robot avoids collision successfully. (b) This
figure is the velocity obstacle, the region constructed by the blue line is
the MVO and the red region is the velocity obstacle generated by ORCA.
We can observe that the velocity feasible cycle is in the MVO so that the
robot could generate the actions ahead of time. (c) The robot is navigated
by ORCA, and collision occurs at 3s. (d) We can observe that the ORCA
method have not enough awareness before the velocity feasible cycle is
fully contained by the velocity obstacle region.

FIGURE 13. (a) and (b) Is the scenario where the robot is navigated by the
method without considering kinematic constraints. Before the collision
occurs, the MVO method generates the optimal velocity which can’t be
arrived for the robot. (c) and (d) is the scenario where the robot is
navigated by the MVO method with kinematic constraints, and we can see
the robot’s action is smooth and collision-free.

In Fig. 13, when using MVO without considering kine-
matic constraints, the robot pays not enough attention to
choosing optimal velocity. It will lead the robot cannot reach
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TABLE 1. The variances of the robot’s actions under different collision
avoidance algorithms.

FIGURE 14. Blue and cyan circles are the robot and obstacle, respectively.
The blue solid line and cyan dotted line are robot’s path and obstacle’s
path, respectively. The blue circular sector is the sensing range.
(a) Obstacle gets away from the robot’s sensing range when the robot is
back on the obstacle at 13s. (b) The path generated by the MVO method is
not smooth enough and oscillation occurs. (c) The robot keeps the
obstacle within its sensing range before passing it. (d) The path generated
by the MVO method with limited sensing constraints is smooth.

the desired velocity when the distance between them becomes
small, and the result is the robot cannot get a feasible solution
at last. After considering the kinematic constraints when
using MVO (Fig. 9), the path becomes smooth and the robot
avoids collision successfully. Moreover, the limited field of
view of the robot is not shown since the simulation experi-
ment is mainly to demonstrate the necessity of considering
kinematic constraints.

We conducted another experiment to show that the MVO
algorithmwith kinematic constraints(MVO-NH) can produce
smooth actions. The experimental scenario is the same as that
in Fig. 13, and an obstacle rushes to the non-holonomic robot
from different random directions with a random speed in the
interval [3, 6]m/s. In this scenario,We conducted 1000 exper-
iments and the results are averaged. The variances of the
robot’s speed under the MVO algorithm and the MVO-NH
algorithm are computed with respect to the preferred velocity
vprefA . The data in TABLE 1 show that theMVO-NH algorithm
can generate smoother velocities for the robot.

In Fig. 14, the trajectories are obtained by the contrast
experiment of MVO and MVO method with limited sensing

FIGURE 15. The three snapshots of the UAV experiment show the process
of collision avoidance with multiple obstacles. In these snapshots,
the red rectangular box is the target point of the robot. The red circle and
green circle are denoted as robot and obstacle, respectively. The blue
circular sector is the sensing range. Two obstacles rush to the robot in
different directions at twice the speed of the robot.

constraints. The common parameters of both robot and obsta-
cle are radius r = 0.6 m, maximum velocity vmax

A = 0.6 m/s.
The parameters of robot are sensor range rs = 3 m, sensor’s
half-angle αs = 1.919 rad/s, initial point = [−5,−5]T ,
goal point = [5, 5]T . The parameters of the obstacle are
initial point = [5, 5]T , goal point = [−5.3,−5.3]T . We can
observe that the robot navigated with only MVO loses the
sight obstacle briefly when the robot is back on the obstacle.
And theMVOmethodwith limited sensing constraints avoids
this situation happened. So it is necessary to consider the
limited field of view of a robot especially.

B. EXPERIMENT SETUP
1) IMPLEMENT
Ourmethod is evaluated on the holonomic and non-holonomic
platforms with encountering a different number of obstacles
in the serials scenario. Note that in every scenario, the obsta-
cles rush to the robot while the robot moving to the target
point. The robot calculates collision-free actions every period
using the MVO method.

The holonomic robot platform is Parrot Bebop 2 (Fig. 15),
which is equipped with Raspberry Pi 3 with the Robot Oper-
ating System (ROS). Bebop is a kind of quad-rotor helicopter
with opened interfaces to control three-axis linear speed. The
maximum speed is 0.5 m/s in both forward and backward
directions and its mass is about 0.5 kg. The lighter weight
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FIGURE 16. The two snapshots of the non-holonomic experiment show
the process of collision avoidance with multiple obstacles. In these
snapshots, the red rectangular box is the target point of the robot. The
red and green circles are denoted as the robot and obstacles. The blue
circular sector is the sensing range.

brings more flexibility, so it has a faster speed response. In the
experiments, the shape of Bebop is assumed to be a circle with
radius 0.3m. But the local sensing power is not strong enough
to get accurate location information.
Jackal Unmanned Ground Vehicle is a differential-drive

robot platform with on-board mini PC preloaded ROS pack-
ages (Fig. 16). On-board CPU is Intel’s Core i7 6700. The
maximum velocity is limited at 0.6 m/s in our experiments
and the maximum rotate speed is 1 rad/s. We can use
ROS interfaces to deliver the orders of velocity and rotate
speed to the robot. The obstacles are the human and the
remote-controlled holonomic robot refitted by DJI ROBO-
MASTER 2016 INFANTRY.

In the indoor experiments, for convenience, the robot and
obstacles are tracked by the OptiTrack motion capture sys-
tem. The position and orientation information is sent every
5 ms from the central computer through Wi-Fi. To simulate
the limited sensing scenario, the robot is artificially set to
avoid obstacles onlywithin the sensor range, where the sensor
distance rang rsA is 3m and the half detection angular range
αsA is 3π

5 . And the velocity information of every robot and
obstacle is inferred from the position and orientation data
using Kalman filter.

