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ABSTRACT Rolling bearing is key component of rotating machinery and its fault diagnosis is of great
significance for reliable operation of machine. In this paper, an intelligent fault diagnosis method of
rolling bearing based on FCM clustering of vibration images obtained by EMD-PWVD is presented.
Firstly, vibration signals with different fault degrees are transformed into contour time-frequency images
by EMD-PWVD. Secondly, vibration images are divided into sections and their energy distribution values
are used as image feature. Then, feature vectors are constructed for known signals, which are standardized
as inputs of FCM clustering to obtain classification matrix and clustering center. Finally, proximity between
tested samples and clustering centers of known samples are calculated to realize identification of bearing
faults. Experimental results show that identification accuracy of this proposed method is high. When adding
noise, the proposed method is more stable than other vibration images such as grayscale and symmetrical
polar coordinate image, andwhen the added noise with SNR of 5, the reduction rate of identification accuracy
is obviously smaller than those of other two methods.

INDEX TERMS Rolling bearing, fault diagnosis, vibration image, empirical mode decomposition (EMD),
pesudo-Wigner-Ville distribution (PWVD), fuzzy C-means (FCM) clustering.

I. INTRODUCTION
Rolling bearing is key component of rotating machinery,
which has characteristics of high speed, complex structure
and easy fault in operation. Defects and damages of rolling
bearing directly affect performance and life of entire rotating
machine, therefore its fault diagnosis is of great practical
significance [1].

Vibration signal analysis is usually used for fault diagnosis
of rolling bearing, including time-domain, frequency-domain
and time-frequency analysis (TFA). Time-domain analy-
sis includes waveform analysis, correlation analysis, kurto-
sis analysis and so on [2]–[4]. Frequency-domain analysis
includes Fourier transform, envelope demodulation, cepstrum
analysis and so on [5]–[8]. Since fault-induced vibration
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signal of rolling bearing is non-linear and non-stationary and
early weak fault signal is often drowned in strong background
noise, so conventional time-domain and frequency-domain
analysis are often difficult to accurately extract fault infor-
mation. TFA can simultaneously reproduce time-domain and
frequency-domain features of signal, which is very effective
for nonlinear and non-stationary signal, so TFA is widely
used for fault diagnosis of rolling bearing. TFA mainly
includes two basic kinds of wavelet transform and empirical
mode decomposition (EMD).Wavelet transform [9], [10] can
suppress white noise effectively and EMD [11] has better
adaptability. Kumar and Singh [12] used wavelet analysis to
extract shock information from fault-induced vibration signal
of tapered roller bearing and error was controlled in a small
range. Liu et al. [13] proposed synchronous compression
wavelet transform, which has higher feature extraction pre-
cision and time-frequency resolution. Guo and Deng [14]
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proposed optimization algorithm-based EMD, which effec-
tively extracted fault characteristics of bearing ring.
Rezaee and Osguei [15] proposed local mean method to
eliminate modal mixing and endpoint effects of EMD.
In addition to wavelet analysis and EMD, Wigner-Ville dis-
tribution (WVD) [16] is also an important quadratic TFA
method, which has high time-frequency resolution, but it has
cross term [17], which can not be directly used for TFA.
Cai et al. [18] and Mu et al. [19] proposed TFA method com-
bining EMD with WVD, which not only effectively restrains
cross term, but also guarantees time-frequency aggregation.
In order to get rid of cross term, WVD adding time-domain
window function was also proposed, i.e., pseudo-Wigner-
Ville distribution (PWVD) [20], [21].

Due to intuitiveness of image, typical image analysis meth-
ods such as grayscale image (GI) and symmetrical polar
coordinate image (SPCI) are paid attention besides TFA.
Uddin et al. [22] used GI through Gabor filtering to real-
ize noise reduction and feature extraction of engine, and
Liu et al. [23] used GI texture analysis-based fault fea-
ture extraction to reduce noise and identify fault of engine.
Time-domain signal is transformed into polar coordinate
image by Jia et al. [24] to implement visual fault identi-
fication of mechanical transmission, and filtered signal is
transformed into image using SPCI method by Yang and
Feng [25] to carry out visual diagnosis of internal combustion
engine.

