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ABSTRACT To overcome the space-time adaptive processing (STAP) performance loss caused by discarding
the non-uniform parts of difference coarray and copulse for coprime sampling structure under the condition
of single-frequency operation, this paper proposes a new STAP algorithm to improve the precision of filter
weight vector estimation by the dual-frequency operation. By selecting a single proper additional operation
frequency, we can obtain the different coarray and copulse, thus fill two missed virtual sensors and pulses
of the difference structures in the single-frequency operation simultaneously. Compared with the single-
frequency operation, the dual-frequency operationmethod can acquire the bigger uniform linear array (ULA)
and coherent processing interval (CPI) pulse train to improve the system degrees of freedom (DOF), and
result in higher angle-Doppler resolution. In addition, the coprime array has the little mutual coupling effect
because of the larger inter-sensors spacing. Therefore, the resulting method can alleviate mutual coupling
and enhance the system DOF.

INDEX TERMS Coprime sampling structure, degrees of freedom, dual-frequency operation, space-time
adaptive processing, mutual coupling.

I. INTRODUCTION
Space-time adaptive processing (STAP) which can improve
the ability of suppressing clutter and detecting targets plays
a fundamental role in airborne radar [1]–[3]. The tradi-
tional algorithms, such as reduced-rank [4]–[8], reduced-
dimension [9]–[11] and parameterized model [12]–[25]
STAP usually have high detection precision based on the
accurate space-time steering vector. However, their perfor-
mance degrades significantly and even cannot work in the
presence of mutual coupling. In actual radar systems, it is
necessary to consider the mutual coupling effect. Therefore,
the STAP considering mutual coupling is one of the hot issues
in radar signal processing.

Generally, researchers mainly focused on the uniform lin-
ear array (ULA), in which the inter-sensors spacing was λ/2
to avoid spatial aliasing. In a previous study, the mutual
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coupling calibration and compensation were usually realized
by hardware, such as adding calibration sensors and adopt-
ing low coupling components. However, these methods are
not easy to implement in many applications, with the rela-
tively high cost and low accuracy. In the following research,
the calibration and compensation of mutual coupling were
gradually transformed into an array parameters estima-
tion [26], [27]. In the past, domestic and overseas scholars
had proposed many direction of arrival estimation meth-
ods under mutual coupling [26]–[30]. However, many algo-
rithms need a multi-dimensional search and multi-parameter
optimization [26], [27], which cannot guarantee the global
convergence. It is generally known that the induction cur-
rent between inter-sensors produces electromagnetic cou-
pling in ULA, which changes the magnetic fields near the
sensors and affects the space steering vector. The smaller
the inter-sensors spacing, the stronger the mutual coupling
effect. The inter-sensors spacing of coprime array is larger
than λ/2, and its mutual coupling effect is less severe than that
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of ULA. At the same time, the array aperture can be effec-
tively expanded to improve the degrees of freedom (DOF)
by difference operation. Because of this, the coprime array
has become a research hot spot in the field of array signal
processing in recent years.

The coprime array is a special kind of non-uniform sparse
array. Compared with the minimum redundancy array, the
array layout of the coprime array is simpler. Compared with
the nested array, the coprime array has the less mutual cou-
pling effect. However, the coarray of coprime array has holes,
which means that the ULA part of the coarray is smaller than
those of the nested array. According to the array layout, the
difference coarray can be divided into three difference subar-
rays by two symmetrical holes. One is the uniform subarray
in the middle, the other two are the non-uniform subarrays at
the ends of difference coarray, in which the uniform subarray
is the main part of the difference coarray. However, two non-
uniform subarrays are discarded to cause DOF loss in its
application due to the holes. That is to say, the DOF provided
by the coprime array is not fully utilized [31]–[34].

Considering the holes distribution in the coarray of the
coprime array. This paper uses an additional operation fre-
quency wh to expand the ULA part of the coarray by filling
two symmetrical holes between the uniform subarray and
the two non-uniform subarrays at the working frequency w0,
thus the 2N1 sensors including the filled holes are absorbed
into the uniform subarray. Therefore, a virtual ULA with
2N1N2 + 4N1 − 1 sensors can be formed by using the
dual-frequency operation. For the pulse train, we can obtain
a virtual CPI pulse train possessed 2M1M2 + 4M1 − 1 pulse
to improve the temporal domain DOF in the same way. The
total DOF of our proposed algorithm increases by DI =
4N1N2M1+4N1M1M2+12N1M1−2N1−2M1 compared to
the single-frequency operation. In addition, to avoid the com-
plex spatial-temporal smoothing, this paper uses the matrix
increment-rank method to construct the virtual clutter covari-
ance matrix (CCM) for STAP filter weight vector estimation.
The numerical simulation results verify the effectiveness of
the proposed algorithm.

