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ABSTRACT We consider a single-server retrial queue with a Poisson arrival process and exponential service
times, where the server is unreliable. Assume there is no waiting space in front of the server and the customer
who finds the server unavailable joins an orbit to access the server some time later. We discuss two types of
customers’ retrial behavior. One is that each customer in the orbit seeks for services independently and
the total retrial rate of the system depends on the number of customers in the orbit. The other type of
retrial discipline is called constant retrial policy and it arises from some situations in the computer and
communication network where the retrial rate may be controlled by automatic mechanisms. An announced
price charged by the server is imposed on customers joining the system and the actual demands for services
depend on the price via a decreasing function. We investigate the system characteristics and study how the
manager, whose goal is to maximize its own profit, determines the price charging joining customers. Finally,
we present an application example to illustrate the obtained results and make comparisons between the two
retrial policies from the perspective of customers’ expected waiting time.

INDEX TERMS Markovian queue, retrial behavior, unreliable server, steady-state analysis, optimal pricing.

I. INTRODUCTION
Over the past decades, advances in computer networking
technologies and telecommunications have made it possi-
ble for people to communicate with each other and access
any content they need everywhere and every time. Their
application development has reinvigorated the research on
queueing systems and especially retrial queueing systems.
In retrial queueing systems customers who find the server
unavailable upon arrival may retry for service after some
random time, where customers are said to be in ‘‘orbit’’. The
retrial queueing literature is quite extensive and interested
readers are referred to two monographs [2], [11] for the main
methodologies and models.

When discussing customers’ retrial behavior, in retrial
queueing literature there are two streams of work. The first
one assumes each customer seeks for service independently
of other ones in the orbit after a period of time. In this
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case, the overall retrial rate of the system depends on the
number of customers in the orbit with a linear function. The
linear structure can be employed to model some problems
in computer networks. Consider the local area networking
equipments where several stations are connected with single
Internet Service Provider. In each station users sendmessages
through a channel to the destination station. If the channel is
sensed idle before transmitting a message, the message occu-
pies the channel immediately and starts being transmitted.
If the channel is sensed unavailable, the user reschedules the
message transmission based on some specific communication
protocols, such as a back-off procedure, under which arriving
users finding the channel unavailable will try to access the
channel some time later (back-off time). The second stream
of work allows repeated customers form a queue in the
orbit and only the one ranked first can request service after
some retrial time. This retrial discipline is called ‘‘constant
retrial policy’’ and it applies to the some applications in
computer and communication networks where customers’
retrial behavior is controlled by some automatic mechanisms,

137490 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8183-1823
https://orcid.org/0000-0001-6246-6218


Y. Zhang: Optimal Pricing Analysis of Computer Networks Based on a Queueing System With Retrial Mechanism

such as the communication protocol carrier sense multiple
access (CSMA) in [5].

Moving on to the history of retrial queueing systems,
the first result of M/G/1 retrial queues with linear retrial rate
was analyzed in Keilson et al. [17] by the supplementary
variable method and the joint distribution of the channel state
and queue length was obtained. Later, some work consider
the situation where the server searches for customers from
the orbit, including the first one appeared in [3] and some
subsequent papers, such as [4], [6]–[8], [18]. With regard to
the constant retrial policy, it was firstly introduced by Fayolle
[12], where a telephone exchange model is characterized
by an M/M/1 retrial queueing system and customers in the
orbit are served by first-come, first-served (FCFS) disci-
pline. Gomezcorral [13] later extended it to an M/G/1 retrial
queue with general retrial times, and the subsequent literature
focused on the queueing characteristics in different types of
retrial queues with constant retrial rate. For example, Artalejo
[1] analyzed the retrial queueing system where the server
takes a multiple vacation policy when the system becomes
empty. Wang [27] performed the queueing analysis of an
M/G/1 retrial queue with general retrial times and server
subject to breakdowns and repairs.

Based on the above investigation, we involve two retrial
policies, i.e., linear retrial rate and constant retrial rate, in an
M/M/1 retrial queue, and consider the situation with ser-
vice interruptions. Under the two retrial policies, we assume
orbiting customers compete for service until a free server
is captured. In queueing systems, service interruptions are a
common phenomenon, whichmay occur due to many reasons
such as server breakdowns, customer-induced interruptions.
There is a great volume of literature studying queueing mod-
els with service interruptions; for example, see Wang et al.
[26], Wang [27] for retrial queues with server breakdowns,
Dudin et al. [9], Jacob et al. [15], Jacob and Krishnamoor-
thy [16], Krishnamoorthy and Manjunath [20] for queueing
systems with customer-induced interruptions. We refer the
readers to Krishnamoorthy et al. [19] for a detailed survey.
In our paper, we study the situation with service interruptions
caused by server breakdowns, where the server is unreliable
and it may fail at the idle and busy states. In computer
networks server failures are quite common. We note that in
the mentioned work, server breakdowns of retrial queues only
occur when the server is busy. But in reality the server may
fail even when it is idle, because at idle states the server is
still waiting for customers from outside or the retrial orbit
and it is not turned off. The largest difference is probably that
the failure rate at idle state may be less than (or equal to) the
failure rate at busy state. So differently from them, we allow
for the server breakdowns at the busy state as well as idle
state, and the server may fail less frequently when it is idle.

