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ABSTRACT Global climate change has had a drastic impact on our environment. Previous study showed
that pest disaster occured from global climate change may cause a tremendous number of trees died and
they inevitably became a factor of forest fire. An important portent of the forest fire is the condition of
forests. Aerial image-based forest analysis can give an early detection of dead trees and living trees. In this
paper, we applied a synthetic method to enlarge imagery dataset and present a new framework for automated
dead tree detection from aerial images using a re-trained Mask RCNN (Mask Region-based Convolutional
Neural Network) approach, with a transfer learning scheme. We apply our framework to our aerial imagery
datasets,and compare eight fine-tuned models. The mean average precision score (mAP) for the best of these
models reaches 54%. Following the automated detection, we are able to automatically produce and calculate
number of dead tree masks to label the dead trees in an image, as an indicator of forest health that could be
linked to the causal analysis of environmental changes and the predictive likelihood of forest fire.

INDEX TERMS Deep learning, tree detection, tree segmentation, forest health diagnosis, climate change,
forest fire.

I. INTRODUCTION
More and more evidence indicates that global climate change
has led to deforestation and extinction of species over the
past decade. The incremental changes in temperature have
not only caused extreme events such as floods, drought and
gales, but inevitably affect landscapes and whole ecosys-
tems. In such a situation, species may struggle to adapt to
changes [1]. Moreover, it is reported [2] that 110,000 hectares
of forest have died in 2018, which is around the size as
150,000 football pitches or one nineteenth of Wales, due to
extreme heat and storms.

Certain species whose habitats were living woods have lost
their habitats due to deforestation and dying trees. On the
other hand, organism or creatures that take dead wood as
habitats (for example: fungus, bacteria, predatory beetles, and
parasitic wasps) increase their population. Pests such as bark
beetles and cardinal beetle can nest in dead tree trunks, and
then may move to healthy trees and kill them [2].
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In addition, the dry, inflammable nature of dead
wood makes fire disasters happen more frequently [3].
In California, poor management of dead wood in forests has
been identified as the major cause of wildfire. Both brought
huge costs since the fire destroyed neighboring healthy trees
and spread fast to villages nearby. Forest fires also trigger
severe smog; for example, in 2015, wildfire smoke in Indone-
sia caused an estimated 100,000 premature deaths [4].

Because the of impacts on ecosystems, inhabitants and
households mentioned above, technology to monitor forest
areas has been developed rapidly in the past decades. Tech-
nologies such as remote airborne sensor or satellite imagery
made forest monitoring less costly, and allows monitoring
without human involvement. By using these technologies,
forest experts and disaster specialists not only can monitor
forests in real-time, but also adopt preventive measures for
natural disasters.

On the other hand, pest disaster, one of the natural disas-
ters caused by climate change, has recently drawn experts’
attention. The Canopy Health Monitoring (CanHeMon) [5]
project aimed to eliminate the danger to forests from pine
wood nematode (PWN), and so previous research has been
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done to detect dead trees within forests, to prevent them from
becoming vectors for PWN. AMaxEnt-based iterative image
analysis algorithm, applied to remote sensing data, as able
to detect individual declining tree crowns with high accu-
racy [5]. The algorithm searches for the distribution with the
maximum entropy for a given input set of occurrences and a
set of constraining variables. As higher entropy indicates high
disorder and abundance of information, the algorithm can fil-
ter out irrelevant variables, leaving the most useful variables
highly correlated to dead trees. However, the results revealed
that the rate of false positives increases as the sample size
decreases. Moreover, eliminating small size samples (smaller
than 2.5m2) harmed the true positive detection rate, dropping
from 80% to 65%. This may indicate that the algorithm is not
suitable to detect small objects or that there were not enough
samples of small trees in the training data.

In addition, the CanHeMon project suggested that using
deep learning algorithms may provide a more generalised
image analysis model and allow us to identify pixel-wise
shapes of trees in an image. To investigate this, the Can-
HeMon team also performed tests using a neural network
model. The results showed that rate of false positives was
lower than for theMaxEnt-based algorithm, but the behaviour
of the loss function indicated more epochs and iterations
were needed in training the model. Hence, in this research,
we extend the deep learning methods applied by the previous
team.

In this study, we used a Mask Region with Convolutional
Neural Networks (Mask-RCNN) algorithm, accompanied by
transfer learning [6] to deal with the problem of pixel-wise
object identification and to enhance the learning pattern,
i.e. through additional training sessions, the overall score
performance can be improved by using pre-trained weights
produced in the previous session.

Moreover, to cope with small datasets, and problems with
unlabelled data, we use synthetic tools: randomly assigning
instances into backgrounds, both extracted from raw data.
At the same time, we output COCO format annotations [7]
to be used in inference. In general, manually annotating these
masks is quite time-consuming, frustrating and commercially
expensive [8]. However, we were inspired by Adam Kelly,
the founder of Immersive Limit, and were able to automati-
cally create thousands of synthetic images and their annota-
tions with minimal manual effort. [9] The study makes four
major contributions:

(1) Use synthetic data to do Mask RCNN modeling and
reach about 54% on mean average precision score (mAP).
The results show that it is possible to use synthetic methods
to mitigate data scarcity.

