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ABSTRACT The number of fragments and the variety of primitive cultural relics unearthed in archaeology,
especially the mixed fragments of several dynasties unearthed in Qinglong town, Shanghai, pose a great
challenge to the manual splicing. The traditional manual comparison method is easy to cause the second
damage to the cultural relics. In this paper, the edge feature is extracted based on removing the noise of point
cloud, a bilateral filtering point cloud denoising algorithm based on salient features is proposed. By changing
the step size and field of view, the Improved Artificial Fish Swarm Algorithm is used to get the matching
strategy, and the point cloud is used to reconstruct 3Dmodel by the Dual Quaternion Transformation method.
The pairing of fragments and virtual reconstruction can effectively avoid the secondary damage of cultural
relic fragments. It provides a feasible artificial intelligence solution for the protection and restoration of
similar archaeological excavations.

INDEX TERMS Feature extraction, improved artificial fish swarm algorithm, 3D laser scanning, global
pairings.

I. INTRODUCTION
Taking the site of Qing long town in Shanghai as an exam-
ple, more than 6000 pieces of restorable porcelain and hun-
dreds of thousands of fragments from kilns in Province
Fujian, Zhejiang and Jiangxi have been discovered during
the six-year archaeological exploration. Most of the porce-
lain was produced in the southern kilns. The Yue, Deqing
and Changsha kilns dominated the Tang Dynasty, and by
the Song Dynasty it had been transformed into the Yiyao,
Longquan Celadon and Jingdezhen Kilns in Fujian province.
The unearthed Tang Dynasty debris heaps are bowls, pots,
and so on. The research on the matching of cultural relic
fragments and virtual reconstruction is helpful to reduce the
secondary damage caused by manual splicing. Fragments
belonging to different artifacts were mixed together, and the
manual sorting and pairings work is huge, and the challenges
are shown in Figure 1.
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FIGURE 1. A large number of fragments unearthed in Qing long town,
Shanghai.

In order to minimize the secondary damage caused by
manual hand-holding of the fragments, the point cloud data of
the fragments are obtained by non-contact 3D laser scanning.
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Then, the improved artificial fish school algorithm is used to
obtain the matching information of the fragments to assist the
conservation and restoration of the cultural relics.

With the development of 3D laser scanning technology, its
application in cultural relics conservation has been frequently
preferred [1], [2]. The global pairings of fragments arrange
each fragment according to the pairings of fragment contour
feature, internal geometry feature and color texture. However,
the traditional imagemosaic method often uses the sub-image
fusion method, the efficiency of this method can be evalu-
ated by the similarity of specific features. Zhang et al. [3]
proposed a greedy algorithm for 2D fragment assembly by
repeatedly assembling two neighboring fragments into a com-
posite one. It provided an idea for the mosaic of cultural relic
fragments, but the application of this algorithm to the mosaic
of three-dimensional fragments is still unclear. Real models
often include rich texture information, which can compensate
for the limited shape information [4]. Pintus [5] presented a
review of recent techniques for performing geometric anal-
ysis in cultural heritage applications. Their method utilizes
the texture and color characteristics of the vessel fragments
as well as other factors including expert historical knowledge
of the period, site location, and provenance of the artifact.
Cohen et al. [6] presented a theory for automatically recon-
structing fragments. Their system completes the reconstruc-
tion by first segmenting the fragments into a set of faces
bounded by sharp curves, then computing multi-scale surface
characteristics, and pairings based on techniques of forward-
ing search and surface consistency. Son et al. [7] proposed a
novel approach to automatically match the fragments. They
scan the mixed and unorganized fragments from three pots
and then estimate the axis of symmetry for each fragment
through analyzing the point cloud. Besides, break curves of
the fragments are also extracted. The symmetry property and
break curve information derived are then applied to match.

The previous approaches all can be implemented under a
certain condition. When some fragments are missing, which
is common for cultural relics, errors may occur during pair-
ings. Many previous works extracted boundaries for pairings.
However, the procedure of boundary curve smoothing is often
time-consuming. Moreover, the pairings of fragments is a
procedure of reconstructing the initial model of the object
which needs to take the global consistency of different results
into consideration.

