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ABSTRACT L-shaped array (LA) is traditionally used as two one-dimensional uniform linear arrays (ULAs)
for two-dimensional direction of arrival (DOA) estimations. With elevation and azimuth angles estimated
separately, the detectable source number is strictly limited by the number of elements in the ULAs. To
increase the detection ability, in this paper, we propose to exploit the diff-sum co-array (DSCA) concept
on the L-shaped array. As such, a virtual element in the quadrants of DSCA can be generated by only one
pair of sensors in the LA. Therefore, it can acquire much higher number of degrees of freedom for DOA
estimation. To further reduce the redundancy of elements on the horizontal and vertical axes of DSCA,
an element moving strategy is proposed. It is proved that the DSCA can remain intact with any one or more
physical sensors relocated to the centrosymmetric positions. Based on this strategy, a generalized L-shape
array concept and a new configuration referred to as generalized L-shaped array with odd-even locations
(GLA-OEL) are developed. For GLA-OEL, the number of sensor pairs with small spacing is as small as
one, which dramatically reduces the mutual coupling of adjacent elements. Besides, with the same number of
sensors, the GLA-OEL can generate much larger virtual uniform rectangular array in the DSCA. Simulations
verify the superiorities of the proposed array in terms of detection performance and estimation accuracy.

INDEX TERMS Generalized L-shaped array, DOA estimation, Diff-sum co-array, degree of freedom,mutual
coupling.

I. INTRODUCTION
Direction of arrival (DOA) estimation plays a critical role in
many applications such as radar, wireless communications
and radio astronomy [1], [2]. Conventional DOA estima-
tion techniques are mainly based on uniformly and regu-
larly placed physical geometries including uniform linear
arrays (ULA), uniform circular arrays and uniform rectangu-
lar arrays (URA) [1]. Sensors in these structures are densely
positioned, leading to considerable mutual coupling effect
and significant reduction of resolution [3]–[5].

To enlarge the sensor spacings between adjacent ele-
ments, many one-dimensional (1D) sparse arrays have been
developed. One of the well known non-uniform linear
arrays (NLAs) is the minimum redundancy array (MRA)
[6]. MRA is verified optimal in large consecutive differ-
ence segment achievement. However, it is obtained by going
through every possibility of sensor locations by computer
instead of having analytical expression. Moreover, the num-
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ber of sensors can not exceed 17, which dramatically limits
the use of MRA. The recent proposed nested array [7] and
coprime array [8] attract more interest in NLA design. Such
configurations have closed-form expressions of sensor loca-
tions. By vectorizing the covariance matrix of the received
data and utilizing the spatial smoothing [9], the difference
co-array (DCA) can be generated. Therefore, O(N 2) degrees
of freedom (DOF) can be achieved with only O(N ) sen-
sors used. For further improvement of DOF, the augmented
nested array (ANA) [10], improved nested array [11], array
configuration based on the maximum inter-element spacing
constraint (MISC) [12],the enhanced nested array [13], the
extended nested array [14] and generalized coprime arrays
[15] are proposed. With the mutual coupling effect con-
sidered, super nested arrays [16], [17] and ANA [10] are
developed. Furthermore, combinedwith other different signal
models, a series of virtual array based configurations are
also developed [18]–[21]. According to the above 1D sparse
array, several coarray-based DOA estimation algorithms are
proposed recently. In [22], spatial smoothing PAST algorithm
is proposed by exploiting the aperture of difference coarray
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to attain higher DOA tracking accuracy. In [23], DOA Esti-
mation of coherent signals is discussed based on the concept
of coprime array interpolation.

Inspired by 1D sparse array design, many two-dimensional
(2D) planar sparse arrays (PSAs) have been proposed for
virtual URA constructions. 2D nested arrays (2DNA) [24],
[25] and 2D coprime arrays (2DCA) [26] are two typical
PSAs which are naturally generalized from 1D configura-
tions. Based on the 2D coprime array, recently, the gener-
alized coprime planar array [27] and the corresponding fast
search approach [28] have been proposed for computational
load reduction. Although the above structures provide higher
DOF than the URA, the DOF can still be further improved.
Open box array [29] is verified having the largest aperture for
the same number of sensors among all the PSAs. However,
it suffers severe mutual coupling from the dense sensor loca-
tions. To enlarge the adjacent spacings with the virtual URA
no change, a series of configurations have been proposed,
including partially open box arrays, half open box arrays, half
open box arrays with two layers, hourglass arrays [30], half
H arrays and ladder arrays [31]. Hence, one can expect that
these 2D PSAs could acquire higher number of DOF and have
lower mutual coupling.

All the aforementioned works are based on the differ-
ence co-array construction. On the other hand, diff-sum co-
array (DSCA) have been exploited for underdetermined DOA
estimation recent years. The DSCA concept is proposed
in [32], which utilizes the vectorized conjugate augmented
MUSIC (VCAM) algorithm to construct both sum co-array
(SCA) and difference co-array. In [33], a DSCA-based 2DCA
is proposed. However, holes in the DSCA still limit the
size of its consecutive part. As a result, the performance
of subspace-based algorithm is influenced severely. In fact,
as the additional SCA information is properly made use of,
the DSCA can remedy some holes in DCA and therefore
acquire higher DOF than the sparse arrays with only DCA
considered.