(2) Mask prediction is limited by selected ROIs and can be
found from high loss of RPN. Therefore, applying semantic
segmentation may be a more practical way than instance
segmentation to detect dead tree region.Figure VI-B

(3) Using two optimizers in training process caused loss
converged faster than using one optimizer. Figure VI-B

FIGURE 1. Structure of the Mask-RCNN model.

In addition, Figure 1 provides our framework for forest
analysis. More details will be in the following sections.

II. RELATED WORK
A. SATELLITE IMAGING FOR FOREST ANALYSIS
Although we did not use satellite images in our research,
they have been used to monitor forest cover for a long time.
Analysing the change of forest cover generally relies on
visual interpretation of a dataset. Accompanied with groud
measurements, scientists are able to calculate the loss of
forest cover over time and doing assess properties from the
satellite imagery, such as biophysical and biochemical prop-
erties of forest. [10]

In addition, in various studies [11]–[13], Landsat imag-
ery [14], a popular open database of satellite imagery, was
sampled or trained to monitor forest cover changes. Land-
sat imagery resolution is between 15-60m with multiple
bands. ‘‘Landsat is a joint effort of the U.S. Geological
Survey (USGS) and the National Aeronautics and Space
Administration (NASA). . .The data are useful to a number of
applications including forestry, agriculture, geology, regional
planning, and education.’’ [15]

B. AI TECHNIQUES IN OBJECT DETECTION
With the remarkable advancement in artificial intelligence
techniques in the past decades, there are several object
detection algorithms which are now generally used, for
example R-CNN [16], Fast-RCNN [17], Faster-RCNN [18],
YOLO [19], SSD [20], and NAS-Net [21]. When performing
object detection, we are interested in finding two things:
where our target objects are located, and which categories
they belong to [22]. Our goal is to draw bounding boxes
around target objects in an image, and output a percentage
indicating how certain we are that they belong to certain
classes. Moreover, state of the art techniques allow real-time
prediction of object localisation and classification, for exam-
ple You Only Look Once (YOLO) and Single-Shot Detector
(SSD).
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However, the cost of the fast inference time of such meth-
ods may be lower accuracy and low-resolution feature maps,
due to a single network evaluation [23].. They use a sin-
gle stage to complete both object localisation and classi-
fication, but in constrast, region based algorithms (RCNN,
Fast-RCNN, Faster-RCNN and Mask-RCNN) separate the
process into to two stages: first using a region proposal
network (RPN) to propose a bounding box for a candidate
object; then predicting the class and box offset, and outputting
a binary mask for each region of interest’s ROI [24]. That
means we calculate both the classification scores and bound-
ing box regression in second stage to decide which ROIs
have the highest probability to contain target objects, and
simultaneously perform instance segmentation on selected
ROIs. Here, instance segmentation [24] means to differentiate
each target object and cut them apart even when they are
labeled in the same class. It is often compared to semantic
segmentation, labeling on each pixel with the class of its
enclosing object or region (see Figure 2). Note that we only
took segmentation into account because it was more precise
to cut off dead tree regions in pixel-wise manner than simply
output bounding boxes; for example, some boxesmay contain
a big proportion of living trees.

FIGURE 2. Semantic segmentation (left) versus instance segmentation
(right). Image from [24].

C. CNN AND FCN IN PIXEL-WISE DEAD FOREST MAPPING
Recent studies [25]–[28]showed CNN and FCN were used
in sementic segmentation on forest mapping. In [25] a VGG
neural network (an architecture of CNN) was proposed to
classify pixels with a sliding window technique. One notable
approach called ensemble learning was introduced to aggre-
gate different predictions generated by the same model. This
produced determistic estimates and reduced uncertainties
caused by weight initialization settings. The resulting global
accuracy predicting health status of two tree species was
around 80% to 85%. However, dead trees were misclassified
(defined as ‘‘omission error’’) at a rate of 35% to 40%.

Another study suggested sliding windows [29] cause high
computational cost because neighbour pixel information,
which contains the same information as centre pixels, is used
to classify centre/target pixel. An algorithm such as FCN
is developed to prevent duplicate computation by predicting
many pixels at once. In addition, FCN can take various input
sizes and output a dense prediction.

A DenseNet (an architecture of FCN) proposed in [26] has
outstanding results for classifying dead trees and standing
dead trees. The resulting recalls and precisions are mainly
within 90 to 100% although a recall of a subset was 67.8%.

The author also encouraged that instance level prediction can
be done to improve future research.

D. TRANSFER LEARNING
In the field of image processing, there have beenmany studies
using transfer learning. The technique uses an existing trained
network to improve the training accuracy for a new model.

Since an outstanding trained network such as COCO or
ImageNet has been trained using many images with a big
number of labels, it seems sensible to reuse fundamental
parts of the pre-trained net as low-level feature extractors, i.e.
to recognize edges, colours and textures - whether detecting
complex and subtle objects such as a human fact or simple
objects such as rectangles, early layers in neural networks
always detect the same basic shapes and edges.