From the perspective of combinatorial mathematics, frag-
ments pairings problem is equivalent to combing and all the
fragments according to certain rules, namely, finding the cor-
respondence relations among all fragments [8]. Therefore the
problem can be considered as a combinatorial optimization
problem, and one of the approaches to solving the combi-
natorial optimization problem is enumeration method. How-
ever, the combination explosion problem may occur when
there are large amounts of fragments. So, the global pairings
of 3D fragments problem is a combinatorial optimization
problem with characteristics of large scale, nonlinear and
multi-objective.

II. MATERIAL AND METHODS
To testify the efficiency of the proposed method, an experi-
ment has been carried out. The experimental objects are some
fragments of earthenware and two porcelains from different
dynasties.

Each fragment is assumed to be an element of a col-
lection, and the characteristics of the fragment itself can
be considered as several constraints. The following three
reasons account for the vagueness and incompleteness of
constraints. (1) Deformation and inaccurate edge information
often appear in each fragment due to extrusion from external
force and wear and erosion. Sometimes, certain fragments
are also missing. (2) The point cloud data are incomplete
due to the performance of the scanner, the occlusion, and
the unavoidable defects of the scanning method. (3) Errors
may occur during the process of extracting features. To match
the fragments is to find the best solution under constraints.
However, the incompleteness of the constraints often leads
to inaccurate corresponding relations. So it is necessary to
analyze the constraints, namely, finding knowledge from
uncertain information by the reduction model extension as
the basis of fragments pairings [9].

In the research, the information acquired is often impre-
cise, incomplete and vague, which includes a lot of uncer-
tainty. It is rather difficult to find the corresponding relations
among fragments due to the vagueness and incompleteness
of the constraints. Some artificial intelligence (AI) algorithms
are very similar to the research of element classification com-
bination and fragment matching. Particle Swarm Optimiza-
tion (PSO) is a widely studied algorithm. However, the PSO
is not good at maintaining population diversity, which usually
leads to premature convergence or local optimization [10].
The superior solution set search problem contains parameters
that provide constraints on evaluation value and distance.
Fukushima et al. [11] proposed an evaluation indicator that
is inspired by a method based on a dominance relation in
multi-objective optimization problems. Bouamama et al. [12]
presented an efficient random iterative greedy algorithm for
solving a class of problems related to the random local search
strategy of the greedy algorithm. Although the multilevel
framework cannot be considered as a panacea for combina-
torial problems, it can provide an extremely useful addition
to the combinatorial optimisation toolkit [13]. Ant Colony
Algorithm (ACO) is also used to solve the optimal solution.
Despite its successes, ACO is not a perfect algorithm: it can
remain trapped in local optima, miss a portion of the solution
space, or in some cases, it can be slow to converge [14], [15].

In this paper, a global pairings approach based on an
Artificial Fish School Algorithm (AFSA) is adopted to solve
the problem. The process can be seen as the school of fish
foraging for food. In a water area, fishes are most likely
distributed around the region where foods are most abundant
and nutritional [16]. ASFA has the advantages of fault tol-
erance of parameter setting, insensitivity to initial value and
parallelism. So it is suitable to solve nonlinear programming
and multiple objective programming problems [17], [18].
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First, reflect the feature pairings scheme space into a coding
space using the binary encoding mechanism. Under the given
constraints, ASFA is used to search the coding space and
get the optimal resolution. All possible pairings could be
reflected by coding mechanism (based on fracture surface),
thus, these codes can be seen as a shoal of fish. Some other
AI methods, e.g., ACO and bacterial foraging algorithm have
also been the research focus recently [19]. Not only can the
ASFAmodify the current pairings scheme during the process,
but also can it obtain the optimal solution.

III. POINT CLOUD PROCESSING AND FEATURE
EXTRACTION FOR 3D SCANNING OF DEBRIS
A. REMOVAL OF NON-RELIC DEBRIS POINTS FROM
LASER 3D SCANNING
There are many mature algorithms to extract the edge, color
and geometry information of debris point cloud [20], [21].
The methods of feature points and boundary extraction in this
study are based on references. But processing the scanned
point cloud data in advance is a very important process.
In fact, the noise is often distributed irregularly around the
debris, making it difficult to distinguish using a single math-
ematical model.