L-shaped array (LA) [34] is a PSA used for 2D DOA
estimation. As its DCA cannot provide large size of URA,
there are not many works talking about its use in virtual
array construction. In this paper, we exploit the DSCA con-
cept onto the LA to explore its potential in virtual aperture
enhancement. Benefit from its special characteristics, the
virtual elements in the four quadrants of DSCA have the
least redundancy. Therefore, it can acquire the largest virtual
aperture with the same number of sensors, compared with the
existing PSAs. To further reduce the redundancy of elements
on the x and y axes of DSCA, an element moving strategy is
proposed. Based on this strategy, any sensor can be relocated
to the centrosymmetric positions. Therefore,the generalized
L-shaped array (GLA) concept is presented for lower mutual
coupling achievement. With the elements selected properly,
a new configuration referred to as generalized L-shaped array
with odd-even locations (GLA-OEL) is developed. The new
geometry is guaranteed to have much lower mutual cou-
pling and higher DOF performance than the existing PSAs.

Simulations verify the superiorities of the proposed arraywith
the spatial smoothing ESPRIT algorithm used.

Contributions of this paper are summarized as below:
• The DSCA property of the conventional LA is reconsid-

ered and an element moving strategy is proposed to improve
the configuration. The strategy brings generalization to the
LA so that the new configurations named as generalized
L-shaped array (GLA) can achieve reduced mutual coupling
effect with their DSCA remaining intact.
• The optimization configuration among all GLAs referred

to as generalized L-shaped array with odd-even locations
(GLA-OEL) is developed. By exploiting the lower mutual
coupling brought by the element moving strategy and the
higher DOF brought by the DSCA property of LA, the
GLA-OEL can achieve better performance than other existing
PSAs.

The rest of this paper is organized as follows. In Section
II, the 2D signal model with and without mutual coupling,
the VCAM algorithm and the L-shaped array are reviewed. In
Section III, the moving strategy and its use on L-shaped array
are proposed. Then, a specific geometry named as GLA-OEL
is presented in Section IV. The DOF evaluation, weight func-
tions and aperture analysis are concluded and compared as
well. Simulation results are provided and analyzed in Section
V. Section VI concludes the paper.

Notations: Denote vectors and matrices by using
lower-case and upper-case bold characters, respectively. Dou-
ble line characters are used to denote sets. Specifically, (.)∗

denotes complex conjunction, whereas (.)T and (.)H denote
the transpose and conjugate transpose of a matrix or vector,
respectively. vec(.) implies the vectorization operator which
turns a matrix into a column vector. E(.) is the statistical
expectation operator. diag(x) denotes a diagonal matrix with
the elements of x as the diagonal elements. ⊗ and � denote
Kronecker product and KR product, respectively.

II. PRELIMINARIES
A. SIGNAL MODEL AND VCAM ALGORITHM
Consider an N-elements planar array with physical sensors
located at P · d = {ppp1,ppp2, · · · ,pppN }d . Here pppi = (nxi, nyi) ∈
Z2 for i = 1, 2, · · · ,N is the position coordinates of the ith
sensor. d = λ/2 is the unit interval between sensors with
λ being the wavelength. ppp1 = (0, 0) is the reference point.
Suppose K far-field narrow-band uncorrelated deterministic
signal sources with power of δ2k , (k = 1, 2, · · · ,K ) imping-
ing on the array with DOAs as (θk , φk ). θk and φk are the
azimuth and elevation angles of the kth source. Then, the
received signal of the sensor array can be expressed as

xxx(t) =
K∑
k=1

aaa(θk , φk )sk (t)+ nnn(t) = AAAsss(t)+ nnn(t), (1)

where sss(t) = [s1(t), s2(t), · · · , sK (t)]T is the signal source
vector with sk (t) = ukejωk t . uk is the deterministic com-
plex amplitude and ωk is the base-band signal frequency
of the kth signal. nnn(t) = [n1(t), n2(t), · · · , nN (t)]T is

VOLUME 8, 2020 140457



X. Li et al.: Generalized LA Based on the DSCA Concept

noise vector. The noise is set to be the additive spa-
tially white Gaussian noise with zero mean and vari-
ance δ2n . AAA = [aaa(θ1, φ1),aaa(θ2, φ2), · · · ,aaa(θK , φK )] is
the array manifold matrix, and aaa(θk , φk ) is the steering
vector of the kth DOA (θk , φk ), given by aaa(θk , φk ) =
[1, ejπ (nx2cosθk sinφk+ny2 sinθk sinφk ), · · · , ejπ (nxN cosθksinφk +
nyN sinθksinφk )].
If we consider the mutual coupling, the signal model in

Eq. (1) has to be modified as xxx(t) = CCCAAAsss(t)+ nnn(t), where CCC
is the mutual coupling matrix. In general, CCC can be approxi-
mated as a B-banded symmetric Toeplitz matrix with the (i, j)
element as [30]

CCC i,j =

{
c|pppi−pppj|`2 , if |pppi − pppj|`2 ≤ B,

0, otherwise,
(2)

where pppi,pppj ∈ P and |pppi−pppj|`2 denotes the distance between
the two points. The coupling coefficients satisfy 1 = c0 >
|c1| > |c√2| > · · · > |cB|. In this paper, we assume that
c0 = 1 and cl = c1e−j(l−1)π/8/l if l ≤ B.
Then,we introduce the VCAM algorithm in [32]. First,

collect Ns snapshots of x1(t) and xi(t) with delay τ 6= 0
and obtain [x1(1), x1(2), · · · , x1(Ns)], [xi(1 + τ ), xi(2 +
τ ), · · · , xi(Ns+ τ )]. Then, calculating the time average func-
tion of x∗1 (t) and xi(t + τ ). Note that the signals and noise are
uncorrelated, one has

Rx∗1 xi (τ )

= 1/Ns
Ns∑
t=1

x∗1 (t)xi(t + τ )

= 1/Ns
Ns∑
t=1

[
K∑
k=1

K∑
l=1

a∗k,1al,is
∗
k (t)sl(t + τ )+ n

∗
l (t)nk (t + τ )

+

K∑
k=1

a∗k,1s
∗
k (t)ni(t + τ )+

K∑
l=1

a∗l,is
∗
l (t + τ )nl(t)].

