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ABSTRACT The anticipation of ongoing human interactions is not only highly dynamic and challenging
problem but extremely crucial in applications such as remote monitoring, video surveillance, human-robot
interaction, anti-terrorists and anti-crime securities. In this work, we address the problem of anticipating the
interactions between people monitored by single as well as multiple camera views. To this end, we propose a
novel approach that integrates Deep Features with novel hand-crafted features, namely Transformed Optical
Flow Components (TOFCs). In order to validate the performance of the proposed approach, we have tested
the proposed approach in real outdoor environments, captured using single as well as multiple cameras,
having shadow and illumination variations as well as cluttered backgrounds. The results of the proposed
approach are also compared with the state-of-the-art approaches. The experimental results show that the
proposed approach is promising to anticipate real human interactions.

INDEX TERMS Human interaction anticipation, video surveillance, deep learning, transformed optical flow.

I. INTRODUCTION

The aim of human interaction anticipation is to recognize
an interaction before its complete execution [1]. Preliminary
studies have been attempted to recognize the actions of a
person from single frame and from a few frames [2], [3].
This leads to the concept of anticipating an action from par-
tially observed videos. However, in previous works, the focus
was mainly on predicting single person’s actions i.e. walk,
stand, and sit; rather than complex activities or interactions
(e.g. kicking and punching etc.) of more than one person.
Although, many studies have been performed for the recogni-
tion of fully executed social behaviours and interactions from
surveillance videos [4]—[7]; however, in real-world scenarios,
often interactions and actions must be anticipated before
they are fully executed. Therefore, the anticipation of human
interactions and activities is becoming an active area of
research. It has grabbed the attentions of research community
due to its importance in several applications such as (a) in
video surveillance (to generate the alarm before occurrence of
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any criminal activity (which often involves kicking, grabbing
and fighting), (b) in smart homes (to anticipate a fall of elderly
before its occurrence) and (c) for human-robot interaction
(to make the robot able to aid human by observing human’s
intentions).

The anticipation of human interaction is a challenging
problem since it requires the recognition of interaction from
partial observations. Moreover, illumination variations and
cluttered background in video surveillance data increase the
uncertainty in anticipation task. Furthermore, it is a quite
challenging to develop a machine vision algorithm for early
recognition of interactions. For this, machines must be pro-
vided with extensive knowledge to infer the interactions by
looking just a few initial frames. Therefore, interaction rep-
resentation should be strong enough to recognize unfinished
activities [5].

Unlike machines, humans have the ability to predict the
future occurrences based on previous experience of such
events and thus make themselves able to handle current activ-
ity. Therefore, in video surveillance scenarios, humans can
perhaps better anticipate an untoward activity if it has to
observe single or a couple of cameras’ input. However, due
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FIGURE 1. Block diagram of the proposed approach.

to increased demand for surveillance, multiple cameras have
become an implicit part of our lives. A tremendous number of
images and recordings exist within the world. It is a tedious
job for a human to monitor multiple TV screens for a long
time and thus its natural ability to anticipate an undesired
activity degrades substantially. Contrary to human, machines
have high-speed processors which can process huge amount
of data and they are not tired of the same data being processed
[8]. The existing human interaction anticipation/prediction
methods have focused on the prediction of interaction from
single camera views [8]-[11].

The problem of interaction anticipation becomes trickier
when a scene is monitored with multiple cameras in outdoor
scenarios. In this paper, our focus is to anticipate complex
human activities in real outdoor scenarios in single and mul-
tiple camera setups. We propose to combine deep features
with handcrafted features to reduce the effects of shadows and
illumination variations to provide novel anticipation method.
Instead of using more complex deep models (such as 3D
CNN) which require very large dataset, we opted to use the
features extracted from a single pass of deep network.

Primary contributions of this research include:

1) A novel approach to anticipate real human interactions

in single- and multi-camera networks.

2) The introduction of novel Transformed Optical Flow

Components (TOFCs) features.

3) Robust interaction representation by combining Deep

features with Handcrafted features.

It is noteworthy that with regard to each interaction
class, deep features obtained using deep learning models are
more descriptive and salient [12]. The temporal information,
however, provides useful information about the interaction
pattern. The hybrid approach increased the accuracy of inter-
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action anticipation. The proposed method is evaluated on sin-
gle and multiple camera datasets captured in outdoor scenes
having daylight illumination and compared with state-of-the-
art approaches. Experimental results show that combining
hand crafted and deep features outperform conventional hand
crafted features.

The rest of this paper is organized as follows: Section 2 is
about the related work; the proposed method is presented
in Section 3; Section 4 details the experimental results and
analysis; and Section 5 draws conclusions.

Il. RELATED WORK
This section reviews the state-of-the art approaches in the
context of human action recognition/ anticipation.