With development of artificial intelligence, fault diagno-
sis is more and more introduced into new pattern recogni-
tion. After extracting fault features, pattern recognition is
needed to realize intelligent diagnosis, most widely used
identificationmethods are artificial neural network [26], [27],
support vector machine [28], [29] and clustering algo-
rithm [30], [31]. Among them, clustering is simple. Fuzzy
C-means (FCM) clustering is more flexible than hard clus-
tering. Zhou et al. [32] combined EMD and singular value
decomposition with FCM clustering to achieve fault identifi-
cation of rolling bearing. Ren et al. [33] and Zhang et al. [34]
transformed vibration signal into mirror symmetry snowflake
image using SPCI and extracted image features, then FCM
clustering was used to realize fault identification.

To sum up, combining vibration image with pattern recog-
nition can realize intelligent fault diagnosis of rolling bearing
intuitively. However, there is still no research on the intel-
ligent diagnosis combining EMD-PWVD and FCM cluster-
ing for rolling bearings. Therefore, based on time-frequency
characteristics of EMD and PWVD and merits of FCM clus-
tering, this paper presents a new vibration image clustering
method of EMD-PWVD-FCM to diagnose fault of rolling
bearing. In Section 1, principle of EMD-PWVD, image gen-
eration and feature extraction are introduced. Section 2 gives
principle of FCM clustering. Feature extraction of GI and
SPCI are introduced in Section 3. And in final Section,
EMD-PWVD, GI and SPCI are compared to prove effec-
tiveness and robustness of the proposed method combining
EMD-PWVD with FCM clustering.

II. EMD-PWVD-BASED TFA METHOD
A. BASIC PRINCIPLE
1) BASIC THEORY OF EMD
EMD decomposes vibration signal into a series of indepen-
dent intrinsic mode functions (IMFs) with different charac-
teristic time scales, each IMF is a single component signal.
For any signal x(t), firstly we determine all extreme points
of x(t), and then upper and lower envelopes are obtained
by third-order spline interpolation. Let m(t) be average of
upper and lower envelops and h(t) be difference between x(t)
and m(t), then there are

m(t) = [xmax(t)+ xmin(t)]/2 (1)

h(t) = x(t)− m(t) (2)

Treat h(t) as new x(t), and repeat above operations until
h(t) meets a certain criteria, for example, change of h(t)
before and after repeating operations is small enough, mark
imf1 = h(t), where imf1 is an IMF, and then make

r1(t) = x(t)− imf1 (3)

Think of r1(t) as new x(t), repeat process to get the second
IMF, third IMF, and so on. When imfn or rn(t) satisfies given
stopping condition, for example, IMF or rn(t) is small enough
or rn(t) is monotone function, the above process terminates to
obtain decomposition formula

x(t) =
n∑
i=1

imfi + rn(t) (4)

where rn(t) is residual function and represents average trend
of signal.

2) BASIC THEORY OF PWVD
WVD is a kind of bilinear time-frequency distribution, which
is defined as Fourier transform of center covariance function
of signal. For continuous signals in time domain, WVD is

Wx(t, f ) =
∫
∞

−∞

x(t +
τ

2
)x∗(t −

τ

2
)e−j2π f τdτ (5)

where t is time-domain variable, f is frequency-domain vari-
able, and x∗(t − τ

2 ) is conjugate transpose of x(t +
τ
2 ).

For signal x(t) = x1(t)+ x2(t), WVD is

Wx(t, f ) = Wx1 (t, f )+Wx2 (t, f )+ 2Re[Wx1,x2 (t, f )] (6)

where

Wx1,x2 (t, f ) =
∫
+∞

−∞

x1(t +
τ

2
)x∗2 (t −

τ

2
)e−j2π ftdτ (7)

It can be seen that WVD of sum of two signals is not
equal to sum of their respective WVDs, and there exists
cross term 2Re[Wx1,x2 (t, f )]. More signal components, more
cross-terms. If signal contains n components, it will produce
n(n−1)/2 cross-terms. Existence of cross terms leads to false
signal and false frequency, which makes WVD difficult to
clearly express signals with multiple frequency components.
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In order to solve problem of cross terms, WVD is windowed
to obtain PWVD, which is defined as follows

PWx(t, f ) =
∫
∞

−∞

h(τ )x(t +
τ

2
)x∗(t −

τ

2
)e−j2π f τdτ (8)

where h(τ ) is window function.