≈

K∑
k=1

K∑
l=1

a∗k,1al,iRs∗k sl (τ )Rn∗knl (τ ) (3)

where a∗k,1 = 1, Rs∗k sl (τ ) =
∑Ns

t=1 s
∗
k (t)sl(t +

τ )/Ns = u∗kule
jωlτ

∑Ns
t=1 e

j(ωl−ωk )t/Ns and Rn∗knl (τ ) =∑Ns
t=1 n

∗

1(t)ni(t + τ )/Ns. Assume k 6= l and Ns is sufficiently
large. Then,

∑Ns
t=1 e

j(ωl−ωk )t/Ns ≈ 0.Moreover,Rn∗1ni (τ ) ≈ 0
as ni(t) is zero-mean white Gaussian noise.

Based on the above fact, the time average function can be
further simplified as Rx∗1 xi (τ ) =

∑K
k=1 ak,iRs∗k sk (τ ), where

Rs∗k sk (τ ) ≈
∑Ns

t=1 s
∗
k (t)sk (t + τ ). Obviously, Rs∗k sk (τ ) can be

viewed as an equivalent source signal with the power of δ4k .
By stacking all the vectors Rx∗1 xi (τ ), one has

vvvxx(τ ) = AAAvvvss(τ ), (4)

where vvvxx(τ ) = [Rx∗1 x1 (τ ),Rx∗1 x2 (τ ), · · · ,Rx∗1 xN (τ )]
T and

vvvss(τ ) = [Rs∗1s1 (τ ), · · · ,Rs∗K sK (τ )]
T . If we invert τ to −τ and

take the conjugate, Eq. (4) becomes

[vvvxx(−τ )]∗ = AAA∗vvvss(τ ), (5)

With Eq. (4) and (5) combined together, the conjugate aug-
mented correlation vector has the form of

yyy(τ ) =
[
[vvvxx(−τ )]∗

vvvxx(τ )

]
= ĀAAvvvss(τ ), (6)

where ĀAA = [AAA∗,AAAT ]T = [āaa1, · · · , āaak , · · · , āaaK ] with āaak =
[aaaHk ,aaa

T
k ]
T .

Suppose the pseudo snapshots and pseudo sampling
interval as Nsp and τp. Then, the pseudo-data matrix is
RRRyy = [yyy(τp), · · · ,yyy(τpNsp)] = ĀAARRRssĀAA

H
, where RRRss =

diag([δ41, · · · , δ
4
K ]) if Ns is sufficiently large.

Vectorizing RRRyy yields zzz = vec(RRRyy) = (ĀAA
∗
� ĀAA)s̄ss, where

s̄ss = [δ41, δ
4
2, · · · , δ

4
K ]. Note that s̄ss can now be viewed as virtual

input signal source and the jth column of ĀAA
∗
� ĀAA has the

form of

āaa∗j ⊗ āaaj =
[
aaa∗j
aaaj

]∗
⊗

[
aaa∗j
aaaj

]
=

aaaj ⊗
[
aaa∗j
aaaj

]
aaa∗j ⊗

[
aaa∗j
aaaj

]
 . (7)

It can be seen that zzz can be viewed as an equivalent signal
vector received from the sum co-array and difference co-
array. We call the combination of SCA and DCA as the diff-
sum co-array in this paper. Their definitions are given below.
Definition 1: For a 2D planar array specified by P, one can

define the following co-arrays

Sum co-array (SCA):Sum co-array (SCA):Sum co-array (SCA):S = {±(pppj + pppi)|pppj,pppi ∈ P};
difference co-array (DCA):difference co-array (DCA):difference co-array (DCA):
D = {(pppj − pppi)|pppj,pppi ∈ P};
Diff-sum Co-array (DSCA):Diff-sum Co-array (DSCA):Diff-sum Co-array (DSCA):
DS = D ∪ S = {±(pppj + pppi) ∪ (pppj − pppi)|pppj,pppi ∈ P};

(8)

Assume a virtual URA of size (2Lux + 1) × (2Luy + 1)
exists in DS. Extracting the corresponding elements from zzz,
rearranging them and taking the average of the repeated
entries, one can obtain the equivalent covariance matrix

RRRzz =
1

(Lux + 1)(Luy + 1)

Lux+1∑
i=1

Luy+1∑
j=1

z̃zzi,jz̃zz
H
i,j (9)

where z̃zzi,j = ÃAAs̄ss is the output of the URA whose sensors
locating at [−i+ 1,−i+ 1+ Lux]× [−j+ 1,−j+ 1+ Luy],
for i = 1, · · · ,Lux + 1 and j = 1, · · · ,Luy + 1. ÃAA is a
(1+ Lux)(1+ Luy)×K matrix and can be treated as the array
manifold of such URA.

Apply 2D DOA algorithms such as Unitary-ESPRIT [35]
on RRRzz. Then, one can estimate the 2D DOAs successfully.
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B. L-SHAPED ARRAY AND ITS DSCA PROPERTIES
In this subsection, wewill review the LAfirst and then deduce
the DSCA and DOF properties. L-shaped array consists of
two dense sub-ULAs on the positive axes, which is defined
by
Definition 2 (L-Shaped Array [36], LA): For two positive

integers Nx , Ny, L-shaped array is characterized by integer
sets

PLA = H ∪ V, (10)

where H = {(nx , 0)|nx ∈ {0, 1, . . . ,Nx}} and V =

{(0, ny)|ny ∈ {0, 1, . . . ,Ny}}.
If we conduct the VCAM algorithm, then a diff-sum virtual

array will be generated. To see the DSCA more clearly,
properties like degrees of freedom and weight function are
defined and provided.
Definition 3 (Degrees of Freedom): Denote U as the

largest URA in the DSCA of a specific 2D planar array P.
The number of degrees of freedom is the cardinality of U.
Definition 4 (Weight Function): For a 2D array specified

by P, assume the difference co-array is D. The weight func-
tion is the number of sensor pairs with separation El ∈ D, i.e.,