The noise of scattered point cloud can be divided into three
types: (1)The point cloud which deviates from the debris
point cloud and is suspended above the debris point cloud
has little correlation with the measured object, which can be
regarded as the error points; (2) The point cloud which is
far from the center of debris and is dense in different sizes;
(3)The noise point is mixed with the correct point of the
fragment.

For the first and second kinds of points, the point cloud
was divided into three parts according to x, y and z. Then
the grid position of each point is obtained, and the number
of point clouds in each grid is determined. The minimum
coordinates of a space cube bounding box are xmin,ymin, zmin,
the maximum coordinates are xmax,ymax,zmax, the length of
the side of the cube is l, then the number of cubic grids in the
x, y, and z directions is:

N1 = int
{
1
l
[(xmax + e)− (xmin − e)]} + 1 (4.1)

N2 = int
{
1
l

[
(ymax + e)− (ymin − e)

]}
+ 1 (4.2)

N3 = int
{
1
l
[(zmax + e)− (zmin − e)]} + 1 (4.3)

Let the three-dimensional coordinates of a given point be
px, py, and pz, then the grid of the cube in which it is located
is a hash function:

I = int
[
1
l
(px − xmin)

]
(4.4)

J = int
[
1
l

(
py − ymin

)]
(4.5)

K = int
[
1
l
(pz − zmin)

]
(4.6)

In the above equations (4.4, 4.5, 4.6), I, J and K are the
index numbers of the cube grid in the x, y and z axes of the
cube where the point is located. One-dimensional array of
storage pointers is used to record the ordinal number of all
data points in each grid.

The K-Nearest Neighbor (KNN) of the current grid search
point p are arranged in ascending order of distance. If the
K neighbors of the candidate points in the current grid have
been found, and the distances are all less than the shortest
distance between the point p and the six faces of the grid,
then the search for the KNN of the candidate points is over,
when K value is 15 ∼ 25, the effect is better [22]. After the
scattered point cloud has processed, the number of data points
in each small stereo grid is first determined. If the number is
less than 2, all data points in the grid are deleted. The goal is
to find and remove the scattered, sparse data points that hover
over the point cloud.

Jones et al. [23] improved the algorithm of bilateral filter
in image processing and applied it to the processing of 3D
model. The anisotropic smoothing denoising algorithm based
on the bilateral filter is simple and fast, but it is easy to have
the problem that the feature is over-smoothed. In addition,
some scholars have improved the method and obtained a bet-
ter de-noising effect on the model of the turbofan [24], [25].
The edge of the bilateral filter to retain better, and Vinax
filter and Gaussian filter noise removal will be clear of
the edge, for high-frequency details of the protection is not
obvious. But there are also some shortcomings, for example,
for the regional gradient transformation of point cloud data,
the effect is unsatisfactory. For the third kind of point cloud
noise, a bilateral filtering point cloud denoising algorithm
based on salient features is proposed. The bilateral filtering
method is defined as p,i = pi−εn,wherepi is point clouds
obtained directly from 3D laser scanning, p,i is de-noised
points. n is the normal direction, ε is a bilateral filter factor.
Let pj = KNN(pi) is the neighborhood point of pi.

ε =

∑
pj ω1

(∥∥pj − pi
∥∥)ω2

(∣∣〈nj − ni〉 − 1
∣∣) (n, pj − pi

)∑
pj ω1

(∥∥pj − pi
∥∥)ω2

(∣∣〈nj − ni〉 − 1
∣∣)

(4.7)

ω1, ω2 are the weights of the spatial domain (the Gauss filter
on the micro-tangent plane in the local neighborhood of the
sampling point) and the weights of the eigenvalues (the Gauss
filter with normal vector change in the local neighborhood
of the sampling point), respectively. The former is used to
control smoothness, and the latter can determine the degree
of feature retention.