3) BASIC THEORY OF EMD-PWVD
Since PWVD can only solve the time domain problem,
EMD-PWVD is proposed in this paper. EMD-PWVD of
signal x(t) is defined as

EMD_PWx(t, f ) =
n∑
i=1

∫
∞

−∞
fPWIMFi (t, f )

PWIMFi (t, f )
(9)

where, EMD-PWVD decomposes multi-component signals
into single component and finite sum of IMFs, then PWVD
is performed on each IMF, then PWVD results of different
IMFs are superimposed to obtain time-frequency distribution
of vibration signals. Combination of EMD and PWVD not
only effectively eliminates cross terms of WVD, but also
retains original time-frequency focusing of WVD.

B. IMAGE GENERATION
Fig. 1 is 3D EMD-PWVD time-frequency distribution of
vibration signals of normal rolling bearing at 1797r/min,
it is a joint function of time and frequency and describes
energy intensity of signals at different times and frequen-
cies, thus, time-frequency characteristics of signals is directly
expressed. Fig. 2 is 2D contour time-frequency map, it also
describes energy intensity of signals at different times and
frequencies. Contour map shown in Fig. 2 is projection
of 3D plot shown in Fig. 1 in time-frequency plane, and
information expressed in these two plots is the same. In order
to express more simply, contour map is used in this paper.

FIGURE 1. 3D time-frequency plot.

Because 2D contour map can reflect energy distribution of
vibration signals in different times and frequencies, so it is
different for different fault states of rolling bearing.

C. FEATURE EXTRACTION
A group of vibration data at 1797r/min from rolling bear-
ing with normal state and inner ring defects of 0.007 and

FIGURE 2. 2D time-frequency contour map.

0.021 inches are shown in Fig. 3, EMD-PWVD method was
used to obtain time-frequency images of three vibration sig-
nals. Results are shown in Fig. 4.

FIGURE 3. Time-domain waveform and frequency-domain spectrum
diagram under normal and two fault cases.

As can be seen from Fig. 4, energy distribution in three
states is different. Fig. 4(a) is time-frequency map of normal
bearing, and its energy distribution is mainly in 4-6KHz, there
are also a few in 0-2KHz. Fig. 4(b) is time-frequency map
of bearing with defect of 0.007 inches, energy distribution
is mainly in 2-4KHz, there are also a few in 0-2KHz and
4-6KHz. Fig. 4(c) is time-frequency map of bearing with
defect of 0.021 inches, and energy distribution is mainly
in 2-4KHz. Therefore, according to characteristics of energy
distribution, vibration data are divided into three energy inter-
vals: 0-2KHz, 2-4KHz and 4-6KHz, as shown in Fig. 4,
contour map is divided into different sections, and fault state
can be identified according to accumulated energy value of
each section.

When intervals are divided more, identification accuracy
is higher, but identification complexity will increase and
efficiency will decrease. As can be seen from Table 1, energy
distribution values at three frequency ranges are obviously
different, so energy values in three intervals were chosen as
characteristic parameters of fault identification.
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FIGURE 4. Energy partition diagrams of contour time-frequency maps
under different states.

TABLE 1. Accumulated energy values of rolling bearing under different
states.

III. FCM CLUSTERING METHOD
A. ALGORITHM MODEL
FCM clustering algorithm is a soft clustering algorithm based
on objective function, which has characteristics of rigorous

theory and good clustering effect. FCM optimizes objective
function to get membership degree of each sample point to all
class centers, and then determines class attributes of sample
points, so as to automatically group samples with similar
characteristics into one class [35].

Suppose we know initial membership degree matrix U =
[uij]c×n and clustering center matrixC = [c1, c2, · · · , cc]T of
data set vectorX = {x1, x2, · · · , xn}, where uij is membership
degree of x j relative to ci, and uij satisfies

0 ≤ uij ≤ 1 (10)
c∑
i=1

uij = 1 (11)

c∑
j=1

uij > 1 (12)

where 0 ≤ i ≤ c, 1 ≤ j ≤ n, c is number of classification,
i.e., number of clustering centers, and n is number of samples.
Essence of FCMclustering is iterative convergence process of
objective function by updating clustering center matrix C and
membership degree matrix U [36].