On the other hand, from the viewpoint of economics anal-
ysis, some papers consider strategic behavior of customers
in retrial queues with linear retrial rate; see for instance,
Kulkarni [21], [22], Hassin and Haviv [14], Zhang et al. [32],
[34], Zhang and Wang [35], and Zhang et al. [36], Wang

and Zhang [28] and Wang et al. [31], among others. Under
the constant retrial policy, Economou and Kanta [10] studied
a single server retrial queueing system and discussed the
equilibrium customer strategies aswell as the social and profit
maximization problems. Zhang et al. [33] and Wang et al.
[30] extended their work to the situations where the server
may fail and the interrupted customer stays at the service
area or leaves the system, respectively. Zhang [37] analyzed
an M/M/1 retrial queueing system with a single vacation, and
customers’ joining or balk decisions based on a linear reward-
cost structure were investigated. In this paper, we consider a
general case and assume upon customers’ arrival, a service
fee p is collected. We study the optimal pricing strategies in
a retrial queueing system with elastic customer demands, and
the actual demand for services depends on the price via a
decreasing function, such as the additive demand and mul-
tiplicative demand models. Furthermore, there is a cost per
interrupted customer due to the server’s failure. For example,
in cognitive radio networks, secondary users (SUs) have to
pay to the primary user’s (PUs) service provider for spectrum
utilization under a paid spectrum sharing mechanism, and
the SUs interrupted by arriving PUs will be reimbursed with
V , implying a punishment for the service provider; see for
instance, Rattaro and Belzarena [24] and Turhan et al. [25].

In addition to the modelling contribution to the queueing
literature, the main contributions of this paper are summa-
rized as follows:

(i) In the additive demand model and multiplicative
demand model, we derive the unique optimal pricing
strategy for the service provider. It is found the server’s
revenue is irrelevant to the breakdown rate of an idle
server, but depends on the breakdown rate of the busy
server. Specifically, when the busy server breaks down
more frequently, the optimal price increases, while
the resulting profit declines. That implies the break-
down of the busy server leads to the compensation the
server needs to pay to interrupted customers increases.
To obtain more profit, the service provider would try
to raise price, but increasing cost dominates, which
leads to the server’s profit under the optimal price still
decreases.

(ii) By comparing the two retrial policies, we find that
the optimal prices and the corresponding probabilities
that the server is under different states (i.e., idle, busy
and breakdown) are the same no matter which retrial
policy is adopted. From the perspective of customers’
expected waiting time in the orbit, the linear retrial
policy performs better than the constant retrial policy,
which is consistent with our intuition.

(iii) When investigating customers’ expected waiting time
in the orbit with respect to the server’s breakdown rate,
we have an intuitive sense that customers’ expected
waiting time would increase as the server fails fre-
quently. In our paper, under the assumption that the
work under process will be lost due to the server’s
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failure, numerical examples show that customers’
expected waiting time in the orbit under the optimal
price still increases when the server’s breakdown rate
at idle state grows, but this monotonicity may change
when the breakdown of a busy server occurs more
frequently. That is because the server’s breakdown at
busy state not only results in an additional period of
customers’ waiting time, but also speeds up the depar-
ture of customerswho are under service. Also, when the
breakdown rate of the busy server increases, the man-
ager raises the price tomaximize the obtained profit and
customers are reluctant to join, whichmakes the system
less crowded. So how customers’ expected waiting
time in the orbit under the optimal price changes with
respect to the breakdown rate of a busy server may
depend on the server’s repair rate.

(iv) When investigating customers’ expected waiting time
in the orbit under the optimal price with respect to the
service rate, we find it may no longer decrease as the
service rate increases, which is counterintuitive. That
is because when the service rate grows, customers’
service time declines (positive effect), but the optimal
price the manager charges decreases, resulting in more
customers choose to join and the system becomes more
crowded (negative effect). So under the optimal price,
how customers’ expected waiting time in the orbit
varies with respect to the service rate is determined by
which effect dominates.

The remainder of the paper is organized as follows.
We describe the model in Section II and some system char-
acteristics are derived in Section III. Section IV analyzes
the optimal pricing strategies from the perspectives of a
revenue-maximization service provider. A case study is given
in Section V to illustrate the results we obtained and through
numerical examples, we make comparisons between the two
retrial policies from the perspective of customers’ expected
waiting time in the orbit. Finally, Section VI presents con-
cluding remarks.

II. DESCRIPTION OF THE MODEL
We consider a retrial queueing system with a single server,
where potential customers arrive in the system according to
Poisson processes with rate 3. If an arriving customer finds
the server idle, it occupies the server immediately. Otherwise,
if a customer arriving finds the server occupied, it will try to
access the server some time later and the inter-retrial time
follows an exponential distribution with rate θ , where we
may consider this customer goes into a retrial pool with
infinity capacity and becomes a repeated customer. When
a customer occupies the server, its service time is exponen-
tially distributed with rate µ. Further, the server is unreliable
and its failure occurs following an exponential distribution.
We assume when the server is at the working state (i.e.,
serving customers), its failure rate is α1 and the customer
being interrupted leaves the system with service unfinished,

while the server breaks down with rate α0 (≤ α1) when the
server is idle. Assume the server is broken-down completely
and the intensity of the damage is same, no matter whether
the failure takes place when the server is working or idle.
During the failure period the server enters a repair stage with
the repair time distributed exponentially at rate β.
Upon customers’ arrival, a service fee p is collected.