In the outdoor experiments, Velodyne VLP16 LIDAR is
applied as a detection module to gather the environment
laser-point cloud (Fig. 20). Therefore, in the scenario which
limits the robot’s field of view, the maximum distance of
LIDAR we restricted under 3m and the half detection angular
range αsA is 3π

5 . After that, the obstacles’ current positions

are predicted by the Kalman equation through the Hungary
algorithm.

2) PERFORMANCE METRICS
Here we propose the performancemetrics of our experiments,
to verify the feasibility of our MVO method.

• Method feasibility: The MVO method tends to reduce
the cases of no solution when facing high-speed obsta-
cles. If the unsolvable cases are too much, the robot will
collide with an obstacle or overreact.

• Collision-free movement: The robot travels from the
original point to the target point, while the actions are
collision-free ones with encountering obstacles. And
the robot would stop the movement when the relative
distance is smaller than the safe distance.

• Smooth action: The action orders should be smooth and
easy for a robot to follow. The non-holonomic robot has
limited linear velocity and angular velocity, which are
obvious observation features.

C. EXPERIMENT RESULTS
The experiments are conducted in following three basic sce-
narios which limit the robot’s field of view:

• Holonomic robot scenario: We set two basic scenarios
in this part. One is the robot encountering a single obsta-
cle and another is multi-obstacle existing(Fig. 16). The
robot’s initial point and goal point are the same one or
different ones, and Bebop needs to reach the goal point
without collision. The speed of obstacles is almost twice
as large as the Bebop’s. And the maximum velocity of
the robot is limited at 0.6 m/s in our experiments

• Non-holonomic robot scenario: The scenario is the same
as the holonomic robot scenario. The obstacles rush to
Jackal with a constant velocity. Jackal has to calculate
its actions to navigate to the goals.

Fig. 17 shows the traces of the agents, which are recorded
in different scenarios. Note that when the number of obsta-
cles increases, the robot never overreacts and oscillates. The
MVO with kinematic constraints combined with the feasible
velocity region of the non-holonomic robot gives the desired
velocity and rotate speed of the robot. It brings more smooth
and safety to the non-holonomic robot. We simply consider
that our formulations are capable of handling the distinction
should it be made and satisfy the metrics. The snapshots
in Fig. 16 shows the performance of a non-holonomic robot
in the multi-obstacle scenario.

Fig. 18 shows the holonomic robot avoided collision with
one obstacle. The velocity of the obstacle is almost 1.1 m/s
and it moved straight to the robot. And the average speed of
the robot is 0.5m/s. Notice that here we added a little margin
to the robot’s radius. In the figure, we can observe that the
robot generated evasive action when the obstacle is close to
the robot at 5 s. And the snapshots in Fig. 15 present the
collision-free navigation in themulti-obstacle scenario for the
holonomic robot.
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FIGURE 17. The path point data of non-holonomic robot experiments are
plotted by using Matlab, which shows smooth navigation of the robot.
The red one is the robot and the blue ones are obstacles. The red circular
sector is the sensing range. (a) and (b), single obstacle. (c) and (d),
multi-obstacle.

FIGURE 18. Bebop avoided collision with a single obstacle using MVO.
The blue line is the velocity of the robot and the orange one is the
velocity of the obstacle.

We also conduct a comparing experiment between the
ORCAmethod and theMVOmethod. The scenario in Fig. 19
is the same as the scenario with the non-holonomic robot. The
only difference is the method used for navigation. We can see
that the robot has not enough awareness about the coming
obstacle on account of the limited field of view, and it gener-
ated effective action when the obstacle was so closed to the
robot. When the obstacle is close enough to the robot, ORCA
generates the velocity order in the same direction with the
obstacle. Because of the kinematic constraints, the robot can-
not flee from the velocity obstacle. And put the experiment
result with Fig. 17, we can get the conclusion that our MVO
method is useful when there exist high-speed obstacles in the
workspace.

In Fig. 20, Jackal’s detection module is LIDAR and
the field of view is limited in a specific range. In the

FIGURE 19. The non-holonomic robot experiment navigated by the ORCA
method. Collision occurs in the process of navigation. The red circular
sector is the sensing range. (a) The snapshot of the experiment shows the
collision occurred. (b) The path of the experiment is plotted in Matlab.

FIGURE 20. Non-holonomic robot avoided collision with multiple
obstacles using MVO, which has a certain range of angles and a limited
field of view. In the image on the upper left corner, the red point is the
running human and the black one in the yellow cycle is another moving
obstacle.

experiment, we artificially limited the detection range of
the sensor, to verify our algorithm. The robot moves to the
target point and avoid collision with the human and moving
obstacle. The human speed is around 2 m/s and the robot’s
maximum speed is 0.6 m/s. We use the MVO method con-
cerned above with limited field of view.

VII. CONCLUSION
In this article, a novel two-period velocity obstacle method
called MVO is presented for a mobile robot with a limited
field of view to avoid collision with high-speed obstacles
in dynamic scenarios. An extended velocity obstacle is con-
structed to avoid collision with the obstacles whose veloc-
ities are larger than the maximum speed of the robot. The
limited sensing field of view and kinematic constraints are
incorporated into the MVO approach. Extensive experiments
are conducted on the holonomic and non-holonomic robotic
platforms to verify the efficacy of the proposed method.
In future work, the dynamic constraints of the mobile robot
will be considered. In addition, the trajectory prediction of
dynamic obstacles will be studied to improve the performance
of the MVO method. We will apply the MVO algorithm to
more scenarios, such as different robot models and different
sensor perception capabilities.
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