Objective function of FCM clustering is defined as

Jfcm(U ,C) =
n∑
j=1

c∑
i=1

umij d
2
ij (13)

where m is fuzzy weighted index, usually m = 2, dij is
Euclidean distance from sample point xj to center ci, i.e.,

dij =
∥∥xj − ci∥∥ = (xj − ci)T(xj − ci) (14)

Steps of FCM clustering are as follows.
Step 1: determine number of clustering centers c, num-

ber of iterations l = 0, and initialize classification matrix
U = [uij]c×n.
Step 2: calculate membership degree matrix U.

uij = 1/
c∑
i=1

(
dij
dkj

) (15)

Step 3: update clustering center matrix C.

ci =
n∑
j=1

umij xj/
n∑
j=1

umij (16)

Take appropriate norm ε > 0, terminate operation if∥∥U l+1
− U l

∥∥ < ε is satisfied, otherwise l = l + 1, repeat
above steps 2 and 3 until condition is satisfied.

B. CLUSTERING SCHEME
In this paper, near selection principle is used for fault cluster-
ing [34]. Set standard mode Si(i = 1, 2, · · · , n) and object T
to be identified as two fuzzy subsets, if i0 exists, make

N (Si0 ,T ) = max{N (S1,T ),N (S2,T ), · · · ,N (Sn,T )} (17)

then T and Si0 are considered to be closest, and they are
judged to be of the same class.
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Degree of closeness is calculated using Hamming degree
of closeness, and its expression is

N (S,T ) = 1−
1
n

n∑
k=1

|S(xk )− T (xk )| (18)

The greater the closeness N (S,T ) is, the more similar the
two patterns are, and vice versa. This approach can ensure
that samples to be identified are effectively classified to
c categories, and achieve reasonable classification of all data.

IV. VIBRATION IMAGE TRANSFORM METHOD
COMPARED WITH EMD-PWVD
In order to prove advantages of the proposed EMD-PWVD
method, two vibration image transform methods of GI and
SPCI were used to compare with EMD-PWVD.

A. GI ANALYSIS
Transforming vibration signal into GI can not only reflects
intrinsic characteristics of signal, but also analyzes relation-
ship between adjacent sampling points. GI analysis is to trans-
form vibration signal into 2D grayscale image to extract local
features using local binary patterns (LBP) algorithm, and then
identify characteristic frequency by 2D Fourier transform.

1) IMAGE GENERATION
Steps of transforming vibration signal into GI are as follows.

Step 1: standardize amplitude of each sampling point of
vibration signal, and distribute it in value range of image
pixels, i.e., 0-255.

Step 2: divide vibration signal into N sub-regions, each
interval contains M sampling points, and values of M and
N depend on total number of sampling points of signals.
Step 3: amplitude of each sub-interval sampling point is

taken as grayscale value of each point at each line, realize
vibration signal into GI.

As shown in Fig. 5, the smaller the values of M and N ,
the simpler the calculation, to ensure that useful information
can be retained for original signal, usuallyM and N are 128,
256 or 512.

2) LBP-BASED GI TEXTURE ANALYSIS
LBP is an image texture feature extraction algorithm. Texture
feature of image pixel is relationship between current pixel
and its surrounding pixels. LBP has advantages of rotational
invariance and grayscale level invariance [37]. Example of
LBP operator is shown in Fig. 6.

As shown in Fig. 6, in window of 3∗3, grayscale values
of 8 adjacent pixels are compared with threshold value of
center pixel in window. If values of surrounding pixels are
larger than that of center pixel, position of this pixel point is
marked as 1, otherwise 0. In this way, 8-bit binary numberwas
generated by comparing 8 points in 3∗3 neighborhood, which
is converted to decimal number, i.e., LBP code, so 256 LBP
numbers are obtained. LBP value of pixel point in center of

FIGURE 5. Schematic diagram of transformation from vibration signal to
gray image.

FIGURE 6. Illustration of LBP operator.

window is used to reflect texture information of this area.