So although customers’ potential arrival rate is3, their actual
joining rate is related to the price p via a demand function
λ(p) and λ(p) is a strictly decreasing differentiable function
of p. For simplicity, we denote the real arrival rate by λ. Since
customers are at the risk of being interrupted and leaving
the system with service unfinished, we assume if a customer
in service is preempted, a compensation V is provided to it.
The objective of the server is to maximize the average profit
collected from customers per time unit.

Let I (t) be the state of the server at time t . The events
I (t) = 0, 1, 2 correspond to the states that the server is idle,
occupied by a customer and at the breakdown state. At time t ,
denote the number of customers in the orbit by N (t), then the
stochastic process {I (t),N (t)} is a two dimensional Markov
process with state space {(0, i), (1, i), (2, i, )|0 ≤ i <∞}. For
convenience, we summarize the notations used in Table 1.
Furthermore, we consider two retrial situations. In the first
one, customers who find the server unavailable seek for
service independently of other customers in the retrial orbit,
and the total retrial rate of the system is directly proportional
to the number of customers in the orbit. The corresponding
transition rate diagram is illustrated in Figure 1. In the second
situation, the repeated customers form a queue in the orbit and
only the first one can request a service after a random retrial
time. Thus, in this situation, the retrial rate of the system is
constant (i.e., rate θ ). We illustrate the corresponding transi-
tion rate diagram in Figure 2.

TABLE 1. Notations.

III. SYSTEM CHARACTERISTICS
In this section we adopt the generating function technique to
derive an analytical solution for system characteristics in the
steady state. Considering the retrial rate of the system may
be dependent or independent on the number of customers
in the orbit, we divide our analysis into two subsections.
Specifically, in the situation ‘‘linear retrial rate’’, if there are
n customer in the orbit, the overall retrial rate is nθ , while

137492 VOLUME 8, 2020



Y. Zhang: Optimal Pricing Analysis of Computer Networks Based on a Queueing System With Retrial Mechanism

FIGURE 1. The transition rate diagram for the system with linear retrial rate.

FIGURE 2. The transition rate diagram for the system with constant retrial rate.

‘‘constant retrial rate’’ means only the head customers is
permitted to request a service.

A. LINEAR RETRIAL RATE
When the overall retrial rate is linear with the number of
customers in the orbit, we denote P0,i(t), P1,i(t) and P2,i(t)
as the joint probabilities that the server is idle, serving a cus-
tomer or at the breakdown state and the number of customers
in the orbit is i (i ≥ 0) at time t . Let P0,i , lim

t→∞
P0,i(t),

P1,i , lim
t→∞

P1,i(t), P2,i , lim
t→∞

P2,i(t). According to Fig-
ure 1, we get the balance equations and normalizing equation
of the system as follows for i ≥ 0

(λ+ α0 + iθ )P0,i= µP1,i + βP2,i, (1)

(λ+ µ+ α1)P1,i= λ(P0,i + P1,i−1)+ (i+ 1)θP0,i+1,

(2)

(λ+ β)P2,i= λP2,i−1 + α0P0,i + α1P1,i, (3)
∞∑
i=0

{P0,i + P1,i + P2,i} = 1, (4)

where P1,−1 = 0, P2,−1 = 0. We adopt the generating
function technique to solve equations (1)-(4). To this end,
we first define the following generating functions:

Qk (z) =
∞∑
i=0

Pk,izi, k = 0, 1, 2.

Multiplying equations (1)-(4) by zi and summing up over
i, we have

(λ+ α0)Q0(z)+ zθQ′0(z) = µQ1(z)+ βQ2(z), (5)

(λ+ µ+ α1)Q1(z) = λQ0(z)+ zλQ1(z)+ θQ′0(z),

(6)

(λ+ β)Q2(z) = λzQ2(z)+ α0Q0(z)+ α1Q1(z).

(7)

After some algebraic manipulations, equation (6) gives that

Q1(z) =
λQ0(z)+ θQ′0(z)

λ+ µ+ α1 − λz
. (8)

Substituting equation (8) into (7) and eliminatingQ1(z), it fol-
lows that

Q2(z) =
((λ+ µ+ α1 − λz)α0 + λα1)Q0(z)+ θα1Q′0(z)

(λ+ β − λz)(λ+ µ+ α1 − λz)
.