ω1 (x) = e
−

x2

2δ21 (4.8)

ω2 (y) = e
−

y2

2δ22 (4.9)

δ1 is the influence factor of the distance from the sam-
ple point to its neighborhood, and the value of δ1 has an
effect on the filtering result. The larger the value the more
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FIGURE 2. Sample debris cloud de-noise processing.

neighborhood midpoints of the sample point are, and the
denoising result is better, but the effect of featuremaintenance
in point cloud model is reduced. δ2 is the influence factor of
the normal upward projection of the distance vector which
from the sampling point to the point in the neighborhood,
the bigger the feature, the better the retention. The specific
formulas for the two parameters are as follows:

δ1 = max
∥∥pj − pi

∥∥ ; i∈ [1,n] (4.10)

δ2 =

√
1

n− 1

∑n

i=1
(µi − µ̄)

2

(µ = 〈pj − pi, n〉) (4.11)

Using the above methods, we remove the noise point cloud
as shown in Figure 2.

B. EDGE EXTRACTION OF DEBRIS POINT CLOUD
Get one point p and its KNN Nj (j = 1, 2, 3, . . . ,k) as a local
reference. Then using the Least Squares to fit the micro-
tangent plane. The plane is represented by the following
formula. 

x1 y1
x2 y2

z1 1
z2 1

. . . . . .

xk yk
. . . ...

zk 1




a1
a2
a3
a4

 = 0 (4.12)

Assume


x1 y1
x2 y2

z1 1
z2 1

. . . . . .

xk yk
. . . ...

zk 1

 = A, a = [a1, a2, a3, a4]T,

therefore Aa = 0. Singular value decomposition on ATA:

A = U
[
1 0
0 0

]
VH (4.13)

U and V are unitary matrices in the formula, 1 = diag[√
t1,
√
t2, . . . ,

√
tr
]
(i = 1,2,. . . , r), where ti is the positive

eigenvalue of ATA, r is the number of singular values. The
eigenvector corresponding to the minimum eigenvalue of
ATA is the least square solution of Aa = 0, and the normal
vector of the micro-tangent plane is n = (a1, a2, a3). Pro-
jection point coordinates can be calculated by the projection
point p

′

and N
′

j from the micro-tangent plane. Suppose the

scattered point set coordinates are (xi, yi, zi)(i = 1,2,. . . ,
n), the projection point on the micro-tangent plane has the
coordinates

(
x
′

i, y
′

i, z
′

i

)
.

a1x
′

i + a2y
′

i + a3z
′

i + a4 = 0 (4.14)(
x
′

i − xi
)

a1
=

(
y
′

i − yi
)

a2
=

(
z
′

i − zi
)

a3
= m

(4.15)

where,

m =
a1xi + a2yi + a3zi√

a21 + a22 + a23

The coordinates of the projection point can be obtained
fromEquations (4.14) and(4.15). On themicro-tangent plane,
the vector direction from p

′

to the point farthest from p
′

is
x-axis, and the direction perpendicular to x-axis is y-axis. For
the sample points projected on the micro-tangent plane, if the
K-neighborhood projection points are uniformly distributed
around the sample points, then the sample points are non-
boundary points, otherwise the sample points are boundary
feature points. The edge of the fragment can be fitted by these
feature points, and a series of corners can be marked as shown
in Figure 3.

IV. COMPARISON OF ARTIFICIAL INTELLIGENCE
ALGORITHMS AND FRAGMENT GLOBAL PAIRINGS
BASED ON IMPROVED ASFA
Since each edge of the grid is shared by at most two facets,
the grid is manifold, therefore, we use a half-edge data struc-
ture. Assume that when a complete cultural relic breaks, it has
n pieces of fragments. These fragments can be expressed by
a setGA, and GA = {TA1,TA2, . . . ,TAi, . . . ,TAn}, i = 1 to n,
TAi is the fragment numbered i and has several fractured sur-
faces. The major test objects of this research are thin-walled
cultural relics, so the fractured surface can approximately
be seen as a verge that can best reflect its feature. The
fractured surfaces of TAi can be expressed by a set LAi, and
LAi = {lAi1, lAi2, . . . ,lAii, . . . ,lAin}.
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FIGURE 3. Sample fragment edge extraction and the marked corners.