To be more specific, the COCO dataset [7] is a large-scale
object detection, segmentation, and captioning dataset. It has
over 200 000 labeled images with over 80 labels, while the
ImageNet dataset has tens of millions of images with thou-
sands of labels. [30]

[6] So to train a model on a custom dataset, all we need to
do is replace the classification and bounding box predictors
with customised ones which are able to predict our labels.
First, we take a pre-trained net without its FC part, since
Fully Connected layers are used only for the old model’s
classification. Next, a new FC containing customized label
classifiers replaces the old. Then, a convolution base which
is initially close to the old classifier needs to be frozen since it
contains high level features (for example cat ears, dog eyes,
or a more representative feature) related to classification in
the old model which may not be useful for our own cus-
tomized classification problem.

E. TRANSFER LEARNING IN FOREST AERIAL IMAGERY
We used a COCO or Imagenet pre-trained net and retrained
the ‘‘head’’ parts for our model in the first session, i.e. we kept
the COCO or Imagenet backbone but retrained the RPN,
classifier and mask heads of the network. [31]

In the first training session, we only trained the head since
we want to leverage the advantage from COCO and Ima-
geNet, that is, use the weights that have been trained from
many images. However, we found that merely training the
head was not sufficient to get higher accuracy. Because of
that, in the second and third sessions, we train all layers twice.
Therefore, we denote the deeper model as ‘‘head+ all+ all’’.

Then in the second training session, we used the last weight
produced in the first session to continue training. This gave
us faster training times, and allowed us to use a well-trained
model even when we had scarce data. Related studies on
detecting objects in satellite imagery of urban landscapes [32]
show that by using an ImageNet pre-trained net, accuracy was
increased by around 5% for a fixed length of training time.
However, the study also showed a less satisfying performance
even after using transfer learning because the model is trained
to predict objects from another dataset which has differ-
ent domain features, which may not be similar to our own
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training data. Therefore, problems such as how transferable
features in deep neural networks are, and how to effectively
reuse pre-trained nets whenmost features of the target objects
are different from those of the training data, have been dis-
cussed in [33]. A Selective Learning Algorithm (SLA) has
been proposed in this case, which learns useful features from
unlabelled data and introduces an intermediate domain to
close the gap between target objects and training data.

III. PRELIMINARY ON CNN AND MASK RCNN
A. CNN
1) WHAT IS A CONVOLUTIONAL NEURAL NETWORK?
A convolutional neuron network (covnet, or CNN) is a class
of deep neural network that has proved very powerful for
image classification. In 2012, Alex Krizhevsky used CNN to
win the ImageNet competition which made neural nets come
to prominence in the field of computer vision. [30]

2) WHY USE A CONVOLUTIONAL OPERATION?
We can view an image as having 3D inputs with (height,
weight, channel) so the input features have dimension
H×W×C. For deeper layers, the channel value is usually
increased in order to learn more features. A channel value is
also the number of filters which contain special features we
want to detect. In addition, given pre-defined filters, we can
obtain corresponding feature maps by applying convolutional
operation on input images. The operation not only shrinks the
input dimension but preserve the spatial relationship between
pixels; therefore a series of features are as well preserved.
Figure 3 shows different feature maps produced by applying
filters to the same raw images. Usually, a typical Convnet
looks like Figure 4.

FIGURE 3. Different feature maps produced by applying various filters to
the same raw image. From [34].

3) WHY CAN’t WE USE A SIMPLE CNN TO
PREDICT OBJECT LOCATION?
• The number of target objects and their coordinates in
the raw picture is unknown before detection, so output
nodes can’t be specified. In CNN, however, a fixed num-
ber of nodes is predefined for the output layer. Normally,

FIGURE 4. Structure of a convolutional neural network. From [35].

outputs in CNN are fixed, predefined classes. Therefore,
additional layers are needed to locate their coordinates.

• To classify if an object is a target or not, a number
of fixed-sized input images are fed to CNN. However,
in the object detection problem, input objects may have
different sizes. In this case, a ROI pooling layer in
RCNN is added to scale all objects in fixed size before
passing them to the classification process.

B. MASK RCNN STRUCTURE
In this section, we will first introduce Faster RCNN, the pre-
decessor to Mask RCNN; then we will discuss Mask RCNN.
This will give a broad picture of howMask RCNN developed
and the structure of the algorithm (see Figure 5).

FIGURE 5. Structure of a Mask RCNN model. From [24].

1) FASTER RCNN
Faster RCNN begins with a standard convolution neural net-
work (CNN) for feature extraction, which produces feature
maps. A feature map is the output activation for a given filter
in each layer. When a filter matches certain features on an
image, the convolution operation [36] returns high activation
values and reveal those features in the feature maps. A feature
map is also a mapping of where a certain kind of feature is
found in the image [34].

Then, it uses a Region Proposal Network (RPN) to extract
Regions of Interest (ROIs) and resize the ROIs to a fixed size
using ROI pooling. (Note: In section subsection IV-B, we will
talk about how RPN generates ROIs.)
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Apooling layer then reduces the dimension of the ROIs and
the number of parameters in order to save training time and
combat overfitting [35]. It divides an ROI into a number of
sections by pre-defined output size (Note: it is not necessary
that ROI is perfectly divisible by the section number.) Next,
a maximum value is found for each section and we replace
all other pixel values in the section with this value. [18] See
Figure 6.