ω(El) = 〈{(pppi,pppj)|pppi,pppj ∈ P,pppi − pppj = El}〉, (11)

where 〈·〉 denotes the number of elements inside.
It should be noted that the weight function here is the

number of sensor pairs with distance El but not the pairs
generating the co-array index El. Therefore, El ∈ D but El 6∈ S.
Then we have Property 1.
Property 1: For positive integers Nx and Ny, LA defined

in Eq. (10) has the largest virtual URA in DSCA located at

ULA = {(nx , ny)| − Nx ≤ nx ≤ Nx ,−Ny ≤ ny ≤ Ny}. (12)

The DOF of LA is (2Nx+1)×(2Ny+1). The weight function
can be expressed as

w(1, 0)=Nx , w(0,1)=Ny, w(1,1)=0, w(−1,1)=1. (13)

The proof of Property 1 is provided in the Appendix A.
As shown in Fig. 1(a), no sensor pairs with separations El =
(1, 1), (−1,−1) exist since both of the sub-ULAs locate at the
positive axes. Therefore, w(1, 1) = w(−1,−1) = 0. Besides,
as can be seen from Fig. 1(b), with only N = Nx + Ny + 1
physical sensors, a virtual URA of size (2Nx+1)× (2Ny+1)
is obtained. As a contrast, the existing optimal 2D PSA OBA
has to make use ofNx+2Ny+1 sensors to get the same size of
virtual URA by utilizing the DCA concept. Therefore, apply-
ing the VCAM onto LA increases the number of DOF with
the same number of sensors. From the property mentioned
above, we find that the weight function w(1, 0) and w(0, 1)
are quite large due to the dense ULA on the axes. To decrease
the mutual coupling, we propose the following generalized
L-shaped array concept.

FIGURE 1. (a) The L-shaped array with Nx = 15 and Ny = 15. The blue
dots are physical sensors. (b) The DSCA of the above LA. The blue crosses
represent difference co-array elements. The red dots are sum co-array
elements.

III. GENERALIZED L-SHAPED ARRAY CONCEPT
The dense distribution of sensors on both axes in LA arises
the strong interference between the adjacent elements. If we
can relocate some of these sensors and guarantee the largest
URA in the DSCA with no change, it is possible to reduce
the weight functions w(1, 0) and w(0, 1). Therefore, how to
choose the elements and where to relocate them are the most
important problems we will resolve.

Let P be the location set of an arbitrary PSA and let DS
be the corresponding DSCA. Choose Q sensors located at
(nxq, nyq) ∈ P for q = 1, 2, . . . ,Q and relocate them to
(̂nxq, n̂yq) /∈ P. As such, a new PSA denoted as P̂ is generated
with its DSCA being D̂S. The follow lemma provides us an
effective moving strategy to keep the DSCA invariant.
Lemma 1: D̂S = DS if (̂nxq, n̂yq) = −(nxq, nyq) for

q = 1, 2, . . . ,Q.
The proof is provided in the Appendix B. Lemma 1 indi-

cates that any physical sensors in a PSA can be moved with
the DSCA invariant, as long as they are relocated at the
centrosymmetric positions. As an example, Fig. 2 illustrates
a PSA with only two sensors at position A and B. Vector lllAB,
lllBA and lllOC , lllOC ′ form the DCA and SCA of the DSCA,
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FIGURE 2. An example of moving strategy. A and B are original locations.
A′ and B′ are the centrosymmetric positions of A and B.

respectively. If element A is moved to its centrosymmetric
location A’, then lllA′B = lllOC and lllBA′ = lllOC ′ generate the
new DCA, which is in fact the SCA of the original PSA.
At the same time, lllOD = lllAB and lllOD′ = lllBA form the
new SCA, which is the same as the original DCA. Therefore,
we have DS = D̂S. If both sensors are moved to A′ and B′

simultaneously, D̂S will be the mirror structure of DS.
Lemma 1 provides the basic idea for sensor redistribution.

Applying this strategy on the LA, then we can obtain the
following generalized L-shaped array concept.
Definition 5 (Generalized L-Shaped Array, GLA) For pos-

itive integers Nx and Ny, generalized L-shaped array is
defined as a PSA located at

PGLA = H1 ∪H2 ∪ V1 ∪ V2, (14)

where H1 = {(nx , 0)|nx ≥ 0, nx ∈ h1}, H2 = {(nx , 0)|nx <
0, nx ∈ h2}, V1 = {(0, ny)|ny ≥ 0, ny ∈ v1} and V2 =

{(0, ny)|ny < 0, ny ∈ v2}, satisfying
1) h1 ∪ (−h2) = {0, 1, 2, . . . ,Nx}, v1 ∪ (−v2) =
{0, 1, 2, . . . ,Ny};
2) h1 ∩ (−h2) = ∅, v1 ∪ (−v2) = ∅ with ∅ being the empty

set.
Fig. 3 depicts an example of GLA with Nx = 15 and

Ny = 15. In this case, h1 and v1 are 1D nested arrays [7]
with elements located at {0, 1, 2, 3, 4, 5, 10, 15}. h2 = v2 =
{−6,−7,−8,−9,−11,−12,−13,−14} are the 1D sparse
arrays with elements moved from {6, 7, 8, 9, 11, 12, 13, 14}
to their centrosymmetric positions. Therefore, for GLA, the
subsets h1, h2, v1 and v2 satisfy Lemma 1. It has the same
DSCA as the original LA. Furthermore, due to the distributive
locations in GLA, its separations of w(1, 0) and w(0, 1) will
be dramatically reduced. With the subarrays in GLA properly
designed, lower mutual coupling can be achieved. Note that
the subarrays can be any 1D array configurations. LA is a
special case of GLA with h1 = {0, 1, 2, . . . ,Nx}, v1 =
{0, 1, 2, . . . ,Ny} and h2, v2 being empty sets.
Property 2: For positive integers Nx and Ny, GLA defined

in Eq. (14) has the same DSCA with the LA in Eq. (10). The
DOF is (2Nx + 1)× (2Ny + 1).