(9)

Plugging equations (8) and (9) into (5) derives that

Q0(z) =
f1(z)
f2(z)

Q′0(z), (10)

where

f1(z) = µθ (λ+ β − λz)+ θα1β

− zθ (λ+ µ+ α1 − λz)(λ+ β − λz), (11)

f2(z) = (λ+ α0)(λ+ µ+ α1 − λz)(λ+ β − λz)

− λµ(λ+ β − λz)− λα1β

−α0β(λ+ µ+ α1 − λz), (12)

and thus we have

Q0(z) = c · exp{−
∫ 1

z

f2(u)
f1(u)

du}, (13)

Q′0(z) = c ·
f2(z)
f1(z)

exp{−
∫ 1

z

f2(u)
f1(u)

du}. (14)
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Inserting z = 1 into equations (8), (9), (13) and employing
the normalizing condition

∞∑
i=0

{P0,i + P1,i + P2,i} = Q0(1)+ Q1(1)+ Q2(1) = 1,

(15)

after some algebra, we derive c = α1(β−λ)+β(µ−λ)
(α0+β)(α1+µ)

; that
is, the probability that the server is idle is obtained as P0 =
c = α1(β−λ)+β(µ−λ)

(α0+β)(α1+µ)
. In addition, the probabilities that the

server is busy or at the breakdown state are followed from
Q1(1) and Q2(1), i.e., P1 = Q1(1) = λ

α1+µ
, P2 = Q2(1) =

λα1+α0(α1+µ−λ)
(α0+β)(µ+α1)

.
Furthermore, let E(N ) be the expected number of cus-

tomers in the orbit, then

E(N ) =
∞∑
i=1

i · {P0,i + P1,i + P2,i}

= Q′0(1)+ Q
′

1(1)+ Q
′

2(1). (16)

Using (8), (9), (13), (14), we then derive that

E(N ) =
λ

β
{
α0

θ
−
λ(α1 + β)
(α1 + µ)2

+
λ(α0 − α1)− β(α0 + β)

(α0 + β)(α1 + µ)

+
β2θ + λ((α0 + β)(α1 + β)+ α1θ )λ

θ ((α1(β − λ)+ β(µ− λ)))
}. (17)

Since customers who find the server unavailable upon arrival
join the retrial orbit, the effective arrival rate of customers to
the orbit (denoted by λo) is λo = λ(P1+P2). By Little’s Law
E(W ) = E(N )

λo
, we have customers’ expected waiting time in

the orbit as below

E(W ) =
α0 + β

θβ
−

α0 + β

β(α1 + µ)

+
α0(α0 + λ)

β{λ(α1 + β)+ α0(α1 + µ)}

+
β2θ + {(α0 + β)(α1 + β)+ α1θ}λ

θβ{α1(β − λ)+ β(µ− λ)}
. (18)

To summarize, we have the following theorem.
Theorem 3.1: At steady-state status, for such a retrial

queueing system where customers with service being inter-
rupted leave the system and the overall retrial rate is linearly
dependent on the number of customers in the orbit, we have
the following results.
(i) The probabilities that the server is idle, busy or at the

breakdown state are, respectively, given by

P0 =
α1(β − λ)+ β(µ− λ)
(α0 + β)(α1 + µ)

, (19)

P1 =
λ

α1 + µ
, (20)

P2 =
λα1 + α0(α1 + µ− λ)

(α0 + β)(µ+ α1)
. (21)

(ii) Customers’ expected waiting time in the orbit is

E(W ) =
α0 + β

θβ
−

α0 + β

β(α1 + µ)

+
α0(α0 + λ)

β{λ(α1 + β)+ α0(α1 + µ)}

+
β2θ + {(α0 + β)(α1 + β)+ α1θ}λ

θβ{α1(β − λ)+ β(µ− λ)}
. (22)

B. CONSTANT RETRIAL RATE
We now proceed to the situation where customers who find
the server unavailable join a ‘‘virtual’’ retrial orbit in accor-
dance with FCFS discipline. Similar to the situation with a
linear retrial rate, let {Pck,i : k = 0, 1, 2; i ≥ 0} be the sta-
tionary distribution of the Markov chain (I (t),N (t)), t ≥ 0.
Note that here we use superscript ‘‘c’’ to denote the case with
constant retrial rate.

According to Figure 2, the balance equations for the sta-
tionary distribution are given as below

(λ+ α0)Pc0,0 = µP
c
1,0 + βP

c
2,0, (23)

(λ+ µ+ α1)Pc1,0 = λP
c
0,0 + θP

c
0,1, (24)

(λ+ β)Pc2,0 = α0P
c
0,0 + α1P

c
1,0, (25)

(λ+ α0 + θ )Pc0,i = µP
c
1,i + βP

c
2,i, (26)

(λ+ µ+ α1)Pc1,i = λ(P
c
0,i + P

c
1,i−1)+ θP

c
0,i+1, (27)

(λ+ β)Pc2,i = λP
c
2,i−1 + α0P

c
0,i + α1P

c
1,i. (28)

The corresponding generating functions are defined as Qck =∑
∞

i=0 z
iPck,i, k = 0, 1, 2.