We outline this paper as follows. In Section II, we provide
some fundamental preliminaries of signal model and review
the mutual coupling, and present the motivation of this paper.
We derive the dual-frequency coprime sampling structure
to construct the proposed STAP in Section III. Section IV
gives the comparisons between the proposed STAP and other
methods versus DOF and mutual coupling effect. Section V
concludes this paper.
Notations: lowercase, bold lowercase and bold capi-

tal letters represent scalars, vectors and matrices, respec-
tively. Transpose and complex conjugate transpose are
denoted by (·)T and (·)H respectively. The symbols ⊗,
E(·), and | · | stand for the Kronecker product, the statis-
tical expectation and the absolute respectively. IM stands
for the M × M identity matrix, and diag(a) represents a
diagonal matrix whose diagonal elements are the column
vector a.

FIGURE 1. Coprime configuration (a) coprime array (b) coprime PRI.

II. PRELIMINARIES
To begin with, we will introduce some fundamental prepara-
tions about STAP with coprime sampling structure.

A. SIGNAL MODEL
Assumed that a side-looking airborne phased array radar has
N receiving sensors and M transmitting pulses in a coherent
processing interval (CPI). The velocity of the radar is v, and
the radar wavelength is λ. The receiving array is composed
of two sub-ULAs. One possesses N2 sensors with locations
{N1p2d, 0 ≤ p2 ≤ N2 − 1}, the other has 2N1 − 1 sensors
at position {N2p1d, 1 ≤ p1 ≤ 2N1 − 1}, N1 and N2 are
coprime integers with N1 < N2, d is the minimal inter-
sensors spacing, as shown in Fig. 1(a). As seen in Fig. 1(b),
the pulses locations of two sub-pulses are {M1q2T , 0 ≤ q2 ≤
M2−1} and {M2q1T , 1 ≤ q1 ≤ 2M1−1} respectively, where
M1 andM2 are coprime integers withM1 < M2, T means the
minimal pulse repetition interval (PRI). When the working
frequency is w, the received clutter plus noise data from a
range bin without the ranger ambiguity can be given by

xu(w) =
Nc∑
i=1

ac,iv(ϕc,i(w), fc,i(w))+ n(w), (1)

where n(w) is the Gaussian white noise vector whose power
is σ 2

n . Nc is the number of independent clutter patches in
azimuth domain, ac,i represents the ith clutter patch com-
plex gain. The corresponding space-time steering vector
v(ϕc,i(w), fc,i(w)) can be expressed by

v(ϕc,i(w), fc,i(w)) = v(ϕc,i(w))⊗ v(fc,i(w)) (2)

with

v(ϕc,i(w)) = [1, e2π jn1ϕc,i(w), . . . , e2π jnN−1ϕc,i(w)]T , (3)

v(fc,i(w)) = [1, e2π jm1fc,i(w), . . . , e2π jmM−1fc,i(w)]T , (4)

where

nα ∈ {N1p2 ∪ N2p1}, α = 1, · · · ,N − 1, (5)

mβ ∈ {M1q2 ∪M2q1}, β = 1, · · · , M − 1, (6)

ϕc,i(w) = d cos(θi)/λ, (7)

fc,i(w) = (2vT cos(θi))/λ (8)
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in which ϕc,i(w) and fc,i(w) are the normalized spatial and
temporal frequency of the ith clutter patch, respectively, and
θi is the space cone angle of ith clutter patch. By substitut-
ing (7) and (8) into (3) and (4), we can get

v(ϕc,i(w)) = [1, e2π jn1d cos(θi)/λ, . . . , e2π jnN−1d cos(θi)/λ]T ,

(9)

v(fc,i(w)) = [1, e2π jm1T2v cos(θi)/λ, . . . , e2π jmM−1T2v cos(θi)/λ]T ,

(10)
and further we have

v(ϕc,i(w))= [1, ejkn1d cos(θi), . . . , ejknN−1d cos(θi)]T , (11)

v(fc,i(w))= [1, ejkm1T2v cos(θi), . . . , ejkmM−1T2v cos(θi)]T , (12)

where k = w/c is the wave number in w, c is the velocity of
light. Therefore, v(ϕc,i(w), fc,i(w)) can be described as

v(ϕc,i(w), fc,i(w)) =
[
s0,i(w), s1,i(w), · · · , sNM−1,i(w)