A. HANDCRAFTED FEATURES

Spatial and temporal features are mainly used for the rep-
resentation of interaction and activities in a video frame.
Ryoo [8] proposed to formulate the process of interaction pre-
diction as posterior probability. Interactions are represented
with integral bag-of-words and dynamic bag-of-words. Lopez
et al. [13] predicted a portion of trajectories by using a simple
trajectory-based representation named as activity description
vector (ADV). The ADV is composed of frequency and the
four directions of each point i.e. up, down, left and right.
Barnachon et al. [14] proposed to use a histogram-based rep-
resentation of poses for the recognition of streamed actions
using motion capture data. They proposed to extend classi-
cal histogram to integral histogram for the representation of
actions. Actions are compared and recognized using dynamic
time wrapping paradigm. A former work on human interac-
tion prediction presented by Ryoo [8] represented an activity
as an integral histogram of spatio-temporal features. In this
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FIGURE 3. (a-d) input images of frame no k-2, k-1, k and k + 1. (e-g) the optical flow
vectors. (h) Magnitude image(2nd order difference and thresholding).

work, the activity prediction problem is formulated proba-
bilistically by using integral bag of words approach. A new
recognition methodology named dynamic bag of words is
developed for the recognition of on-going human activities
and interactions. Sun et al. [15] detected spatio-temporal
interest points and then sparse grouplets are located to repre-
sent body parts movement. Wang et al. [16] proposed a time
series alignment-based activity prediction method. For this,
a video sequence is divided into segments and then each seg-
ment is represented by local spatio-temporal statistics (His-
togram of oriented gradients (HOG) and histogram of optical
flow (HOF) using bag of visual words model. They compared
the time series of different lengths using temporally-weighted
generalized time warping (TGTW) model.

B. DEEP FEATURES AND MODELS

The handcrafted features i.e. HOGs, space time interest points
(STIPs), trajectories and optical flow have some impediments
in capturing salient motion information for the anticipation
of interactions. Recent studies have shown that deep learned
representations have boosted the performance of recognition
and prediction tasks [22], [23] . Freitas [24] recognized sin-
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gle person actions by using unsupervised feature learning
approach and proposed deep belief network (DBN). Choi
et al. [17] also proposed to extract unsupervised features
using multiple restricted boltzmann machines (RBMs) for
the prediction of human behaviour in smart homes. Vondrick
[23] predicted the visual representation of images in future
by training a deep and performed learning from unlabelled
videos. Ke et al. [9] introduced flow coding images for
the representation of temporal information and proposed to
extract deep features from temporal images. They proposed
to apply temporal convolution on video frames to describe
deep temporal information. Ke et al. [10] further proposed to
use spatial and temporal models learned with longer short-
term memory (LSTM) networks. They proposed to com-
bine spatial model, spatial structural model, temporal model
and temporal structural model for the prediction of partial
observations. Previous work [22], [25] also demonstrated the
effectiveness of combining deep features and handcrafted
features in classification tasks.

A skeleton based action prediction method is proposed by
Bennamoun et al. [19]. This approach uses a global regu-
larizer to learn hidden features and a temporal aware cross
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FIGURE 4. Alexnet architecture for extraction of deep features.
TABLE 1. Characteristics of human behaviour anticipation methods.
Ref. Feature(s) Classifier(s) Characteristics
[14] Histogram of space + time features Dynamic bag of words Single view
Handcrafted feature
Tested in controlled environment
[15] Sparse group-lets DTW-E Single view
to represent movement of body parts
Single person
Handcrafted features
No occlusion handling
[11] Body movements max-margin learning framework Single view
Less efficient against complex interactions
[10] Spatial + Temporal models Long Short Term Memory (LSTM) networks | Single view
spatial model+spatial structural model+
temporal model and temporal structural model
for the prediction of partial observations
[17] Space+time features DBN-R Single view
Handcrafted features
Deep learning
[9] Pre-trained CNN to extract features Softmax Deep temporal architecture
from Flow coding images
[18] HOG-+action-let/pose-let+CNN features Probabilistic model Object affordance based on distance
and angular preferences
[19] Skeleton data CNN single camera
Skeleton data
Requires full sequences
[20] Skeleton joints Scale selection network Single view
3D skeleton data
Best results are achieved on 90% observation ratio/
Difficult to predict actions having same motion pattern
[21] Time-phase feature of the Gaussian model | Multi-feature fusion network Single view
algorithm based on parallel Inception ‘Whole-individual detection is required
and ResNet
Proposed | Handcrafted temporal features +
deep features SVM Integrated handcrafted and deep features
Handles illuminations and clutters
Single view and multi-view outdoor
complex interactions

entropy to address the challenges of diverse motion in an
action sequence captured from single view camera. Com-
pelling results have been achieved; however, the proposed
network requires information about full video sequences.
This is essential to construct the hidden feature layer.
Liu et al. [20] also predicted actions from 3D skeleton
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sequences using single view camera. Motion dynamics in
input sequences are modelled using dilated convolutional
network and a hierarchy of dilated convolutions is used to
learn the multi-level representations from input skeleton data.
Like [19], Skeleton data is used in [20] for action prediction.
This skeleton data is mainly based on precise detection of
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skeleton and joints; which is often difficult especially in real
videos. Both [19] and [20] require extensive training data to
effectively train the networks.