Multiplying (26)-(28) by the corresponding power of z and
summing up, we derive that

(λ+ α0 + θ )(Qc0(z)− P
c
0,0) = µ(Q

c
1(z)− P

c
1,0)

+β(Qc2(z)− P
c
2,0), (29)

(λ+ µ+ α1)(Qc1(z)− P
c
1,0) = λzQ

c
1(z)+ λ(Q

c
0(z)

−Pc0,0)+
θ

z
(Qc0(z)

−Pc0,0 − zP
c
0,1), (30)

(λ+ β)(Qc2(z)− P
c
2,0) = λzQ

c
2(z)+ α0(Q

c
0(z)

−Pc0,0)+ α1(Q
c
1(z)

−Pc1,0). (31)

Using (23)-(25), we rewrite equations (29)-(31) as

(λ+ α0 + θ )Qc0(z)− θP
c
0,0 = µQ

c
1(z)+ βQ

c
2(z), (32)

(λ+ µ+ α1)Qc1(z) = λzQ
c
1(z)+ λQ

c
0(z)

+
θ

z
(Qc0(z)− P

c
0,0), (33)

(λ+ β)Qc2(z) = λzQ
c
2(z)+ α0Q

c
0(z)

+α1Qc1(z), (34)
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which yield that

Qc0(z)

=

θ − θ
z(λ+µ+α1−λz)

· (µ+ α1β
λ+β−λz )

λ+ α0 + θ −
α0β

λ+β−λz − (µ+ α1β
λ+β−λz ) ·

λz+θ
(λ+µ+α1−λz)z

·Pc0,0, (35)

Qc1(z)

=
(λ+ θ

z )Q
c
0(z)−

θ
zP

c
0,0

λ+ µ+ α1 − λz
, (36)

Qc2(z)

=
α0Qc0(z)+ α1Q

c
1(z)

λ+ β − λz
. (37)

So we can express Qc0(z),Q
c
1(z),Q

c
2(z) in terms of Pc0,0. Let

z = 1 in (35)-(37) and employing the normalization con-
dition, we have Pc0,0 =

α1(βθ−λ(λ+α0+θ ))−α0λµ−β(λθ+λ2−µθ )
θ (α0+β)(α1+µ)

.
Thus, if we denote the probability that the server is under state
I (t) = k (k = 0, 1, 2) by Pck , it then follows that

Pc0 = Qc0(1) =
α1(β − λ)+ β(µ− λ)
(α0 + β)(α1 + µ)

, (38)

Pc1 = Qc1(1) =
λ

α1 + µ
, (39)

Pc2 = Qc2(1) =
λα1 + α0(α1 + µ− λ)

(α0 + β)(α1 + µ)
. (40)

Taking the first order derivative of Qc0(z),Q
c
1(z),Q

c
2(z) with

respect to z and letting z = 1, we further obtain the expected
number of customers in the orbit; that is,

Ec(N ) = Qc
′

0 (1)+ Q
c′
1 (1)+ Q

c′
2 (1)

= −{λ(α20(α1 + µ)
2
+ λ[α21(λ+ β + θ )

+α1(λ+ β + θ )(β + µ)+ β2(λ+ µ+ θ )]

+α0[α21(β + θ + 2λ)− (λ+ θ )(λ− µ)µ

+α1(λβ + 2βµ+ 2µθ + 3λµ)

+β(λθ + λ2 + λµ+ µ2)])}/{(α0 + β)

· (α1 + µ)(α1[λ(α0 + θ + λ)− βθ ]

+α0λµ+ β(λθ + λ2 − µθ ))}. (41)

By Little’s Law Ec(W ) = Ec(N )
λ(Pc1+P

c
2)
, customers’ mean waiting

time in the orbit is then followed. We summarize the above
analysis in the following theorem.
Theorem 3.2: At steady-state status, for such a retrial

queueing system where customers with service being inter-
rupted leave the system and the overall retrial rate is constant,
we have the following results.
(i) The probabilities that the server is idle, busy or at the

breakdown state are, respectively, given by

Pc0 =
α1(β − λ)+ β(µ− λ)
(α0 + β)(α1 + µ)

, (42)

Pc1 =
λ

α1 + µ
, (43)

Pc2 =
λα1 + α0(α1 + µ− λ)

(α0 + β)(α1 + µ)
. (44)

(ii) Customers’ expected waiting time in the orbit is

Ec(W ) = −{α20(α1 + µ)
2
+ λ[α21(λ+ β + θ )

+α1(λ+ β + θ )(β + µ)+ β2(λ

+µ+ θ )]+ α0[λβ(λ+ θ )+ α21(β

+ θ + 2λ)− λµ(λ+ θ − β)

+µ2(λ+ θ + β)+ α1(λβ + 2βµ

+ 2µθ + 3λµ)]}/{(λβ(λ+ θ )

+α1[−βθ + λ(α0 + θ + λ)]− βθµ

+ λµα0) · [λ(α1 + β)+ α0(α1 + µ)]}. (45)

It can be found from Theorems 3.1 and 3.2 that the
probabilities the server is under different states (i.e., idle,
busy or breakdown) are the same, which are not relevant with
the retrial policy adopted and the value of retrial rate. Further,
when α0 and α1 approach to zero, our models degenerate
to the ordinary retrial queues discussed in Economou and
Kanta [10] andWang and Zhang [28] and we have lim

α0→0
α1→0

P0 =

lim
α0→0
α1→0

Pc0 =
µ−λ
µ

, lim
α0→0
α1→0

P1 = lim
α0→0
α1→0

Pc1 =
λ
µ
, lim
α0→0
α1→0

E(W ) =

λθ+µ2

µθ (µ−λ) , limα0→0
α1→0

Ec(W ) = λ+µ+θ

µθ−λ2−λθ
, which are consistent with

the results in [10] and [28] and may verify our results to some
degree.