During the process of pairings, any two of the fractured
surfaces can be matched. However, the fractured surfaces
belonging to a single fragment cannot be matched. The whole
possible pairings of the fractured surfaces can be expressed
by a matrix M =

(
TAij

)
n×n,where n is the total number of

the fractured surfaces, i, j are the sequence number of the
fractured surfaces.

TAij is a symmetric matrix. To reduce the storage space,
only the half triangular matrix needs to be stored. In this
experiment, the lower triangular matrix is used.We want
to get the possible matching conditions in the matching
scheme. However, this algorithm can only have one opti-
mal pairing scheme. So this is the key step in determining
the value of TAij. The current state of a single fragment
can be expressed by a vector V = (x1, x2, . . . ,xn), where
xi is a variable of optimizing and the objective function
F (x). The results were influenced by edge features, geo-
metric features, texture features and the knowledge of the
archaeologist [6]. Here the impact factors are regarded as
visual factors and when they acquire the visual condition,
they will approach the value of the objective function by a
shift step.

In the process, each fragment has multiple features, and
it’s easy to approach the fragments with similar features.
Although the behaviors seem to be jumbled, the approaching
behavior is in order and purposeful [26]. Let V’

i be the state
after optimizing, and Vi be the current state, then the process
of optimizing can be expressed as follows:

V
′

i = Vi + visual · rand(),i = n · rand() (5.1)

Vnext =
v
′

i − vi∥∥v′i − vi
∥∥ · step · rand() (5.2)

The search range of the AFSA is determined by the field
of view parameters. Under the fixed condition, only a few
individuals are different from the optimal solution when the
individuals approach the optimal solution gradually, if the
algorithm is still searching in the original field of view, it will
be inefficient, so in this case, we should narrow down the
search area.When the field of view is smaller, the local search
ability of the algorithm is strong, so the convergence speed of
the algorithm is slow and the computation is large. When the
convergence speed of the algorithm is accelerated, the global
search ability is enhanced, and it is easy to skip the optimal
solution. In order to improve the global search ability and
convergence speed of the algorithm, a larger field of view is
adopted in the early stage of the algorithm. Too small search
range also affects the optimal solution, so the search range is
adjusted dynamically by formula (5.2) in the iteration.visuali = visuali−1×exp(−

(
i
n

)2

)

visuali = visualmin, visuali ≤ visualmin

(5.3)

where i is the current iteration number, n is the maximum
iteration number which needs to be set according to the effect
of the Algorithm, and visual is the current field of view. The
step size determines the convergence speed of the algorithm,
and the larger the step size, the faster the earlier convergence
speed, but sometimes there will be oscillation phenomenon.
Therefore, the step length is dynamically adjusted according
to formulas (5.3).stepi = stepi−1 × exp(−

(
i
n

)2

)

stepi = step0, stepi ≤ step0

(5.4)
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The initial value is namely step, which converges quickly
in the early stage by changing step size, and can be searched
more carefully in the later stage, thus improving the efficiency
of finding the optimal solution. The congestion factor will
affect the local extremum of the algorithm, and an exponen-
tial decay strategy is used to calculate the crowding factor
during the iteration (α is the attenuation factor, and δ is the
congestion factor):

δi+1 = α × δi (0 < α < 1) (5.5)

Thus, the algorithm gains a better ability to avoid falling into
a optimal solution.

X,i = Xi + step,i × δi+1 (5.6)

The thresholds of these four visual factors can be set
separately. Select a fragment randomly and compare its cer-
tain feature with all the other fragments. If two fragments
can match then return 1, conversely, then return 0. In the
computation process, the matched pairs can be optimized
and adjusted. Therefore, this algorithm can obtain global
information and perform global pairings as shown in Figure 4.

FIGURE 4. The flow chart IAFSA.

The threshold minimum value is named as Xmin and the
maximum value is Xmax. The Xrandom is selected randomly
between Xmin and Xmax. For example, it’s easy to distinguish
among the pieces of different dynasties is a piece of pottery
or porcelain, which can be set to a larger field of view when
foraging for food. The size of different objects is related to
the size of the original objects, so the geometric features
of the objects with significant size difference are clearly
distinguished, and the small visual field is helpful to improve
the search efficiency and accuracy. The superior individual
is reserved and the worst individual is eliminated in every
generation, as shown in Table 1.