FIGURE 6. How a max pooling layer works.

Finally, the ROIs after max-pooling are flatten and fed to
two fully connected layers (FCs). The flatten process makes
pooled ROIs turn into vectors which store non-spatial features
for later calculate the multilinear relationship between input
neurons (in each ROI) and classes, and between neurons and
bounding box size.

One FC layer calculates a bounding box regressor to refine
the bounding box size, i.e. make each box covers the regions
over its target object. Coordinates information will be sent to
bounding box loss caculation. In next iteration, to minimize
lost, bounding box coordinates will be updated therefore
produce more accurate bounding box; and the other FC layer
predicts a vector of probabilites over output classes using a
softmax function. The probabilies will be used in calculation
of cross-entropy loss which we adjusts probability informa-
tion to minimize the cost in every iteration.

2) MASK-RCNN
Mask-RCNN can be thought of as a combination of a Faster
RCNN that does object detection (class+ bounding box) and
a Fully Convolutional Network (FCN), a semantic segmenta-
tion method producing a pixel-wise mask. (See Figure 7)

In addition, the author of Mask RCNN [24] did some
fine-tuning of Faster RCNN and FCN. First, since the ROI
pooling layer in Faster RCNN can lead to the location of
target objects in the feature map being misaligned from
their location in the original image, this is dealt with by
refining the mask with an ROI Align layer. ROI Align is
a quantization-free layer, preserving exact spatial locations
by replacing quantization with bilinear interpolation [24].

FIGURE 7. Structure of the Mask-RCNN model. Image from [link].

Bilinear interpolation is used for computing the floating-point
location values in the input [33].

Then FCN, a semantic segmentation method, is applied
to each ROI in order to predict a pixel-wise, binary mask
(see Figure 8). Unlike the original setting of FCN, here the
activation function in FCN was changed from softmax to
sigmoid which was shown to significantly increase Average
Precision (AP) [24]. The reason is that FCN only calculates
per-pixel sigmoid values and an average binary cross-entropy
loss for a single, wholly classified object each time, rather
than calculating per-pixel softmax and a multinomial loss for
all pixels. Because of this, label prediction is decoupled with
mask generation which avoids competition among classes.

FIGURE 8. FCN predicts a pixel-wise binary mask. Image from [link].

3) BACKBONE OF MASK-RCNN
Mask-RCNN uses Resnet-FPN as its default backbone and is
a type of CNN which produces feature maps; the structure of
Feature pyramid networks (FPN) allows us to build high-level
semantic feature maps at different scales. When images are
fed into FPN, first they go into the bottom-up process: the
process functions the same as classic covnet extracts features,
four feature maps (C2, C3, C4, C5) are produced and get
reduced size (1/2 the size of the previous map) as the level
goes up. At the same time, more features are extracted on
the upper level but have lower resolution because of the
convolution operation process.

In addition to the loss of resolution introduced by this, high
resolution feature maps from lower level are not used for
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detection because of the lack of sufficient information (for
example, it is possible that only some edges are detected).
These two disadvantages make detection of small objects
very difficult.

FIGURE 9. Structure of Resnet-FPN, with the bottom-up pathway on the
left, the top-down pathway on the right. [37]. Image from [link].

In the FPN paper [37], however, the author added a
top-down pathway (see Figure 9) to reconstruct a high resolu-
tion from a semantic rich layer by an upsamplingmethod. The
method doubles the map size (twice the size of the previous
map) as the level goes down, with the resulting feature maps
denoted as (P2, P3, P4, P5). A bottom-up feature map which
goes through a lateral connection is then merged with a
top-down feature map accordingly. The connection simply
applies a 1 × 1 convolution filter on each bottom-up fea-
ture map; therefore, it retains map sizes but reduces channel
depths. In addition, to deal with spatial aliasing (the resulting
location of objects may be different from their locations
in the raw image because of repeatedly downsampling and
upsampling) in the merged maps, a 3× 3 covolution filter is
used to generate feature maps with the highest resolution and
accurate spatial information; therefore we can use them to do
final predictions.

IV. OUR FRAMEWORK FOR FOREST ANALYSIS
In this section, we explain how we applied Mask-RCNN to
predict the location of dead trees in forests. The framework
structure can be referred to Figure 1. All experiments are
conducted using Tensorflow-GPU docker on a Mac Air with
eight NVIDIA Tesla V100 GPUs in Amazon Web Services
(AWS).

A. DATASET COLLECTION AND PRE-PROCESSING
The dataset was collected by aerial photography onMay 15th
2019, from the Wood of Cree in Scotland, and was stored
in a 10 GB merged tiff file. As the file was too large for
much of our software to process, we divided it into 40 × 10
patches, each of 800 × 800 pixels, using the Gridsplitter
plugin for the QGIS software. We then created our synthetic
dataset from the raw data: we extracted over 300 images

of dead trees as foreground objects and randomly resized,
rotated and changed the lightness before theywere placed into
63 candidate backgrounds, also extracted from the raw data.
Next we produced a mask by filling random colours over the
dead trees and black for the background. We then retrieved
x and y coordinates of the target objects and stored them in
a COCO format annotation file. Eventually, the dataset was
extended from 225 patches to 5000 patches and produced
5000 annotations in only a few hours.