IV. OPTIMAL PRICING ANALYSIS
In this section, we examine the firm’s revenue maximization
problem. Recall that the service provider sets a price p for
customers joining the system and a compensation V is pro-
vided to customers whose service is interrupted. Therefore,
the server’s revenue per time unit can be expressed as

max
p≥0

SR(p) = λp− α1P1V

= λp−
Vα1λ
α1 + µ

. (46)

Note that P1 = Pc1, so the server’s revenue in two retrial
situations is the same and we no longer distinguish them in
this section. Through the expression of the server’s revenue,
we observe it has nothing to do with the breakdown rate of
an idle server. In addition, since customers’ actual arrival rate
λ is a decreasing function with respect to p, in what follows,
we consider two common demand models: additive demand
model and multiplicative demand model (see, e.g., Polatoglu
[23]). We focus on investigating the optimal pricing strategies
and understanding the impact of server’s breakdown rate
at busy state on the optimal price as well as the resulting
revenue.
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A. ADDITIVE DEMAND MODEL
Let λ = 3 − bp, b > 0. From (46), the server’s expected
revenue function is obtained as

SR(p) = (3− bp)p−
Vα1(3− bp)
α1 + µ

. (47)

Taking the first-order derivative of SR(p) with respect to p,
we have

∂SR
∂p
= 3+ Vα1

b
α1 + µ

− 2bp. (48)

So the server’s revenue first increases then decreases in p,

and the optimal solution is p∗a =
3+

Vα1b
α1+µ
2b . To investigate the

effect of breakdown rate at busy state on the maximal profit
and optimal pricing strategy, we further derive the first-order
derivative of p∗a and SR

∗
a (i.e., the server’s revenue under the

optimal price p∗a) with respect to α1 as follows

∂p∗a
∂α1
=

Vµ
2(α1 + µ)2

> 0, (49)

∂SR∗a
∂α1

=
Vµ

2(α1 + µ)3
{(Vb−3)α1 − λµ}. (50)

Since 3 − bp > 0 and V < p, it the follows that ∂SR
∗
a

∂α1
< 0,

which can be explained as follows. When the breakdown
rate α1 grows, the number of customers whose service is
interrupted increases and then the compensation the service
provider needs to pay also increases. In order to obtain
more profit, the service provider improves the price, but the
increased revenue is not sufficient to cover the loss, so the
profit under the optimal price still declines.

B. MULTIPLICATIVE DEMAND MODEL
Let λ = 3p−b, b > 1. Then the first-order derivative of SR
with respect to p gives that

∂SR
∂p
= p−b3{

Vα1b
(α1 + µ)p

− (b− 1)}. (51)

Based on (51), we find that the server’s revenue SR is uni-
modal in p. Therefore, SR is maximized at p∗m =

Vα1b
(α1+µ)(b−1)

.
Furthermore, taking the first-order derivatives of the maximal
revenue and optimal price with respect to α1, we obtain that

∂SR∗m
∂α1

= −

Vλµ( bVα1
(α1+µ)(b−1)

)−b

(α1 + µ)2
< 0, (52)

∂p∗m
∂α1
=

bVµ
(b− 1)(α1 + µ)2

> 0. (53)

So similar to the additive demand model, when the break-
down rate of the busy server increases, the service provider
would try to raise pricing to obtain more profit. But unfortu-
nately the increasing cost generated by the interrupted cus-
tomers plays a key role and makes the server’s profit under
the optimal price decreases.

V. NUMERICAL EXAMPLES
The retrial queueing system we study in this paper fits per-
fectly some real-world situations. We will give a numerical
case to illustrate the obtained results in the following sub-
section and then make comparisons between the two retrial
mechanisms.

A. CASE STUDY
We consider a local area network where several stations
are connected by a single Internet Service Provider (ISP).
In each station messages (packets) are sent by users through
a communication line (channel), and the station may listen
to the channel before transmitting a message. If the channel
is sensed to be idle, the message would occupy the channel
immediately and starts being transmitted to the destination
channel. If the channel is sensed to be unavailable (busy or out
of order), the user will reschedule the message transmis-
sion after some random time. There are many retransmission
schemes in the local area network. For example, under the
IEEE 802.11 protocol, the user will try to retransmit the mes-
sage again according to a back-off procedure and the retrial
rate of the orbit is proportional to the number of users waiting
to be retransmitted, i.e., the linear retrial rate, see for instance
[29]. But under the communication protocol CSMA, the total
retransmission rate is constant, see for instance [5]. In addi-
tion, the ISP may break down; for example, inhibitor and
synchronization signals cause the server failure and delete the
message under transmission. In this example, the message
generation interval, transmission time and retransmission
time correspond to the arrival interval, service time and retrial
time in the queueing terminology. Therefore, we model it as
a retrial queueing system with breakdowns and repairs where
there is one service provider and no waiting space.