]T
,

(13)

where

slM+r−1,i(w)= exp(2π j(nlϕc,i + mr−1fc,i))

= exp(j(knld cos(θi)+ kmr−1T2v cos(θi)))

(14)

with l = 0, · · · ,N − 1, r = 1, · · · ,M , i = 1, · · · ,Nc.
Assuming that the different clutter patches are independent,
the clutter plus noise covariance matrix (CNCM) can be
formulated as

Ru(w) = E
[
xu(w)xHu (w)

]
= Rc(w)+ σ 2

n INM (w), (15)

where the CCM Rc(w) is

Rc(w) = V(w)P(w)VH (w) (16)

with

V(w)= [v(ϕc,1(w), fc,1(w)), . . . , v(ϕc,Nc (w), fc,Nc (w))] (17)

and

P(w) = diag([p1, p2, . . . , pNc ]
T ), pi = E(

∣∣ac,i∣∣2). (18)

Substituting (13) into (16), Rc(w) can be updated as

Rc(w)=


R0,0(w) R0,1(w) · · · R0,NM−1(w)
R1,0(w) R1,1(w) · · · R1,NM−1(w)
...

...
. . .

...

RNM−1,0(w) RNM−1,1(w) · · · RNM−1,NM−1(w)

,
(19)

where

R(l1M+r1−1),(l2M+r2−1)(w)

=

Nc∑
i=1

pk exp(j[k(nl1 − nl2 )d cos(θi)

+ k(mr1−1 − mr2−1)T2v cos(θi)]) (20)

with l1, l2 = 0, · · · ,N − 1, r1, r2 = 1, · · · ,M .

FIGURE 2. Difference coarray and copulse.

Definition 1 (Difference Coarray): The difference coarray
D of a sparse array A can be defined as

D = {dn1 − dn2 |dn1, dn2 ∈ A }. (21)

Definition 2 (Difference Copulse): For a sparse pulse train
P, its difference copulse Q is

Q = {qm1 − qm2 |qm1, qm2 ∈ P }. (22)

Thus, n̂kl = nl1 − nl2 and p̂kl = pk − pl in (20) can be
regarded as the virtual sensor and pulse positions of the dif-
ference coarray and copulse respectively, and their determine
the value of R(l1M+r1−1),(l2M+r2−1)(w). The virtual sensor and
pulse positions corresponding to the coprime structure in
Fig. 1 can be expressed

Dl = {−(2N1 − 1)N2,−(2N1 − 2)N2, · · ·, 2N1 − 1)N2},

(23)

Ql = {−(2M1 − 1)M2,−(2M1 − 2)M2, · · ·, (2M1 − 1)M2}.

(24)

As we can see in the Fig. 2 (a) shows, the uniform part in
Dl is only from −(N1N2 + N1 − 1) to (N1N2 + N1 − 1).
And two non-uniform subarrays which can be subdivided
into a single hole subarray and several holes subarrays are
exactly symmetrical. Difference copulse has the same config-
uration and property as difference coarray, as Fig. 2 (b) shows.
It’s remarkable that the traditional algorithms only utilize
the uniform parts of the difference structure in the coprime
configuration, which can be regarded as a virtual ULA with
N̄ = 2N1N2+2N1+1 sensors and d spacing and a virtual CPI
with M̄ = 2M1M2+2M1+1 pulses and T spacing. However,
the non-uniform subarrays and subpulses are abandoned,
resulting in the loss of DOF, that is, the decline of resolution.
If the holes in the difference coarray and copulse can be filled,
the number of available virtual sensors and pulses can be
significantly increased to obtain greater DOF in the spatial
and temporal domain.