FIGURE 10. A raw image, and the four corresponding feature maps. The
lighter-coloured ‘‘hot zones’’ indicate the locations of the features we’re
interested in: shapes and colours of dead trees.

B. HOW THE BACKBONE GENERATES FEATURE MAPS
Once the dataset is fed to our convolutional backbone, it pro-
duces four feature maps for each picture in the dataset (see
Figure 10).

The feature maps are then scanned by RPN in a
sliding-window fashion, finding anchors (pre-defined bound-
ing boxes with fixed height and width) of high objectness
score, i.e. the probability that an anchor contains an object
or a non-object. Postive anchors have high objectness scores
when they contain an object.

Next, they are measured by value of 0.7 or more for the
‘‘Intersection over Union’’ (IoU) score. IoU is calculated as
the ratio of the area of the overlap (intersection) between the
pre-defined bounding box and the ground truthbox with the
total area covered by both (union).

Note that because positive anchors do not always include
the whole boundary of their target object, they are examined
by a regressor to refine the anchor location. However, if sev-
eral positive anchors overlap too much, we keep the one with
the highest objectness score and discard the rest. This method
is referred to as Non-max Suppression. Figure 11 shows the
steps to merge the anchor boxes.

Before the region proposals are sent to the second stage,
the algorithm scans and cuts out regions of interest (ROIs)
from feature maps, as suggested by region proposals. ROIs
are then scaled to a pre-defined, reduced dimension through
the ROI pooling layer. (see Figure 6 )

Simultaneously, the selected ROIs are moved to the spatial
locations corresponding to the original picture in the ROI
alignment layer, and then are individually sent for pixel-wise
classification in the FCN layer, resulting in a prediction result
as in Figure 12.
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FIGURE 11. Step by step detection from finding postive anchor boxes to
trim down low confidence objects.

FIGURE 12. Mask-RCNN prediction result.

C. MODEL FINE-TUNING
To make our training sessions faster and to more precisely
predict target objects, we made some modifications to the
Mask-RCNN model.

First, we adopted a deeper model, i.e. training a ‘head +
all + all’ model instead of a single-head model, and we
redefined the learning rate for each training session. We set
different learning rates based on optimizers, as in [38]. Our
choices of parameters are summarised in Table 1. Column
with bold type shows the a new, fine-tune value is assigned,
compared to its last model. Models are seperated to 4 groups
with more similarity within group and are allowed to be
compared.

Secondly, to avoid overfitting, we used data augmentation,
i.e. the algorithm accepts the original dataset, randomly trans-
forms it and returns only the new, transformed data [39], [40].
We applied rotation by 0, 90, 180, and 270 degrees, tuned
brightness and contrast between 0.9 to 1.1, applied horizontal
flipping and clipped corners.

Thirdly, to make the loss function converge faster,
we changed our activation function from Relu to Leaky Relu.
The latter avoids the problem with ‘‘dying neurons’’ which
Relu activation functions suffer from: when a neuron ‘‘dies’’,
whichever input it receives, its output will be equal to 0; in
that case a neuron loses prediction power and stops learning.
Leaky Relu, however, has a small but non-zero gradient for
inputs below 0.

Fourthly, we applied a dropout function in the FPN layer
to randomly drop out input nodes before doing classification
and predicting bounding boxes. This decreases random cor-
relations within neurons. It serves a similar purpose as data
augmentation, i.e. to prevent overfitting [41].

Fifthly, we changed the optimizer from stochastic gradient
descent (SGD) to Adaptive Moment Estimation (Adam) [42].
An optimizer aims to update parameters θ in the negative

TABLE 1. Comparison of settings for our fine-tuning of
Mask-RCNN.Column with bold type shows the a new, fine-tune value is
assigned, compared to its last model. Models are seperated to four
groups with more similarity within group.

gradient direction to minimize the loss. Studies show that
Adam has less generalization error compared to SGD as well
as being able to tolerate a noisy or sparse gradient. The
algorithm is denoted

mt = β1 mt−1 + (1− β1)gt
vt = β2 vt−1 + (1− β2)g2t

wheremt and vt are the decaying averages of the past gradient
and past square gradient respectively, and the default value of
each of the two βs is close to 1. We then update the estimates
of both to deal with the bias caused by the initial averages
v = 0 and m = 0:

m̂t =
mt

1− β t1
v̂t =

vt
1− β t2

.

Because we initialize averages with zeros, the estimators are
biased towards zero. However, the author of Adam optimizer
used the above formulas to correct the estimators. [42]

Then, using the updated parameters, the Adam update rule
is:

θt+1 = θt −
η√
v̂t + ε

m̂t ,

where η is the learning rate, and we choose (as part of our
tuning of the model) ε = 10−8.
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Finally, we compare prediction results from fine-tune
experiments (ex, activation function, dropout function, opti-
mizer) to model without fine tune by visualizing loss history
against epoch and a table reveals mean average precison
(mAP) [43].