Assume the messages generated by users arrive according
a Poisson process with rate 3 = 2 and the transmission
time of each message is exponentially distributed with rate
µ = 3. If the channel is unavailable upon the arrival of
messages, their retransmission time is characterized by an
exponential distribution with rate θ = 2. Under the IEEE
802.11 protocol, if there are n customers in the retrial group,
the total retrial rate is nθ , while the total retrial rate is θ under
the CSMA protocol. We assume the failures of ISP happen
randomly with respective rate α0 = 1 and α1 = 3, and the
server becomes available again after a mean time β−1 = 1

4 .
Moreover, the server charges a price pwhich is known among
potential users and messages’ real arrival rate depends on
price p. A compensation V = 0.5 is provider for the message
which is forced to abandon the system due to the server’s
failure.

The manager would like to know the optimal price to
maximize its own profit. Applying the results obtained in
the previous sections, the optimal price of p is found to be
p∗a = 1.0119 in additive demand model λ = 3 − 1.2p and
p∗m = 1.5 in multiplicative demand model λ = 3p−1.2.
Under the price p∗a = 1.0119, the corresponding system
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characteristics (indexed by superscript ‘‘a’’) are

Pa0 = Pc,a0 = 0.601667,

Pa1 = Pc,a1 = 0.141667,

Pa2 = Pc,a2 = 0.256667,

Ea(W ) = 0.91832,Ec,a(W ) = 1.85462.

Similarly, under the price p∗m = 1.5, we have the system
characteristics (indexed by superscript ‘‘m’’) as below

Pm0 = Pc,m0 = 0.513122,

Pm1 = Pc,m1 = 0.204913,

Pm2 = Pc,m2 = 0.281965,

Em(W ) = 1.124,Ec,m(W ) = 3.95475.

B. COMPARISONS BETWEEN THE TWO RETRIAL
SCHEMES
In Section III, we have obtained the analytical results for
customers’ mean waiting time in the retrial orbit in different
retrial situations. In this subsection, we will first perform
simulation analysis to further verify our analytical results, and
then make comparisons between the two retrial schemes.

We assume λ = 1, µ = 4, θ = 2, α0 = 0.5, β = 3 and
vary α1 from 1.2 to 1.8. Label the analytical and simulation
results for customers’ expected waiting time in the orbit by
superscripts ‘‘a’’ and ‘‘s’’, respectively. Table 2 gives the
corresponding results under the linear retrial rate and con-
stant retrial rate; that is, analytical and simulation results for
customers’ expected waiting time in the orbit under the linear
retrial rate (denote by Ea(W ) and Es(W )), and analytical and
simulation results for customers’ expected waiting time in the
orbit under the constant retrial rate (denote by Ec,a(W ) and
Ec,s(W )). FromTable 2, we observe the relative error is below
2%, which verify our results.

TABLE 2. Simulation results for customers’ mean waiting time in the
orbit and the relative error is defined by |simulation result−analytical result |

analytical result .

When comparing the two retrial schemes, recall that the
probabilities that the server is under different states (i.e., idle,
busy or failed) and the optimal price (and the corresponding
profit) of the manager are the same in the two retrial situ-
ations, so we try to make comparisons between them from
the perspective of customers’ expected waiting time under
the optimal price. In Figures 4 and 8, we observe customers’
expected waiting time in the orbit is decreasing in the retrial
rate θ and repair rate β. When θ increases, customers try to
access the service more frequently and thus their mean wait-
ing time decreases. Similarly, when β increases, the server

recovers from the breakdown states more quickly such that
customers are more likely to be served at the normal working
states. So the expected time customers need to wait in the
orbit declines. With regard to the server’s breakdown rate at
idle state α0, from Figure 5, we can observe customers’ mean
waiting time in the retrial orbit is increasing in α0, indepen-
dent with the repair rate β. That is because the breakdown of
the server when it is idle results in customers in the orbit wait
an additional period of time for the maintenance of the server,
i.e., the maintenance time, and thus their expected waiting
time increases.

FIGURE 3. Customers’ mean waiting time in the retrial orbit under the
optimal price vs. µ for 3 = 2, θ = 4, α0 = 2, α1 = 2, β = 2, b = 1.2,
V = 0.5.

Recall that the optimal price in the additive demand model

and multiplicative demand model are p∗a =
3+

Vα1b
α1+µ
2b and

p∗m =
Vα1b

(α1+µ)(b−1)
, and the optimal prices are increasing in the

server’s breakdown rate under the normal working state (i.e.,
α1) and decreasing in service rate µ. Since customers’ actual
arrival rate λ is decreasing in the price, under the optimal
price, λ is decreasing in α1 but increasing in µ. We note that
the server’s breakdown when it is at the working state not
only leads to customers in the orbit wait an additional period
of time for the maintenance of the server, but also hastens
the departure of the customer being served. In other words,
when the server is at the normal working state, a service
failure would have two effects on other customers in the
orbit. One effect is to increase customers’ waiting time in the
orbit, because they have the opportunity to access the service
successfully until the server returns from the breakdown state
(negative effect). The other effect is that breakdowns of the
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FIGURE 4. Customers’ mean waiting time in the retrial orbit under the
optimal price vs. θ for 3 = 2, µ = 3, α0 = 2, α1 = 3, β = 2, b = 1.2,
V = 0.5.