B. MUTUAL COUPLING
In practical environment, the electromagnetic coupling
among the sensors in radar signal processing is potentially
catastrophic. The electromagnetic coupling effect relates to
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the inter-sensors spacing. In order to analyze it, we define
the weight function w(m) of sparse array A as the number of
sensor pairs which generates the index m:

w(m) = {(dn1, dn2) ∈ A2, dn1 − dn2 = m}. (25)

Therefore, we can conclude that the first three weight func-
tions w(m) of the coprime array are all 2. Nevertheless, the
ULA weight functions w(m) atm = 1, 2, 3 are w(1) = N−1,
w(2) = N − 2, w(3) = N − 3, N ≥ 3. When N > 5,
the first three weight functions w(m) of coprime array are
less than those of ULA, which is illustrated evidently that
the coprime array has an advantage over ULA in alleviating
mutual coupling effect.

III. THE PROPOSED METHOD
In this section, we reinforce the coprime sampling structure
via dual-frequency operation in order to extend uniform vir-
tual coarrays and copulses simultaneously.

A. THE PROPOSED METHOD
Assuming that the frequency range of the signal source is
enough to cover two operation frequencies in the coprime
sampling structure, i.e. the reference frequency w0 and the
additional operation frequency wh. Considering the coprime
sampling structure as shown in Fig. 1, it is assumed that if
w = w0 then d0 = λ/2, k = k0 and T = T0. In wh = αhw0,
thus (1) changes into

xu(wh) =
Nc∑
i=1

ac,iv(ϕc,i(wh))⊗ v(fc,i(wh))+ n(wh), (26)

where v(ϕc,i(wh), fc,i(wh)) is the clutter space-time steering
vector in wh, whose elements are

slM+r−1,i(wh)= exp(2π j(nlϕc,i(wh)+ mr−1fc,i(wh)))

= exp(j(khnld0 cos(θi)+khmr−1T02v cos(θi))),

(27)

where l = 0, · · · ,N − 1, r = 1, · · · ,M , i = 1, · · · ,Nc.
kh = wh/c is the wave number in wh. Due to kh = αhk0, (27)
can be rewritten as

slM+r−1,i(wh) = exp(j(k0αhnld0 cos(θi)

+ k0αhmr−1T02v cos(θi))). (28)

Comparing (14) with (28), the space-time steering matrix
associated with wh is equivalent to the space-time steering
matrix inw0 after scale transformation. At this point, the posi-
tions of ith sensor and jth pulse are αhnid0 and αhmjT0 respec-
tively. Therefore, we can obtain the following equations:

D(wh) = {±ah(N1p2d0 − N2p1d0)},

1 ≤ p1 ≤ 2N1 − 1, 0 ≤ p2 ≤ N2 − 1, (29)

Q(wh) = {±αh(M1q2T0 −M2q1T0)},

1 ≤ q1 ≤ 2M1 − 1, 0 ≤ q2 ≤ M2 − 1. (30)

When wh > w0 (αh > 1), the difference coarray and
copulse will spread, otherwise they will shrink. Therefore, a

reasonable additional frequency can produce expected virtual
sensors and pulses in the holes positions of the difference
structure. For two holes with locations ±(N1N2 + N1) as
shown in Fig. 2 (a), the additional operation frequency can
be selected as

wh =
N1N2 + N1

N1N2 + N1 + 1
w0. (31)

This means that two subarrays adjacent to the holes lateral
shrink to the locations of hole, thus filling the holes. In fact,
the two holes with±(N1N2+N1) can be filled by any virtual
sensors. Considering the effect of additional operation fre-
quency on system complexity and fluctuations signal source
characteristics, the additional frequency is required to be
close to and less than the reference frequency w0. Therefore,
the additional frequency in (31) is the optimal for filling the
two holes with ±(N1N2 + N1). At this time, the difference
virtual uniform subarray can obtain 2N1N2 + 4N1 − 1 DOF,
which improve the array DOF by 2N1 comparing with the
signal-frequency operation. By using the similar process, two
holes with ±(M1M2 + M1) in the difference copulse shown
in Fig. 2 (b) can also be filled, and the optimal additional
operation frequency also is

wh2 =
M1M2 +M1

M1M2 +M1 + 1
w0. (32)

When the array and pulse have the same structure config-
uration, the structures of their difference coarray and copulse
are similar. We can use only one additional frequency to fill
the holes in the difference coarray and copulse at the same
time. In particular, the elements of the CCM correspond-
ing to the difference coarray from −(N1N2 + N1 − 1) to
(N1N2 + N1 − 1) and the difference copulse train from
−(M1M2 +M1 − 1) to (M1M2 +M1 − 1) in w0 are

R(w0)=
Nc∑
i=1

pk exp(j[k0n̂kld cos(θi)+ k0p̂klT2v cos(θi)]),

(33)

where

n̂kl =−(N1N2 + N1 − 1), · · · , (N1N2 + N1 − 1), (34)

p̂kl =−(M1M2 +M1 − 1), · · · , (M1M2 +M1 − 1). (35)

Thus, the elements of the CCM with the additional fre-
quency wh are

R(wh)=
Nc∑
i=1

pk exp(j[khn̂kld cos(θi)+khp̂klT2v cos(θi)]).