FIGURE 3. A GLA with Nx = 15 and Ny = 15. H1 and H2 are nested arrays.

Proof: As h1 ∪ (−h2) = {0, 1, 2, . . . ,Nx} and h2,
−h2 are centrosymmetric to each other, we conclude that
GLA is a LA with part of the elements at −H2 moved to
their centrosymmetric positions. Similar conclusion can be
obtained for v1 and −v2. According to Lemma 1, we have
DSGLA = DSLA. Therefore, the largest virtual URA in the
DSCA of GLA locates at set ULA = {(nx , ny)| − Nx ≤ nx ≤
Nx ,−Ny ≤ ny ≤ Ny}. The number of DOF is the size of the
virtual URA, i.e., (2Nx + 1)× (2Ny + 1). �

IV. GENERALIZED L-SHAPED ARRAY WITH ODD-EVEN
LOCATIONS
A. GENERALIZED L-SHAPED ARRAY WITH ODD-EVEN
LOCATIONS
Under the framework of GLA, there are many potential
geometries. In this subsection, we will propose a special
GLA, named as Generalized L-shaped array with odd-even
locations (GLA-OEL), which possesses the lowest mutual
coupling effect with each 2D separation.
Definition 6: (Generalized L-Shaped ArrayWithOdd-Even

Locations, GLA-OEL) For positive integers Nx and Ny, gen-
eralized L-shaped array with odd-even locations is a general-
ized L-shaped array defined by Eq. (14) with

h1 = {0, 1+ 2` | 0 ≤ ` ≤ b
Nx − 1

2
c}

h2 = {−2` | 1 ≤ ` ≤ b
Nx
2
c}

v1 = {0, 1+ 2` | 0 ≤ ` ≤ b
Ny − 1

2
c}

v2 = {−2` | 1 ≤ ` ≤ b
Ny
2
c}.

(15)

Fig. 4 illustrates an example of GLA-OEL with Nx = 15
and Ny = 15. It can be observed that except the 0 point, all
the subsets on the positive or negative part of the GLA-OEL
are ULAs with separation 2. The positive axes are two odd
sequences with h1 = v1 = {0, 1, 3, 5, 7, 9, 11, 13, 15}.
While the negative parts are two even sequence sets with
h2 = v2 = {−2,−4,−6,−8,−10,−12,−14}. Meanwhile,
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FIGURE 4. A GLA-OEL with Nx = 15 and Ny = 15.
H1 = V1 = {0, 1, 3, 5, 7, 9, 11, 13, 15}.
H2 = V2 = {−2,−4,−6,−8,−10,−12,−14}.

h1 ∪ (−h2) = v1 ∪ (−v2) = {0, 1, . . . , 15}. The number of
sensors is N = Nx + Ny + 1 = 31.

As the GLA-OEL is a special instance of GLA, it has
the same properties in Property 1. In addition, there is only
one sensor pair (1, 0), (0, 0) contribute to w(1, 0). Therefore,
w(1, 0) = 1. Similarly, in the vertical direction, only the
pair (0, 1), (0, 0) generates the w(0, 1). While the separation
El = (1,−1) is generated by (1, 0), (0, 1). There is no sensors
having the difference El = (1, 1). As a result, the following
property of GLA-OEL can be deduced.
Property 3: For two positive integers Nx and Ny,

GLA-OEL defined in Eq. (15) has the sameDCSA as LAwith
the DOF being (2Nx+1)× (2Ny+1). It has much less sensor
pairs with small separations than LA. The weight functions
can be expressed as w(0, 1) = 1, w(1, 0) = 1, w(1, 1) = 0
and w(1,−1) = 1.

FIGURE 5. The DSCA of the GLA-OEL with Nx = 15 and Ny = 15. The blue
crosses are the DCA elements. The red dots are the SCA elements.

Fig. 5 illustrates the DSCA of the GLA-OEL. Compared
with Fig. 1 (b), the new geometry has the same virtual DSCA
as that of the original LSA with only the specific distribution
of sum results and difference results different, which coin-
cides with the moving strategy in Lemma 1.

B. COMPARISONS
In this subsection, a series of 2D array configurations, such
as 2D nested array (2DNA) [24], half open box array with
two layers (HOBA-2), hourglass array (HA) [30], and Laddar
Array (LdA) [31], which make use of the DCA to acquire
virtual aperture, are compared with three DSCA based PSAs,
i.e., 2D coprime array (2DCA) [33], L-shaped array and
GLA-OEL proposed in this paper.