LBP(xc, yc) =
p−1∑
p=0

2pS(ip − ic) (19)

where (xc, yc) represents 3∗3 neighborhood center element,
its pixel value is ic, ip represents other pixel values in neigh-
borhood, p is pixel numbers at neighborhood center, and
S(x) is a symbolic function defined as follows

S(x) =
{
1, x ≥ 0
0, x < 0

}
(20)

3) 2D FOURIER TRANSFORM OF GI
2D Fourier transform (2D-FT) is a commonly used image
processing method, which is of great value for image
enhancement, denoising, edge detection and so on [38].
2D-FT transforms image from spatial domain to frequency
domain, transforming image’s grayscale distribution function
into frequency distribution function. Let f (x, y) represent
GI of M∗N , where x = 0,1,. . . . . . ,M -1, y=0,1,. . . . . . ,N -1,
2D discrete Fourier transform is

f (u, v) =
1
MN

M−1∑
x=0

N−1∑
y=0

f (x, y)e−j2πux/Me−j2πvx/N (21)

where u = 0,1,. . . . . . ,M -1, v = 0,1,. . . . . . ,N -1, and 2D-FT
has shift property in space, i.e.,

f (x − a, y− b)⇔ F(u, v)e−j2π (aux/M+bv/N ) (22)

In 2D-FT, we can see bright and dark spots, which express
difference between a point and its neighbors, i.e., gradient
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size, or frequency size of point. Frequency of image is index
of intensity of image grayscale. If gradient is large, inten-
sity of point is strong, and vice versa. Gradient gives direct
view of energy distribution of image. Shift in space domain
of image causes phase change in frequency domain. When
the frequency of frequency spectrum is moved to center of
circle, frequency distribution of image is clearly seen and
periodic interference signals are separated, thus, fault feature
in original vibration signal can be extracted effectively.

In order to quantify brightness of 2D-FT image, according
to properties of grayscale image, square sum of matrix ele-
ments for 2D-FT image is calculated, and total brightness E
of image is quantitatively evaluated according to calculated
results [39].

E =
n∑
i=1

x2i (23)

where x is matrix element value of GI, n is total number of
sampling points, i.e., total number of matrix elements.

B. SPCI ANALYSIS
SPCI method [34] makes vibration signal transform directly
from time domainwaveform to imagewithout TFA.Vibration
signal is transformed into 2D image, and image feature is
extracted by gray level co-occurrence matrix (GLCM) [40].

1) IMAGE GENERATION
Schematic diagram of SPCI method is shown in Fig. 7.
In Fig. 7, γ (i) is polar coordinate radius, α(i) and β(i) are
counterclockwise and clockwise rotation angles from initial
line. In discrete sampling data sequence of vibration signal,
vibration parameter at time i is assumed to be xi, and that at
time i + 1τ is assumed to be xi+1τ , bringing into Eq. (24)
to Eq. (26), converting into a point P(γ (i), α(i), β(i)) in polar
coordinate space, by changing rotation angle, vibration signal
forms mirror-symmetrical image.

γ (i) =
xi − xmin

xmax − xmin
(24)

α (i) = φ +
xi+1τ − xmin

xmax − xmin
k (25)

β (i) = φ −
xi+1τ − xmin

xmax − xmin
k (26)

where xmax is maximum value of vibration parameter, xmin is
minimum value of vibration parameter, 1τ is time interval,
φ is rotation angle of initial line, k is angle magnification
factor, usually φ = 60◦, k = 20◦ ∼ 60◦, 1τ =3∼10 [34].
Vibration parameters to be selected include amplitude, phase
and so on, different parameters get different SPCI, this paper
choose vibration amplitude.

2) GLCM AND IMAGE FEATURE
GLCM starts from pixel position (x, y) with gray level of i,
and counts frequency P (i, j, d, θ) that appears simultane-
ously with pixel position (x+Dx , y+Dy) of gray level j and

FIGURE 7. Schematic diagram of SPCI.

distance of d , and expression is

P (i, j, d, θ)

= {[(x, y), (x+Dx , y+Dy)|f (x, y)= i, f (x+Dx , y+Dy)= j]}

(27)

where i, j is gray level, i, j = 0,1,2,. . . , N -1, Dx ,Dy is
position offset, d is generating step of GLCM, θ is generating
direction of GLCM, usually θ = 0

◦

, 45
◦

, 90
◦

, 135
◦

, and
finally anN×N square matrix is obtained, as shown in Fig. 8.