Nowadays, there are many mature artificial intelligence
algorithms, but not all of them are suitable for the problems
we solve today. It is necessary to converge as soon as possible

TABLE 1. Algorithm.

in advance, taking into account some uncertainties. We need
some simulation experiments to compare the advantages and
disadvantages of common algorithms. We randomly extract
point cloud data from the fragments and compare the conver-
gence performance of four common algorithms. Here we take
a sample of 80 edges from 16 fragments,as shown in Table 2.

V. EXPERIMENT AND RESULTS
The length of the edge is selected as the visual factor, there
are 80 edges corresponding to 16 pieces of debris, and the
step size is 0.83 (the ratio of the length of the two sides is
not greater than 0.83). Under the constraint of δ, 16 fracture
edges of artifact A are compared, and the possible matching
matrix is obtained as follows:

TAij

=



0
0 0
0 0 0
0 0 1 0
0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 1 1 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 0 0
0 0 0 1 0 1 1 1 0 0 0
0 0 0 1 1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 1 1 1 0 1 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0


All the possible pairings are further confirmed, and the possi-
ble ones are retained while the impossible ones are removed
by the Eq.(5.4). Transform the value of the visual factor.
Select the medium value of the fitting radius of the fragment,
step equals to 0.9, and perform further optimization of the
above matrix under the restraint. Transform the visual factor
again. Select color texture as the pairings requirements, and
perform optimization. For instance, if one fractured surface
is colored, then, the fragment pairings it is sure to be colored.
The color feature can be calculated by gray value.
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TABLE 2. Comparison of cvergence performance of four algorithms.

The fragments belonging to artifact A is more sensitive to
the color texture information. The step value 0.2 shows that
the matrix can be optimized only by a small part of non-white
color in the edge.

Through the matrix the pairings information can be
obtained, and the possible pairings pairs are as follows:

TAij =


(TA13,TA26) , (TA13,TA411) , (TA24,TA513) ,

0, (TA24,TA514) , 0,
(TA25,TA612) , (TA25,TA615) , (TA26,TA38) ,

(TA26,TA615) , (TA38,TA512) , (TA37,TA616) ,

(TA411,TA514) , (TA411,TA616) , (TA514,TA616)


By the optimization of visual factor, the unique matched pair
(TA37,T616) can be obtained. Then this pair is regarded as a
confirmed pair, other pairs as (TA411,TA616), (TA514,TA616),
(TA13,TA411), (TA24,TA513), (TA26,TA38), (TA26,TA615),
(TA25,TA615) are then removed. Fragments TA11 and TA12
don’t have a pairings result but T13 is matched. The main
results showed as follows:

TAij =

{
(TA13,TA26) , (TA24,TA513) , (TA25,TA615)

(TA38,TA512) , (TA37,TA616) , (TA411,TA514)

}
It is clear that the changes of visual factor and step can
gradually optimize the pairings matrix and can obtain enough
matched pairs satisfying pairings requirements. During the
process all the possible pairings have been analyzed. The
results can guide the pairings of fragments in real life in
case of secondary damage to the cultural relic. According to
results TAij, the 3D models of the original artifacts need to
be reconstructed through rigid transformation. The Iterative
Closest Point algorithm proposed by Besl and McKay [27]

can be performed between two point clouds. There is no
common point cloud between the two pieces of debris, and
sometimes the edge will be worn, ICP algorithm is not ideal
here. Moreover, non-rigid point cloud registration [28], [29],
and the 4-Points Congruent Sets Algorithm [30], [31] has
some limits like equiaxed distortion and overlapping which
is not available for the fragments. So, the Dual Quaternion
Transformation (DQT) method is utilized in this paper to
reconstruct the point clouds [32]. The DQT (6.1) and (6.2),
as shown at the bottom of the page.