1) DEGREE OF FREEDOM
For both LA and GLA-OEL, Nx + 1 physical sensors are
supposed to locate on the x-axis. In the vertical direction,
Ny + 1 sensors are positioned. With (0, 0) as the common
point of the two axes, the total number of sensors is N =
Nx + Ny + 1. As provided in Property 1 and 3, the largest
URA in the DSCA has the size of

DOFLA = DOFGLA−OEL = (2Nx + 1)(2Ny + 1). (16)

For 2DNA, configuration II in [25] is considered which
possesses higher DOF than configuration I. The geometry
we use for comparison has two URAs inside. One is a
dense square with Nx × Nx elements separating unit spac-
ings. Another one is a sparse square with Ny × Ny elements
separating Nx unit spacings. The total number of sensors is
N = N 2

x + N
2
y − 1. The number of DOF generated by DCA

is

DOF2DNA = (2NxNy − 1)NxNy. (17)

For 2DCA, suppose two coprime parameters Nx and Ny.
(Nx > Ny) The geometry has two URAs inside. One is a
square with Nx × Nx elements separating Ny unit spacings.
Another one is a square with 2Ny × 2Ny elements separating
Nx unit spacings. The total number of sensors is N = N 2

x +

N 2
y − 1. The number of DOF generated by its virtual array is

DOF2DCA = (NxNy + Nx + Ny − 1)2. (18)

For HOBA-2, HA and LdA, suppose Nx sensors are
located at the horizontal direction. 2Ny − 2 sensors dis-
tribute on the vertical lines. The total number of sensors
is N = Nx + 2Ny − 2. Then, the DCA is proved to be a
hole-free URA with the size of

DOFHOBA−2 = DOFHA
= DOFLdA = (2Nx − 1)(2Ny − 1). (19)

The DOF comparisons of the seven PSAs are presented in
Table 1. For 2DNA, HOBA-2, HA, LdA, LA and GLA-OEL,
N = 49. Since 2DCA fail to have examples for N = 49,
N is approximately set to be 51. The optimal parameters are
used for each PSA. As can be seen, LA and GLA-OEL can
achieve the highest number of DOF among all the structures.
HOBA-2, HA, LdA and 2DNA can only provide the half
number. Furthermore, 2DCA achieves the least number of
DOF with 2 more sensors because of the holes in its DSCA.
The reason is that LA-like arrays have the lowest redundancy
in the DCSA generations. Therefore, with the same number
of sensors utilized, more sources can be detected.
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TABLE 1. DOF of different PSAs.

2) WEIGHT FUNCTIONS
For LA, as given in Property 1, the weight functions can be
expressed as

w(1, 0) = Nx , w(0, 1) = Ny, w(1, 1) = 0, w(−1, 1) = 1.

For GLA-OEL, as indicated by Property 3, the weight
functions are

w(0, 1) = 1, w(1, 0) = 1, w(1, 1) = 0, w(1,−1) = 1.

For 2DNA, the weight functions are [25]

w(0, 1) = Nx(Nx − 1), w(1, 0) = Nx(Nx − 1),

w(1, 1) = w(1,−1) = (Nx − 1)2.

ForHOBA-2, theweight functions can be expressed as [30]

w(0, 1) =

{
4, if Ny is odd
6, if Ny is even

, w(1, 0) = 2,

w(1, 1) = w(1,−1) =

{
Ny − 2, if Ny is odd
Ny − 3, if Ny is even.

For HA, the weight functions can be expressed as [30]

w(0, 1) =

{
8, if Ny is odd
10, if Ny is even

, w(1, 0) = 2,

w(1, 1) = w(1,−1) =


3, if Ny = 7, 8
5, if Ny = 10 or 2r + 1, r ≥ 4
7, if Ny = 4r , r ≥ 3
9, if Ny = 4r + 2, r ≥ 3

For LdA, the weight functions are

w(0, 1) =

{
8, if Ny is odd
10, if Ny is even

, w(1, 0) = 2,

w(1, 1) = w(1,−1) =


3, if Ny = 7, 8
5, if Ny = 10 or 2r + 1, r ≥ 4
7, if Ny = 4r , r ≥ 3
9, if Ny = 4r + 2, r ≥ 3

.

For 2DCA, its weight functions depend on its coprime
parametersNx andNy. However, the specificweight functions
with N = 51,Nx = 4,Ny = 3 are still compared below.

FIGURE 6. Comparisons of weight functions.

To take clear insight into the mutual couplings, an example
with N = 49 is illustrated in TABLE 2 and Figure 6. It can be
concluded that no matter in which direction, GLA-OEL can
achieve the smallest weight function. Therefore, it performs
better than any other PSAs when mutual couplings between
adjacent sensors exist. It is the application of DSCA concept
and the special characteristic of GLA-OEL that provide the
superiority.

TABLE 2. Comparisons of weight functions.

3) APERTURE
Definition 7 (Array Aperture) Suppose a PSA P, where

P = {(x, y)|∀x ∈ [x−, x+],∀y ∈ [y−, y+]} with
x−, x+, y−, y+ are arbitrary integers. Then the aperture of
a PSA has two dimensions. Define them as x-aperture and
y-aperture, which denote as Ax and Ay, respectively. Then
Ax = x+ − x−’ and ‘Ay = y+ − y−’. The array deployment
area A = Ax × Ay.

For our proposed array, Ax = 2Nx and Ay = 2Ny.
Therefore, such array needs an area of Ax × Ay = 4NxNy
to deploy.

For LA, Ax = Nx + 1 and Ay = Ny + 1. The deployment
area needed is Ax × Ay = (Nx + 1)(Ny + 1).

For HOBA-2 and HA Ax = Nx and Ay = Ny. The area
needed for array deployment is Ax × Ay = NxNy.
For LdA, Ax = Nx and Ay = 2Ny − 2. The area needed

for array deployment is Ax × Ay = Nx(2Ny − 2).
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FIGURE 7. The DOA estimations (◦) and the true directions (×) for different PSAs with the same N = 49. (a) 2DNA (Nx = Ny = 5) with mutual
coupling; (b) HA (Nx = 25, Ny = 13) with mutual coupling; (c) LA (Nx = 24, Ny = 24) with mutual coupling; (d) LA (Nx = 24, Ny = 24) without
mutual coupling; (e) GLA-OEL (Nx = 24, Ny = 24) with mutual coupling; (f) GLA-OEL (Nx = 24, Ny = 24) without mutual coupling. B = 2,
c1 = 0.6. The SNR=10 dB. The number of pseudo snapshots and snapshots are 100.