FIGURE 8. Generating directions of GLCM.

In order to extract image features, it is necessary to firstly
do normalization as follows

g (i, j) = P(i, j)/
N−1∑
i=0

N−1∑
j=0

P (i, j) (28)

In this paper, maximum probability, entropy, contrast, cor-
relation, energy, and inverse difference are taken as charac-
teristic parameters of GLCM.

Maximum probability: maximum frequency of occurrence
of gray pairs in GLCM.

mp = max (g (i, j))
i,j

(29)

Entropy: measurement of image content randomness, indi-
cating complexity or inhomogeneity of texture. Entropy of
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image is 0 when it has no texture, and maximum when it has
full texture.

ent = −
N−1∑
i=0

N−1∑
j=0

g (i, j) log (g (i, j)) (30)

Contrast: measurement of texture clarity, the deeper the
furrow of image texture, the greater the contrast of image,
the more obvious the texture effect, and vice versa.

con =
N−1∑
i=0

N−1∑
j=0

(i− j)2 g (i, j) (31)

Correlation: measurement of grayscale linear relationship,
measuring how similar elements of GLCM are in row or
column directions.

cor =
N−1∑
i=0

N−1∑
j=0

(i− µ) (j− µ) g (i, j) /σ 2 (32)

whereµ =
N−1∑
i=0

N−1∑
j=0

i · g (i, j)
,

σ 2
=

N−1∑
i=0

N−1∑
j=0

(i− µ)2·g (i, j).

Energy: measurement of gray level change uniformity of
image texture, reflecting degree of gray level distribution
uniformity and degree of texture coarseness.

ene =
N−1∑
i=0

N−1∑
j=0

g2 (i, j) (33)

Inverse difference: measurement of local changes of image
texture, reflecting homogeneity of image texture and repre-
senting regularity of texture. The more regular the texture,
the larger the inverse moment, and vice versa.

idm =
N−1∑
i=0

N−1∑
j=0

[
1/
(
1+ (i− j)2

)]
g (i, j) (34)

V. TEST AND DISCUSSION
A. TEST RIG AND VIBRATION DATA
In this paper, EMD-PWVD-FCMmethod is verified by vibra-
tion data of rolling bearing from Case Western Reserve Uni-
versity. Test rig is shown in Fig. 9.

As shown in Fig. 9, test device is mainly composed of
induction motor, encoder & torque sensor and load com-
ponents. Fault position is at inner ring of rolling bearing,
electrical discharge machining was used to fabricate ring
defect of rolling bearing, and two kinds of fault diameter
are 0.007 and 0.021 inches respectively. Accelerometer was
used to collect vibration signals, selected signal sampling
frequency is 12KHz, motor speed is 1797r/min.

B. VERIFICATION SCHEME OF EMD-PWVD-FCM
In order to verify effectiveness of proposed EMD-PWVD-
based FCM clustering method, it was compared with
GI texture analysis-based and SPCI-based methods. Three
kinds of vibration image method were used to transform and
then extract features of rolling bearing vibration signals, and

FIGURE 9. Test rig.

FCM clustering was used to identify faults. Fault identifi-
cation of original vibration signals and that of artificially
noised signals with different signal-to-noise ratios (SNRs)
were carried out respectively. Flowchart is shown in Fig. 10.

C. RESULTS OF VIBRATION IMAGE TRANSFORM AND
FEATURE EXTRACTION BY THREE METHODS
Time-domain waveform and frequency-domain spectrum
of vibration signal under three different conditions are
shown in Fig. 11. Fault degree can not be distinguished by
directly reading the signal characteristic parameters from
both time-domain and frequency-domain results, therefore
vibration signals in Fig. 11 need to be transformed into vibra-
tion image, and transform results are shown in Table 2.

It can be seen from Table 2 that brightness of grayscale
image increases gradually with aggravation of fault, petals
of image generated by SPCI become thinner gradually, and
gap between first pair of petals becomes larger when initial
line is 0◦, energy distribution of contour map generated by
EMD-PWVD is changed. All three kinds of vibration images
change with degree of fault, which provides foundation for
image feature extraction and fault identification.