D. LOSS FUNCTION OF MASK-RCNN
Loss functions are used to evaluate how well a model per-
forms [18] - in our case we aim to minimise a loss function
by optimising weights for three different tasks: classification,
bounding box prediction and mask prediction. We use a loss
function which is the sum of a loss function for each of these
tasks:

L = Lcls + Lbox + Lmask

where Lcls is the same as in Faster RCNN:

Lcls(Pi,P∗i ) = −
1
Ncls

[
P∗i log(Pi)+ (1− P∗i ) log(1− Pi)

]
where Pi is the predicted probability that the ith anchor is a
target object. In Matterport Mask RCNN, the total number of
anchors is 256 (positive and negative). The ith anchor above
‘‘ith’’ means a random number from 1 to 256.

If an anchor contains target objects, the ground truth label
P∗i is equal to 1, and otherwise it is equal to 0. In addition,
the function is normalised by Ncls, i.e. the mini-batch size.
A batch is the number of training samples in a given iteration.
Overall, the classification loss Lcls is a log-loss over two
classes (i.e. target object and not target object) which can be
thought of as a binary classification loss (cross-entropy loss).
In addition, Lbox is also as in Faster RCNN:

Lbox =
λ

Ncls
Pi R((ti − t∗i )i∈{x,y,w,h})

where R is a robust L1 loss:

R(tu − v) =
∑

i∈{x,y,w,h}

smoothL1 (t
u
i − vi)

and tui for i ∈ {x, y,w, h} are the position and dimension
parameters of the predicted bounding box, vi the parameters
of the ground truth box, λ is a balancing parameter which is
set to be around 10 in the paper (so that both losses Lcls and
Lbox are roughly equally weighted), and

smoothL1 (s) =

{
0.5s2 if |s| < 1,
|s| − 0.5 otherwise.

We also have parameterised coordinates ti and t∗i ,

(ti) = (tx , ty, tw, th)

(t∗i ) = (t∗x , t
∗
y , t
∗
w, t
∗
h )

where each individual parameterised coordinate is calculated
given the predicted bounding box, ground truth box and
anchor box coordinates as

tx = (x − xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t∗h = log(h∗/ha),

where (xa, ya,wa, ha) are the coordinates of the anchor box.
Finally, Lmask is the average binary cross-entropy loss

which is calculated when the kth mask is the associated
ground truth mask:

Lmask = −
1
m2

∑
1≤i,j≤m

[
yij log ykij + (1− yij) log(1− ykij)

]
where m × m is the mask dimension for each ROI in each
class, yij is the ground truth label (0 or 1) in cell (i, j), while
ykij is the predicted probability that the same cell belongs to
the kth class [18].

V. EXPERIMENTS
A. IMPLEMENT ON CLOUD SERVER WITH GPUs
A cloud server provides a virtual environment to perform
computation which can be accessed remotely via internet.
The major benefit is to overcome hardware limitation, for
example, lack of disk space to store data or computing power
to train models. In this study, in order to deal with the enor-
mous amount of data and complicated algorithms, a cloud
server(AWS) is chosen to provide the environment needed for
the AI program (Mask RCNN).

Once an AWS computing instance has been registered,
a private key file is given access to cloud server. Then,
a Tensorflow-GPU docker file is used to activate eight GPUs
as well as giving the user a temporary environment with
numerous pre-installed python libraries. After the training
session is done, the post-trained files are transfered back to
cloud server before closing docker environment and retrieve
files to local computer.

The training process takes about 4-6 hours for a dataset
of 2000 to 4000 images.

B. EVALUATION OF PREDICTION PERFORMANCE
Aswell as the loss function, we use COCOmean average pre-
cision (COCOmAP) to evaluate prediction performance [43].
This indicator is widely used in evaluating models for object
detection. Firstly, after IoU decides the ROIs, we calcu-
late @mAP based on the prediction performance of those
ROIs (ignoring objects with an IoU score lower than 50%).
Then we calculate the mean precision, recall and F1. Then
the AP is calculated as the area under the precision-recall
curve: the so-called Area Under Curve (AUC). The curve
shows the trade-off relationship between precision and recall.
When the area is larger, the predicted results are more accu-
rate (numbers of false positives and false negatives are lower)
and more positive cases are detected (number of false naga-
tive is lower).

In addition, in COCOAP, theAP averaged over IoU thresh-
olds is calculated, i.e. AP50, AP75 andAP95. In COCOmAP,
an average for a 101-point interpolated AP is calculated. This
means recalls are divided into 101 points and their maximized
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precisions are averaged:

AP =
1
101

∑
r∈{0,0,··· ,1,0}

APr

=
1
101

∑
r∈{0,0,··· ,1,0}

Pinterp(r).

To make an even more direct indicator, we also calculate
the ROI number of two types of target objects (Figure 13)
which will be revealed in the experimental results.

C. EXPERIMENTAL RESULTS AND ANALYSIS
Because CNN can easily suffer from overfitting, we started
training our model with a dataset of 2 000 images and a
validation set of 300 images, to which we applied many
transformations. We then looked to increase the size of the
dataset gradually to find the training set which gives us the
most general model. We trained each model with 100 epochs
with different hyperparameter settings.