For 2DNA, the x-aperture and y-aperture are Ax = (Ny −
1)Nx + 1 and Ay = NyNx , respectively. Then the area needed
for the array is Ax × Ay = NyNx[(Ny − 1)Nx + 1].

For 2DCA, the aperture is also influenced by two coprime
parameters Nx and Ny (Nx > Ny), which are defined in the
previous subsection. Then Ax = Ay = Nx(2Ny − 1)+ 1 and
the area of 2DCA is Ax × Ay = [Nx(2Ny − 1)+ 1]2.
An example of the deployment area is illustrated in

TABLE 3. The proposed GLA-OEL requires the largest array
deployment area, which greatly increase the DOF. However,
although the aperture is large, the sensors of GLA-OEL are
only positioned at x and y axis instead of occupying the whole
area.

V. NUMERICAL SIMULATIONS
In this section, we will conduct numerical simulations to
demonstrate the superiority of the DSCA construction and
low mutual coupling influence in GLA-OEL. Consider
K = 14 uncorrelated sources with the normalized direc-
tions distributing at set 2 = {(θ̄k , φ̄k )|k = 1, . . . ,K }
with θ̄k = sinθkcosφk , φ̄k = sinθksinφk . The normal-
ized directions are defined as (−0.3,−0.1), (−0.3, 0.1),
(−0.3, 0.3), (−0.1,−0.3), (−0.223,−0.223), (−0.1, 0.1),
(−0.045, 0.134), (−0.1, 0.3), (0.1, 0.1), (0.1,−0.1), (0.1, 0.3),
(0.3,−0.3), (0.3,−0.1), (0.3, 0.1). Choose the optimal

TABLE 3. Deployment area of different PSAs.

parameters and number of sensors for all compared config-
uration as the values in Table 1. The root mean square error
(RMSE) has the form of

RMSE =

√√√√√(1/(ÑK )
K∑
k=1

Ñ∑
n=1

( ˆ̄θkn − θ̄kn)2 + ( ˆ̄φkn − φ̄kn)2,

(20)

where ( ˆ̄θ, ˆ̄φ) and (θ̄ , φ̄) are the estimated and true DOAs,
respectively; Ñ is the number of independent Monte-Carlo
trials.
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A. DOA ESTIMATIONS
We assume that the number of pseudo snapshots and snap-
shots is Ns = Nsp = 100 and the signal-to-noise ratio (SNR)
is 10 dB. Applying the spatial smoothing [9] and unitary
ESPRIT algorithm [35] on 2DNA, HA, LA and GLA-OEL,
the DOA estimation results are illustrated in Fig. 7. As can be
seen, with mutual coupling considered by setting B = 2 and
c1 = 0.6, Fig. 7(a), (b), (c), (e) shows that the 2DNA and HA
fail to estimate some DOAs with the RMSE being 0.0757 and
0.0426. While LA and GLA-OEL can get accurate estima-
tions with RMSE being 0.0042 and 0.0012. The GLA-OEL
is capable of estimating the DOA more satisfactorily than
any other PSAs. Without mutual coupling effect, as shown in
Fig. 7(d) and (f), the estimation results are much better than
the case when the couplings exist.

FIGURE 8. RMSE v.s. SNR with B = 2, c1 = 0.6. The number of pseudo
snapshots and snapshots are Nsp = Ns = 100.

B. RMSE
The root-mean-square error (RMSE) results obtained at dif-
ferent SNRs varying from −10 dB to 25 dB with pseudo
snapshots and snapshots Ns = Nsp = 100 are illustrated
in Fig. 8. 300 independent Monte-Carlo trials are conducted.
The parameters for PSAs and the mutual coefficients are the
same as that in the first experiment and Table 1. As shown,
the GLA-OEL can acquire the lowest RMSE when the SNR
is larger than 0 dB. The LA performs better than HOBA-2,
HA, 2DNA and 2DCA but a little bit worse than GLA-OEL.
Meanwhile, 2DCA achieves the worst resolution even with
two more sensors due to its limited DOF. The reason why
HOBA-2, HA, 2DNA get lower errors when the SNR is
less than −5 dB is that the weight functions of w(1, 1) and
w(1,−1) for LA and GLA-OEL are much lower than the
other four PSAs. It leads to the reduced coupling effect as
well as weak robustness.

Fig. 9 illustrates the RMSE versus the number of snap-
shots with SNR=10 dB. The proposed GLA-OEL performs
the best among all the PSAs, followed by the LA, LdA,
HA, HOBA-2 2DNA and 2DCA. To compare the redun-
dancy of adjacent sensors, Fig. 10 presents the RMSE versus
mutual coupling effect c1. As c1 increases, the estimation

FIGURE 9. RMSE v.s. snapshots with B = 2, c1 = 0.6. The SNR is 10 dB.

FIGURE 10. RMSE v.s. c1 with SNR=10 dB and Ns = 100.

results get worse for all the PSAs. HOBA-2, HA and
2DCA suffers degration when c1 is larger than 0.4. While
for LA and GLA-OEL, the performance declines severely
when c1 > 0.8. It demonstrates that the new struc-
ture has the smallest number of sensor pairs located near
to each other. At the same time, the DOF is increased
dramatically.