Here R is the standard 3 × 3 orthogonal rotation matrix.
After the initial attitude correction with Seven-parameter
Transformation, the precise point cloud splicing was carried
out. To test the effect of the DQT rotation on rigid body
motion, we applied matlab12b to computer with CPU of Inter
R Core TM i5-4200H and Ram of 8G. In this paper, 100 ran-
domly generated 3D coordinate points pi = (xi, yi, zi)T , 0 ≤
(xi, yi, zi) ≤ 400 are used as the piecewise point set mod-
els. Firstly the vectors that go around the origin direction
are (3.0,4.0,5.0) and rotate 65 degrees in a straight line,
then translate (5.0,6.0,7.0)as the target fragment point set

p
′

i =

(
x
′

i, y
′

i, z
′

i

)T
. Singular Value Decomposition(SVD) and

Quaternion are compared with the DQT in this paper.
The experiment was divided into two steps. In the first step,

we verify the computational accuracy of the algorithms under
different noise levels. We input 20 different sets of 50 points
and run each set 20 times. Gauss noise with different standard
deviation (mean 0) is added to the transformed point coordi-
nates each time, which is used as the corresponding target
feature point. From the experimental results given in table 3,
we can see that the dual quaternion method and the SVD
have similar performance at the lower noise level, but with the
increasing noise level, the DQT has better performance than
the SVD, performs better inmotion parameter estimation, and
better performance in general. In the second step, wemaintain
the standard deviation of gauss noise at 0.5, and select a
different number of points, execute each set 20 times. The
converted angular and translational standard deviation results
are given in Table 4.

It can be derived from Table 4 that with the increase of
the number of randomly selected points in the point set,
it is expected that the Quaternion method and DQT method
have no deviation in estimating the rotation parameters. But
for the same point, the latter can obviously improve the
accuracy of translation parameter estimation. At the same
time, Table 3 and Table 4 show that reducing the noise level
and increasing the number of feature points can improve the
accuracy of motion parameter estimation. According to the

q =
(
q0,

[
q1, q2, q3

])
(6.1)

R =

 q20 + q21 − q22 − q23 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)
2 (q1q2 + q0q3) q20 − q21 + q22 − q23 2 (q2q3 − q0q1)
2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q20 − q21 − q22 + q23

 (6.2)
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TABLE 3. Comparison of standard deviation of motion parameters at different noise levels.

TABLE 4. Comparison of standard deviation of motion parameters for different points at the same gaussian noise level.

FIGURE 5. Results of artifacts point cloud. (a) Artifact A. (b) Artifact B. (c) Artifact C. (d) Four views of a three-dimensional model of C.

results, the transformed point cloud can be obtained through
the rigid transforming of the matched fragments point cloud.
The fragments belonging to artifact A are transformed to the
same coordinate as shown in Figure 5(a). Figure 5(b) and
Figure 5(c) show the results of artifact B and artifact C respec-
tively. The texture information is acquired by CCD camera,
and the surface information is reconstructed by means of tex-
ture correction and texture mapping. We paste the fragment
texture to get the reconstructed three-dimensional model of
the object, as shown in Figure 5(d) for example.

VI. CONCLUSION AND FUTURE WORK
A method of global archaeological debris pairings based on
AFSA is proposed. The method firstly extracts feature points
from the debris cloud points obtained by a 3D laser scanner.
By changing the step size and field of view, Improved AFSA
is adopted to obtain one-time optimal results by multiple
feature search. It can solve the accumulation of errors caused

by one-to-many pairings. Besides the application of the algo-
rithm provides a solution for the further development of intel-
ligent debris pairings. we study the pairing question of why
these two edges of the two pieces fit together rather than any
other. This is rarely mentioned in studies of similar problems.
Experimental results show the feasibility and effectiveness
of the proposed method. It provides a feasible method for
computer-aided reconstruction of the intermingled ceramic
fragments of several dynasties.

The algorithm has the following three characteristics: (1) It
has fast convergence speed and can be used to solve multi-
objective optimization problem; (2) It can be used to get
a feasible solution quickly for some situations where the
precision is not high, debris with large radius and debris with
small radius often do not belong to the same artifact; (3) It
does not need the strict mechanism model of the problem
or even the exact description of the problem, when certain
features of some fragments are difficult to describe accu-
rately. We will further improve the automation of the whole
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process. Although the number of fragments in the experiment
is limited, the elements in the matrix can be expanded.
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