For the first pair of model, Fine-tune-1 and Fine-tune-2, the
results showed that for the two types of targets (types A and
B, see Figure 13) present in the data, ROI detection did not
perform well for predicting type B objects (round shape) in
the model ‘‘Fine-tune-1’’. However, the results also showed
the opposite trend in model ‘‘Fine-tune-2’’, i.e. type B objects
were detected reliably but few typeA objects were. To resolve
this, we decided to include more data in the next trial.

FIGURE 13. The model ‘‘Fine-tune-1’’ can reveal the type A pattern (left)
but not type B (right), and ‘‘Fine-tune-2’’ can reveal the type B pattern but
not type A.

For the next models, we reveal the evaluation statistics in
Table 2. Note that we make an abbreviation of ‘‘fine-tune’’
to ‘‘FT’’, for example, ‘‘FT3’’ is the model ‘‘Fine-tune-3’’.
In addition, we indicate the best three performances for each
measurement in bold:

The table shows that results of FT6 are the best among all of
the fine-tunedmodels. In addition, in Figure 14 we plotted the
loss results to see if FT6 had the lowest training and validation
loss.

Because FT7 has the lowest training loss and FT6 has
lowest validation loss in Figure 14, we compared FT6 with
FT7.

FT7 had a constant higher learning rate of 10−3 which
is the closest of all our models to Matterport’s Mask
RCNN default settings [31], while FT6 followed the fast-
medium-slow learning rate of 10−4-10−5-10−6. The results

TABLE 2. Comparison of the performance of the models. The best three
performances for each measurement are in bold. The final two rows show
bounding box numbers for the two types of target objects.

FIGURE 14. Training and validation loss for all models.

FIGURE 15. Total loss for the models FT6 and FT7.

in Figure 15 show that FT7 suffered from both fluctuating
loss and overfitting. Overfitting happens when the training
loss is less than the validation loss which means the algorithm
learns local features appearing in the training set but not the
validation set. This indicates that a fast and fixed learning rate
in FT7 has no advantage over a learning rate which follows a
convex pattern.

In addition, there were two major trends in Figure 14: a big
shift in the training loss, and two peaks in the validation loss.
Because all models had different settings, especially in the
different groups, we assumed that the enlarged data set helped
decrease the training loss. In addition, for the validation loss,
two peaks were made by FT1 and FT4, and so we believe that
this may be because of their model setting (Relu + Adam +
Dropout).

The distributions of precision, recall and F1 from themodel
FT6 are shown below in Figure 16. The diagrams show that
FT6 has very high precision but a rather low recall. This
means number of false negatives is higher than the number
of false postive.
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FIGURE 16. Distributions of precision, recall and F1 score for FT6
(respectively). The x-axis counts the number of predicted bounding boxes
while the y-axis records the precision, recall and F1 scores respectively.

VI. DISCUSSION
A. ADVANTAGES AND DISADVANTAGES
Advantages of our method
1) Efficently produces images and annotations:

The synthetic method was designed by Adam Kelly
to avoid a time-consuming image collection and anno-
tation process. In Adam’s experiment [9], he created
2000 images containing cigarette butts and their annota-
tions in 20 minutes from only 25 samples. Because we
had small numbers of data and no longer collected dead
tree images when we started to train our algorithm, we
chose the synthetic method rather than trying to find more
remote sensor data.

2) Less complex to apply compared to MaxEnt algorithm in
CanHeMon project:
According to the image pre-processing section of the
CanHeMon project, there are 14 potential predictor vari-
ables related to texture layer, containing significant image
information. Then, after a series of background and AUC
setting, the MaxEnt algorithm and principal component
analysis are applied to reduce the number of superfluous
variables. However, when applying CNN based algorithm,
the variables used as inputs and ouputs are rather simple:
raw images and their labels. There is no manual elimina-
tion process for the variables/features but the algorithm
automatically adjusts feature weights after backpropaga-
tion in each iteration.

3) False positive cases are rare:
The CanHeMon project suffered from a high rate of false
positives, which does not occur in our Mask RCNN-based
model. In the CanHeMon experiment, researchers man-
ually removed false postive cases and fed the data back
to the training session. However, the mask results from
our model rarely showed false postive cases, although
there were still many areas of dead trees which were not
detected.
We found that a decrease in the IoU threshold can help
detect more dead trees, and therefore decrease the number
of false negatives.
Changing a hyperparameter in this way requires less man-
ual effort than manually dropping FP cases.
Disadvantages of our method

1) Data scarcity:
We gathered all of the images of dead trees we could from
both online resources and our partner company 2Excel.
However, we did not generate enough data to overcome

the problems caused by data scarcity, as dead trees are an
uncommon object, whereas most image datasets collect
everyday objects (cars, people, etc.). The main problem
was that there were several shapes of dead tree in our raw
data (see the two types in Figure 13) but we could not
generate a sufficient number of images to deal with this
variety.

2) The process of producing COCO format annotations did
not give clear boundaries in synthetic images:
The synthetic method we used sometimes led to target
objects being divided into more than one piece by another
object overlapping them. For example, see the red region
in Figure 17. We had to manually drop the label when
this happened, which is time consuming, reducing the
benefit in time savings we gained from using the synthetic
method. The overlapping type B dead trees give us inac-
curate bounding box predictions.