(36)

According to k0/kh = w0/wh, we can show that,

R(wh) =
Nc∑
i=1

pk exp(j[
k0
w0
whn̂kld cos(θi)

+
k0
w0
whp̂klT2v cos(θi)]), (37)
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and further we have,

R(wh) =
Nc∑
i=1

pk exp(j[k0
N1N2 + N1

N1N2 + N1 + 1
n̂kld cos(θi)

+ k0
M1M2 +M1

M1M2 +M1 + 1
p̂klT2v cos(θi)]). (38)

When n̂kl = N1N2+N1+1, p̂kl = M1M2+M1+1,N1 = M1,
and N2 = M2, the above equation (38) can be rewritten as

R(wh) =
Nc∑
i=1

pk exp(j[k0(N1N2 + N1)d cos(θi)

+ k0(M1M2 +M1)T2v cos(θi)]) (39)

that is the data of CCMcorresponding to the virtual difference
n̂kl = N1N2 + N1 coarray and p̂kl = M1M2 + M1 copulse
in w0.

To avoid the complex calculation of spatial-temporal
smoothing operation, the virtual CCM is obtained by means
of the matrix increment-rank approach, i.e.,

Rc(w0)=


R0,0(w0) R0,1(w0) · · · R0,D−1(w0)
R1,0(w0) R1,1(w0) · · · R1,D−1(w0)

...
...

. . .
...

RD−1,0(w0) RD−1,1(w0) · · · RD−1,D−1(w0)

 ,
(40)

where N̂ = 2N1N2 + 4N1 − 1, M̂ = 2M1M2 + 4M1 − 1, and
D = N̂ M̂ .Rc can be thought of as the virtual CCM estimation
corresponding to N̂ sensors with inter-sensors spacing d0 and
M̂ pulses with fixed PRI T0 during a CPI. Compared with
the single-frequency mode, the dual-frequency mode can
improve the system DOF by DI . In this way, multiple holes
in the non-uniform several holes subarrays and subpulses can
be filled by using multiple additional operation frequencies,
but the DOFs elevated by these additional frequencies are less
than DI . Therefore, this paper focuses on the design of dual-
frequency operation mode for single hole parts.

According to the minimum variance distortion less
response (MVDR) criterion, the optimal STAPweight vectors
can be computed as

w =
R−1u (w0)vt

vHt R
−1
u (w0)vt

, (41)

where

Ru(w0) = Rc(w0)+ σ 2
n IDD(w0) (42)

and vt represents the space-time steering vector of target.

B. COMPLEXITY ANALYSIS
In this section, the computational complexities of the tra-
ditional STAP (T-STAP) [1], the traditional coprime STAP
(C-STAP) [25], and the proposed algorithm (DFC-STAP),
are analyzed. Their main complexities originate from the
filter weights computation, which are O((NM )3), O((N̄ M̄ )3),
O((N̂ M̂ )3) respectively. Since the DFC-STAP estimates the

CCM by the dual-frequency mode, the computational burden
of this part is more than twice that of the C-STAP. Therefore,
the complexity of the DFC-STAP is larger than that of the C-
STAP. However, the performance of the DFC-STAP is much
better than the C-STAP.

IV. SIMULATION RESULTS
In this section, we select three STAP methods: the T-STAP,
the C-STAP and the DFC-STAP, and then compare their
performances. There are N = 6 physical sensors and M = 6
pulses in the radar system, where λ = 0.05m, T0 = 0.25ms,
Nc = 361, v = 50m/s, σ 2

n = 1 and w = w0. We set
N1 = M1 = 2 and N2 = M2 = 3 for the C-STAP. The
normalized angle and Doppler frequency of target are 0.1 and
-0.2 respectively. The clutter to noise ratio is 30dB, and the
signal to noise ratio is set to 0dB. All simulation results are
averages over 100 Monte Carlo experiments.