VI. CONCLUSION
In this paper, VCAM algorithm is applied onto the traditional
L-shaped array to acquire the diff-sum coarray. Due to the
special structure of LA, the number of sensor pairs with
the separations in each direction except the horizontal and
vertical ones can be greatly reduced. As a result, with the
same number of sensors used, the increase of DOF can be
achieved. To further reduce the redundancy on the x and y
axes, an element moving strategy of LA is proposed. By
moving any one or more sensors to the centrosymmetric
positions, the DSCA will keep intact. Based on this strategy,
a generalized L-shaped concept is proposed. Furthermore,
the GLA-OEL configuration is presented as a special case of
GLA. By moving the even position elements on the positive
axes to the mirrored places, the new structure can acquire the
lowest weight functions. Combined with the increase of DOF,
as a result, more sources can be detected by the GLA-OEL
with the mutual coupling considered.
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APPENDIX A
PROOF OF PROPERTY 1
1) Denote DA,B = {±(pppi − pppj)|pppi ∈ A,pppj ∈ B} and
SA,B = {±(pppi + pppj)|pppi ∈ A,pppj ∈ B}. Then, according to the
definitions of co-arrays in Eq. (8) as well as the expression of
LA in Eq. (10), one can obtain that

DSLA = DH,H ∪ DV,V ∪ DH,V ∪ SH,H ∪ SV,V ∪ SH,V.
(21)

Substituting the expression of H and V into Eq. (21),
we have

DH,H = {(nx , 0)|nx ∈ [−Nx ,Nx]};

DV,V = {(0, ny)|ny ∈ [−Ny,Ny]};

DH,V = {(nx , ny)|nx ∈ [0,Nx], ny ∈ [−Ny, 0]}

∪ {(nx , ny)|nx ∈ [−Nx , 0], ny ∈ [0,Ny]};

SH,H = {(nx , 0)|nx ∈ [−2Nx , 2Nx]};

SV,V = {(0, ny)|ny ∈ [0, 2Ny] ∪ [−2Ny, 0]};

SH,V = {(nx , ny)|nx ∈ [0,Nx], ny ∈ [0,Ny]}

∪ {(nx , ny)|nx ∈ [−Nx , 0], ny ∈ [−Ny, 0]}. (22)

It is not difficult to deduce that the cross sum co-array SH,V
generates the virtual elements in the first and third quadrant.
While the cross difference co-array can obtain the second and
fourth quadrant elements. The ones at the axes are included
in the self sum and self difference results. From Eq. (22) we
conclude that a virtual URA atULA = {(nx , ny)|−Nx ≤ nx ≤
Nx ,−Ny ≤ ny ≤ Ny} of size (2Nx+1)×(2Ny+1) is included
in the SDCA.
2) Due to the definition of LA in Eq. (10), only one sensor

pair contributes to w(−1, 1), i.e., (0, 1), (1, 0). No sensor pair
can generate (1, 1). For w(1, 0), the sensors (i, 0), (i − 1, 0)
with i = 1, . . . ,Nx contribute to it. Therefore, w(1, 0) = Nx .
Similarly, we have w(0, 1) = Ny.

APPENDIX B
PROOF OF LEMMA 1
Denote the original PSA as P = {ppp1,ppp2, . . . ,pppN } with pppi =
(nxi, nyi) for i = 1, 2, . . . ,N . According to the assumption
above Lemma 1, Q sensors at position S1 = {ppp1, . . . ,pppQ}
are move to the mirrored places Ŝ1 = {−ppp1, . . . ,−pppQ} with
the left elements located at Ŝ2 = S2 = {pppQ+1, . . . ,pppN }.
Therefore, sensors in the new PSA can be divided into two
groups, i.e. P̂ = Ŝ1 ∪ Ŝ2. While the original PSA can be
expressed as P = S1 ∪ S2 = (−Ŝ1) ∪ S2. Therefore, the
new DSCA can be written as

D̂S = DSŜ1 ,̂S1 ∪ DSŜ1 ,̂S2 ∪ DSŜ2 ,̂S2 . (23)

Denote DSA,B = DA,B ∪ SA,B. The analysis of D̂S can
be divided into three cases. According to the definitions of
DSCA, SCA and DCA in Eq. (8), we have

DSŜ1 ,̂S1 = DŜ1 ,̂S1 ∪ SŜ1 ,̂S1
= {pppi − pppj} ∪ {pppi + pppj,−pppi − pppj} (24)

for i, j = 1, . . . ,Q;

DSŜ1 ,̂S2 = DŜ1 ,̂S2 ∪ SŜ1 ,̂S2
= {±(pppi − pppj)} ∪ {±(pppi + pppj)} (25)

for i = 1, . . . ,Q, j = Q+ 1, . . . ,N ;

DSŜ2 ,̂S2 = DŜ2 ,̂S2 ∪ SŜ2 ,̂S2
= {pppi − pppj} ∪ {pppi + pppj,−pppi − pppj} (26)

for i, j = Q+ 1, . . . ,N .
On the other hand, the original DSCA has the form of

DS = DSS1,S1 ∪ DSS1,S2 ∪ DSS2,S2 . (27)

Substituting the relationship Ŝ1 = −S1 and Ŝ2 = S2 into
the above equation, one can find that

DSS1,S1 = DS1,S1 ∪ SS1,S1
= {pppi − pppj} ∪ {pppi + pppj,−pppi − pppj}

= DŜ1 ,̂S1 ∪ SŜ1 ,̂S1 = DSŜ1 ,̂S1 , (28)

for i, j = 1, . . . ,Q;

DSS1,S2 = DS1,S2 ∪ SS1,S2
= {±(pppi − pppj) ∪ {±(pppi + pppj)}

= SŜ1 ,̂S2 ∪ DD̂1,D̂2
= DSŜ1 ,̂S2 (29)

for i = 1, . . . ,Q, j = Q+ 1, . . . ,N ;

DSS2,S2 = DSŜ2 ,̂S2 . (30)

In conclusion, we have D̂S = DS.
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