FIGURE 17. A target object in this synthetic image is divided in two by
another object placed on top of it.

3) Predicted bounding boxes failing to accurately cover a
whole region of dead wood
Our synthetic method canmake target objects overlap, and
if they belong to type A (star shaped) then the algorithm
will fail to distinguish the objects from each other, as in
Figure 18. At best, they are bound to a larger group and
given a single label.

FIGURE 18. Several target objects of type A being assigned to a single
bounding box.

4) Reliability of mAP and other statistics
The mAP scores in our results were still not as reliable
as the ones produced and evaluated using a raw (not
synthetic) validation set. The synthetic validation set was
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FIGURE 19. The loss functions obtained by using an SGD optimiser until
epoch 30, and then using ADAM.

necessary because of the scarce data, but it would be ideal
to use only raw images for validation if possible.

B. SUGGESTIONS FOR FUTURE RESEARCH
In this research, we only trained our model with the com-
pany’s aerial dataset instead of the Landsat dataset; however,
we welcome to reseachers apply Mask RCNN to the Landset
datset to make comparison with our results. In addition,
we did not take into account other variables such as the
forest phenology in our model, because the aerial dataset was
collected in summer time (May 15th 2019) when living trees
are easily distinguished from dead trees. However, we cannot
exclude the possibility that Mask RCNN detects and labels
as ‘‘dead’’ rare species of trees who naturally have white
leaves. Because of that, we encourage researchers to apply
other possible features in their models rather than only relying
on an image processing algorithm.

Secondly, to mitigate the disadvantage of data scarcity,
we enlarged our dataset and produced labels automatically
using a synthetic method. However, we pointed out some
issues with this method in ??, although recent updates to
the code we were using have dealt with some of the issues
we saw in item 2 of the disadvantages in subsection VI-A.
As Adam Kelly suggested [9], it is still necessary to evaluate
the advantages and disadvantages of using synthetic data to
train a model.

The issue with bounding box inaccuracy is the major
contributor to the high loss in RPN. A possible solution is
using a single FCN to classify each pixel if the instance-level
segmentation is not necessary. Then, we could change the
loss function from bbox + mask to FCN loss, decreasing
the probability of high loss and enabling a more flexible and
accurate prediction because mask prediction is not limited by
the selected ROIs’ areas.

One other notable issue we experienced was how to
increase the reliability of statistics (accuracy, mAP, mRecall
and mF1) which were produced using the synthetic valida-
tions set to be consistent with the model’s predictive power on
raw images. However, if we were able to collect a sufficiently
large, manually annotated dataset, the statistics would be
much more reliable. In addition, if the synthetic training set
is replaced by manually-annotated raw data, it could increase

FIGURE 20. More test results on aerial images.

the predictive power since the synthetic data may not include
features which are present in the raw data.

In the conventional training process, a single optimizer is
used in a model. However, to take advantage of the merits
of different optimizers, the author in [44] used ADAM first,
and when the loss stopped decreasing, replaced ADAM with
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SGD. The results obtained by doing this were better than
those obtained using either optimizer on its own. After read-
ing this, we performed the same experiment with our model.
As Figure 19 shows, replacing SGD with ADAM at the 30th
epoch led to a sudden drop in the loss function. As it is hard to
compare directly with the other models we tested, we did not
include thismodel in Table 1, but the results of our experiment
are encouraging, so we would suggest that future research
should look into using multiple optimizers for training.

Figure 20 shows more of our test results. Mostly the detec-
tion framework works well on these images while the training
process was carried out on the same dataset. However, there
is yet a gap between the expected detection accuracy and
the performance of our deep learning framework, and further
improvement is needed to extend our framework to practical
applications.

The limits can be ascribed to two aspects. First, deep neural
networks has been reported not robust to noises and other sim-
ilar perturbations (adversary attacks) [45], while DNNs are
somehow lack of explicit explanability unlike typical statistic
approaches that model the data space explicitly [46]–[49].
Secondly, DNNs are date-driven and heavily rely on training
datasets [50]–[53]. In our experiments, we have a limited
amount of data samples. A typical remedy to this issue can be
based on the neural network models of Generative Adversar-
ial Networks (GANs) [54], which can generate more similar
images similar to real ones to improve the training process.

Targeting at dead wood detection, our work is based on
the assumption that the dead tree dataset collected in the
spring-summer period have different colors in leaves. How-
ever, this may vary according to tree species and some rare
specious of trees may naturally have white leaves during four
seasons. A future work can include forest phenology and
classify the species of trees before the dead wood detection.

VII. CONCLUSION
In conclusion, we present a new framework for automated
dead tree detection from aerial images using a re-trained
Mask RCNN approach, with a transfer learning scheme.
We apply our framework to our aerial imagery datasets, and
compare eight fine-tuned models. The mean average preci-
sion score (mAP) for the best of these models reaches 54%.
We also are able to automatically producemask visualizations
to label the dead trees in an image, so that the number of dead
trees in a region can be automatically counted. Such aerial
image-based forest analysis can give an early diagnosis of
the conditions of forests and identify potential risk factors,
and provide an potential solution to avoid of climate change
caused disasters such as the recent forest fires in the Califor-
nia and Australia.
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