FIGURE 3. The DOF ratio with the sensor/pulse number K varying
from 6 to 100.

A. DOF
To visually compare the ability of various algorithms to
obtain DOF, we define the DOF ratio as

γ (K ) = L(K )/LDFC (K ), (43)

where LDFC (K ) denotes the maximum DOF of the proposed
algorithm when the total number of physical sensors and
pulses are both K , i.e. M = N = K . The DOF capacity
varies proportional with γ (K ) to some extent. From Fig. 3
which illustrates the γ (K ) with K varying from 6 to 100, the
C-STAP and DFC-STAP have higher DOF than the T-STAP.
However, the DOF of the C-STAP is significantly lower than
that of theDFC-STAP. Comparedwith other twomethods, the
DFC-STAP is of the advantages of high DOF in the small K .

B. BEAMPATTERNS
In this experiment, we depict the beampatterns with different
methods. Fig 4. and Fig 5. give the space-time beampat-
terns with and without the mutual coupling, respectively.
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FIGURE 4. Space-time Beampatterns without the mutual coupling
(a) T-STAP (b) C-STAP (c) DFC-STAP.

The MC-T-STAP, MC-C-STAP and MC-DFC-STAP are the
abbreviation of the algorithms corresponding to the T-STAP,
C-STAP and DFC-STAP in the presence of the mutual cou-
pling. We set c = [1, 0.5ejπ/4, 0.25ej0.7π , 0.5ej0.7π

/
3]T and

B = 3. Due to the mutual coupling effect, the T-STAP can not

FIGURE 5. Space time Beampatterns with the mutual coupling (a) T-STAP
(b) C-STAP (c) DFC-STAP.

suppress the clutter in main clutter area, and its performance
is seriously deteriorated. Although the C-STAP can suppress
the main clutter and detect the signal, whose temporal and
spatial resolutions are lower than that of the FDC-STAP in
Fig. 6. The FDC-STAP can form the optimal space-time
beampattern at the target location and a deep notch at themain
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FIGURE 6. Beampatterns (a) Spatial domain (b) Doppler domain.

clutter area, whether or not there is mutual coupling. This is
because there are virtual sensors and pulses missing at ±8
position in difference coarray and copulse for the C-STAP.
Therefore, the optimal filter weight vector can be seen as a
result from a virtual ULA with 15 sensors and pulse trains
with 15 pulses in a CPI, and have 255 DOF at the working
frequency of w0. According to (31), the FDC-STAP chooses
wh = 8/9w0 to fill the holes at ±8 position. We can gain a
virtual ULA with 19 sensors and pulses trains with 19 pulses,
thus the DOF of the filter is increased to 361. The DOF of
FDC-STAP increases 136 compared with the C-STAP by an
additional operation frequency.

C. SINR
Finally, Fig.7 shows the output SINR performance against the
normalized Doppler frequency with or without mutual cou-
pling. The FDC-STAP uses dual-frequency operationmode to
fill the holes of the difference structure and improve the filter
DOF, and its output SINR performance is optimal, C-STAP,
T-STAP in turn. Due to the inter-sensors of coprime array
is larger than that of ULA, and its mutual coupling effect

FIGURE 7. Output SINR.

is weaker, the output SINR performance of C-STAP and
FDC-STAP is almost unaffected under the condition of the
mutual coupling. However, the output SINR performance of
T-STAP deteriorates seriously in the mutual coupling.

V. CONCLUSION
In this paper, a STAP algorithm with the dual-frequency
coprime structure is proposed, which can obtain more uni-
form virtual sensors and pulses than by the single-frequency
operation to improve theDOF and reduce themutual coupling
effect. Under N physical sensors and M physical pulses
conditions, the dual-frequency operation can improve the
system DOF by DI . Due to the single additional operation
frequency, the proposed dual-frequency operation extends
the system operational bandwidth and introduces the fluc-
tuations signal source characteristics to increase the com-
plexity and cost of the system as well as the filter optimal
weight vector estimation error. In this paper, we choose the
additional operation frequency which is lower than and close
to the reference frequency, which can minimize the adverse
effects of dual-frequency operation as much as possible.
In the following work, we will focus on the influence of the
fluctuations signal source characteristics on the filter weight
vector estimation, and study the corresponding processing
methods.
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