D. IDENTIFICATION USING ORIGINAL SIGNALS
For original signal without artificially adding noise, 2048
sampling points were taken from each set of data and divided
into 40 groups, of which 20 groups were used as training
samples, 20 groups were used as test samples, for three cases
altogether 60 groups of training samples and 60 groups of
test samples, fault identification experiments by using three
vibration image methods were carried out.

1) GI ANALYSIS
Use LBP to analyze texture of the converted grayscale image,
and then perform 2D-FT. Use Eq. (28) to calculate the square
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FIGURE 10. Flowchart of comparison study of three vibration image methods.

FIGURE 11. Time-domain waveform and frequency-domain spectrum of vibration signal under
three cases.

sum E of 2D matrix value of image as characteristic param-
eter. Average value of each type of characteristic parameters
of 60 sets of training samples were used as clustering center.
Clustering center C is:

C = [585160.5586; 591687.5358; 597019.2929]

Clustering center C was used as a standard model for
identifying inner ring faults of rolling bearing. Lines 1, 2,
and 3 of Care clustering centers of sample data of normal

and defects of 0.007 and 0.021 inches, respectively. For
60 sets of unknown sample data, use Eq. (18) to calculate
closeness to each line of standard mode C , and determine
unknown fault category according to maximum closeness
value. Perform fault identification on 45 groups of unknown
samples, of which 9 groups of correct identification results
are shown in Table 3. For 60 groups of classification, there
is no omission beyond the obtained classification results.
Through statistics, classification accuracy rate of 60 small
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TABLE 2. Results of vibration image transformed by three methods.

samples is 91.67%. This result proves that GI method can
effectively identify inner ring faults of rolling bearing.

2) SPCI ANALYSIS
In order to study difference of vibration signal snowflake
maps under different conditions, six characteristic parameters
in four directions (θ = 0◦, 45◦, 90◦, 135◦, d = 1) of GLCM
were extracted, and a total of 24 parameters were obtained.
Because different directions contained different texture infor-
mation, average of four directions was taken as GLCMduring
test. Six characteristic parameters were denoted as F1 to F6,
F1 represents maximum probability, F2 represents entropy,
F3 represents contrast, F4 represents correlation, F5 repre-
sents energy, and F6 represents inverse gap.
Normalize eigenvector matrix to get initial membership

matrix:

xij =
xij −min(xj)

max(xj)−min(xj)
(35)

where xj is value of j-th column of matrix, denominator
of Eq. (35) is difference between maximum and minimum
values of elements in j-th column of original matrix. Data
were compressed to [0,1] through standardization.

Characteristic parameters of 60 sets of training sam-
ples were standardized and used as FCM clustering input.

Set number of clusters to 3 and set iteration stop threshold to
ε = 10−5. After 6 iterations, membership matrixU of known
samples was obtained. Clustering center C is:

C =

 0.0482 0.1924 1.0000 0.0390 0.0000 0.0919
0.0658 0.0739 1.0000 0.0000 0.0077 0.1091
0.0970 0.0238 1.0000 0.0000 0.0354 0.1408


Identification step of this method is similar to that of GI.

Finally, the unknown sample categories are determined by
the maximum closeness value. Perform fault identification on
45 groups of unknown samples, of which 9 groups of correct
identification results are shown in Table 4. For 60 groups
of classification, there is no omission beyond the obtained
classification results. Through statistics, classification accu-
racy rate of 60 small samples is 96.67%. This results prove
that SPCI method can effectively identify inner ring faults of
rolling bearing.

3) EMD-PWVD ANALYSIS
For EMD-PWVDmethod, energy distribution values in three
frequency intervals under three states were used as charac-
teristic parameters to distinguish different fault degrees of
rolling bearing. Characteristic parameters of 60 sets of train-
ing samples were standardized and used as FCM clustering
input. Set number of clusters to 3 and set iteration stop
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TABLE 3. 9 groups of correct identification results by GI analysis.