FIGURE 5. Customers’ mean waiting time in the retrial orbit under the
optimal price vs. α0 for 3 = 2, µ = 3, θ = 4, α1 = 3, β = 2, b = 1.2,
V = 0.5.

busy server accelerate the departure of customers under ser-
vice and hence, the mean waiting time for customers in the
orbit declines (positive effect). Further, when α1 increases,

FIGURE 6. Customers’ mean waiting time in the retrial orbit under the
optimal price vs. α1 for 3 = 2, µ = 3, θ = 4, α0 = 2, β = 2, b = 1.2,
V = 0.5.

FIGURE 7. Customers’ mean waiting time in the retrial orbit under the
optimal price vs. α1 for 3 = 2, µ = 3, θ = 4, α0 = 2, β = 4, b = 1.2,
V = 0.5.

the manager raises the price to maximize the obtained profit
and customers are reluctant to join, which makes the system
less crowded and customers’ mean waiting time decreases
(positive effect). Figures 6 (a) and 7 (a) show that in the
additive demand model, customers’ expected waiting time
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FIGURE 8. Customers’ mean waiting time in the retrial orbit under the
optimal price vs. β for 3 = 2, µ = 3, θ = 4, α0 = 2, α1 = 3, b = 1.2,
V = 0.5.

in the retrial orbit under the optimal price increases in α1
when the repair rate β is smaller; however, when the repair
rate β is greater, customers’ expected waiting time in the
retrial orbit decreases as α1 increases. That means when the
repair rate is low, the server needs a longer period of time
to be out of fault status and the ‘‘negative effect’’ exceeds
the ‘‘positive effect’’, so that customers’ mean waiting time
is growing in the breakdown rate α1. When the repair rate
is high enough, the ‘‘positive effect’’ dominates the ‘‘nega-
tive effect’’ and customers’ expected waiting time starts to
decrease with the breakdown rate α1. In the multiplicative
demand model, Figures 6 (b) and 7 (b) show that customers’
expected waiting time in the retrial orbit under the optimal
price always decreases in α1, regardless of repair rate β,
which implies the positive effect always dominates.

With regard to the service rate µ, when µ increases, cus-
tomers’ service time declines (positive effect), but the optimal
price the manager charges decreases, resulting in more cus-
tomers choose to join and the system becomes more crowded
(negative effect). From Figure 3, we observe that cus-
tomers’ expected waiting time in the additive demand model
decreases, while increases in the multiplicative demand
model. So in the additive demand model, the positive effect
plays a key role, but the negative effect dominates in the
multiplicative demand model.

Furthermore, from Figures 3-8, we observe customers’
expected waiting time in the orbit under the constant retrial
rate is always greater than that under the linear retrial rate.
That is consistent with our intuition, because customers’

retrial rate is greater in the situation with linear retrial rate.
So in the application of local area networks, IEEE 802.11 pro-
tocol performs better than the CSMA protocol from the per-
spective of reducing customers’ expected waiting time.

VI. CONCLUSION
We analyze the optimal pricing strategy and system charac-
teristics at steady-state status in a single server retrial queue
where the server is unreliable and it may fail at the busy or idle
states. Two retrial policies, i.e., linear retrial rate and constant
retrial rate, are incorporated by assuming service demands
decline as the price increases and the customer under ser-
vice may be interrupted by server’s breakdown. Assume the
customer whose service is disrupted leaves the system with
service unfinished and the server provides a compensation
for this customer. Through numerical examples, we show
that under the optimal price, customers’ expected waiting
time in the orbit decreases in the retrial rate and repair rate,
whereas increases in the server’s breakdown rate at idle state.
However, with respect to the server’s breakdown rate at busy
state and the service rate, the monotonicity of customers’
mean waiting time in the orbit is counterintuitive. Specif-
ically, with respect to the server’s breakdown rate at busy
state, customers’ mean waiting time in the orbit under the
optimal price may depend on the repair rate, because the
server’s failurewhen it is busy not only results in extrawaiting
time for customers in the orbit, but also makes the customer
under service leaves the system early. Besides, when the busy
server fails more frequently, the manager would raise the
price, which makes customers join the system reluctantly and
the system becomes less crowded. Furthermore, with regard
to the service rate, when it increases, customers’ service time
declines (positive effect), but the optimal price the manager
charges decreases, resulting in more customers choose to
join and the system becomes more crowded (negative effect).
Hence, with respect to the service rate, the monotonicity of
customers’ expected waiting time in the orbit under the opti-
mal price is determined by which effect dominates. Through
numerical examples, we observe that customers’ expected
waiting time in the additive demand model decreases, while
increases in the multiplicative demand model.

Our study can be also generalized in various directions. For
example, general distributions may be assumed for the vari-
ous processes considered. Further, in this paper we assume
the repair rates of the server failed from the idle states and
busy states are the same. In the future research, we will
consider a general case with different repair rates.
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