TABLE 4. 9 groups of correct identification results by SPCI analysis.

threshold to ε = 10−5. After 4 iterations, membership matrix
U of known samples was obtained. Clustering center C is:

C =

 0.4128 0.0000 1.0000
0.0851 1.0000 0.0000
0.0000 1.0000 0.0390


Identification step of this method is similar to that

of GI. Finally, the unknown sample categories are deter-
mined by the maximum closeness value. Fault identifica-
tion results of 45 groups of unknown samples are shown
in Fig. 12. It can be seen from Fig. 12 that three fault cat-
egories with different degrees are clearly distinguished, and
9 groups of correct identification results are given in Table 5.
For 60 groups of classification, there is no omission
beyond the obtained classification results. Through statistics,

classification accuracy rate of 60 samples is 90%, this results
proves that EMD-PWVD method can effectively identify
inner ring faults of rolling bearing.

E. IDENTIFICATION USING ARTIFICIALLY NOISED SIGNALS
In actual industrial field, vibration signal collected is usu-
ally polluted by strong background noise, field noise has
great influence on signal processing and fault identification.
In order to further verify robustness of this proposed method
for actual noised signal, noises with different SNRs were
artificially added to signals used above. SNR of vibration
signal is defined as

SNR = 10 log10(
ps
pn

) (36)
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TABLE 5. 9 groups of correct identification results by EMD-PWVD method.

FIGURE 12. 3D clustering distribution diagram of EMD-PWVD method.

where ps and pn are power of signal and noise respectively.
In this paper, Gaussian white noises with different SNRswere
added, as shown in Fig. 13. In test, when SNR is 5, 10 and
15, identification was conducted under the same conditions
as Part D, and identification results are shown in Table 6.

TABLE 6. Identification accuracy rate of three image methods under
different SNRs.

As can be seen from Table 6, identification accuracy rates
of three methods are all over 90% under no added noise,

FIGURE 13. Original vibration signal and signal added Gaussian white
noise in three cases when SNR is 10.

and SPCI reaches 96.67%, GI reaches 91.67%, EMD-PWVD
reaches 90%. Of course, with different selection of feature
indicators, recognition accuracy will change, and recognition
accuracy of EMD-PWVD can be improved by dividing more
energy intervals. With adding of noise and decrease of SNR,
identification accuracy rates of SPCI and GI decrease rapidly.
When SNR=5, SPCI reduced by 31.67%, GI reduced by
28.34%, while EMD-PWVD only reduced by 15%, which
is about half those of other two methods. Therefore, it can
be seen that EMD-PWVD method proposed in this paper is
more suitable for signals with strong noise, its reason is that
SPCI and GI methods do not process the collected vibra-
tion signals and then directly transform them into images,
while EMD-PWVD method performs TFA on the collected
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vibration signals to present clearly signal features. In indus-
trial practice, all vibration signals contain background noise.
Therefore, newly proposed EMD-PWVD method is optimal
choice for actual industrial application.

VI. CONCLUSION
Fault diagnosis of rolling bearing is an important research
direction for reliability improvement of rotating machine.
In this paper, EMD-PWVD-based vibration image transform
and FCM clustering are integrated to realize intelligent fault
diagnosis of rolling bearing.

(1) Vibration time-frequency image generation method
by EMD-PWVD is proposed. This method can not only
effectively solve the problem of cross-interference in the
processing of complex signals, but also retain its excellent
characteristics of time-frequency focusing.

(2) Fault diagnosis of rolling bearing is realized by using
FCM clustering of EMD-PWVD vibration images. Firstly,
vibration signal is transformed into contour time-frequency
image by EMD-PWVD. Then, according to energy distri-
bution of contour diagram, energy value at each interval is
taken as characteristic parameter. Finally, combining FCM
clustering, fault of inner ring for rolling bearing is identified
by maximum closeness.

(3) Bearing data of Case Western Reserve University are
used to verify the proposed method. Experimental results
show that identification accuracy rate of EMD-PWVD-FCM
reaches 90% by using three energy intervals under 60 groups
of small samples. Compared with FCM clustering of GI
and SPCI, when noise is added and SNR=5, identification
accuracy of EMD-PWVD-FCM is reduced by only 15%,
which is about half those of other two methods. Therefore,
EMD-PWVD-FCM is effective and stable for noised vibra-
tion signals of rolling bearings in practice.
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