In this work, we focused on anticipation of complex inter-
actions by aggregating the motion and CNN features in single
as well as multi-view cameras. We performed training on par-
tial sequences, hence full videos are not required for training
and testing. Previous work on interaction/activity anticipation
focused on single camera scenarios. Use of multiple cameras
provides different views of entire scene from distinct posi-
tions, which helps to observe the interactions from multiple
angles. Multiple camera views are advantageous in outdoor
scenarios having occlusions and cluttered background as
each camera’s input is deemed to make the final decision.
Table 1 compiles key characteristic differences between the
proposed approach and various state-of-the art approaches.

lll. THE PROPOSED APPROACH
Anticipation of ongoing human interactions under multiple
camera-views is a challenging problem because:

« unfinished videos only provide the early part of the
interaction;

« videos captured in outdoor environments may contain
shadows and cluttered background.

Handcrafted features have been extensively used for recog-
nition of simple human activities; however, they underper-
formed in more complex scenarios. Due to the successful
application of convolutional neural network (CNN) features
in activity and interaction anticipation tasks; we proposed to
combine CNN features with hand-crafted feature for interac-
tion representation. This is due to the fact the hand-crafted
features alone are not powerful enough to capture salient
motion information in a video [26]. The proposed approach
for interaction anticipation is depicted in Fig. 1. It includes
five basic steps:

1) Extraction of Optical flow and CNN features.

2) Computation of TOFCs and their representation using
histograms.

3) Concatenation of the CNN features and TOFCs fea-
tures.

4) Construction of final feature vector by employing both
types of features computed in every frame.

5) Classification using Support Vector Machines.

It is worth-mentioning that the above-mentioned steps are
applied under each camera view and finally the classification
results are fused to get the final decision. Details of these steps
are presented in subsequent sections.

A. PROBLEM FORMULATION

Let C = {C1,Cs,...,Cy} be a set of M partially over-
lapping synchronized cameras. Let V = {1,2,3,...,N}
represent a video having N number of frames. Persons are
detected and bounding boxes are drawn around detected per-
sons in each frame using aggregate channel features [27].
Person’s locations are used as ground truths. We have used
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the ground truths of one camera and then Homohraphy matrix
(H) is applied to estimate the projection from image plane.
(x,y, 1) to ground truth-plane (xg, yg, t), here G symbolizes
the ground truth-plane. The Homography matrix is applied as
follows:

(xG,yG, 1) = H(x,y, 1), ey

where (xg, yg, t) is the ground-plane projection of the point
(x,y,1). H is the homography matrix that is constructed
by selecting the control points of provided ground truths.
The proposed method anticipates interactions between two
persons. Let R,, be the region of interest around the two
persons p and gq. Deep features and TOFCs extracted from
Rpy are represented with fieep and fopr respectively. Our goal
is to anticipate ongoing human interactions under multiple
camera views by representing partial observations with deep
and temporal features.

B. FEATURE EXTRACTION

1) HAND-CRAFTED FEATURES

In this paper, we used hand-crafted features (optical flow) to
get the temporal information from successive video frames.
Hand-crafted features are extracted by computing optical
flow images from the bounding box around two persons
in consecutive frames. We used differential method i.e.
Horn Schunck optical flow to compute optical flow among
four consecutive frames. Optical flow components are trans-
formed to represent the interactions for anticipation [28].

2) TRANSFORMED OPTICAL FLOW COMPONENTS
Optical flow magnitude and orientation are computed from
optical flow vectors as follows:

Mx,y =4/ (r)l;)z + (V)iz)zv 2)

rl

Oxy = tan™! —§, 3)
rx

where M, ) represents magnitude and Oy, represents the
orientation at location(X, y). [llumination variations and clut-
tered background in outdoor environment cause the optical
flow to include numerous noisy observations in flow field.
We propose to transform optical flow components (magni-
tude and orientation) by applying second order difference
on both components and then thresholding them. Contrary
to [29], we have not directly threshold optical flow compo-
nents, rather the second order difference is applied on optical
flow components computed from four consecutive frames
before thresholding both components. The advantage of sec-
ond order difference is twofold: (1) thresholding difference
components provides fine details and removes small flow
variations, (2) temporal information can be specified well by
applying second order difference.

The proposed method to represent optical flow magni-
tude and orientation is named as Transformed Optical Flow
Components (TOFCs). TOFCs are then represented with a
histogram of transformed optical flow magnitude (HTOM).

VOLUME 8, 2020
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FIGURE 5. The process to compute HTOM.

1

(bottom)

FIGURE 6. (top) Sample frames of entire Kick activity; (bottom) HTOMs of frames used for anticipation of Kick activity.

The process to compute TOFCs is depicted in Fig. 2.
To compute TOFCs, second order difference of optical flow
magnitude and orientation is computed in four consecutive
frames respectively. Magnitude values are scaled between 0-
255 by applying linear transformation and then thresholding
is applied on magnitude and orientation. Following equations
are applied to compute element wise second order difference
of magnitude and orientation respectively.

-

M,y = M}C’y - 2M§’y + M}w )
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Sy =61, —201 +63, 5

where, M! is the magnitude between first and second frame,
M? between second and third frame and M? between third
and fourth frame. Similarly, 91, o? and &3 represent the
orientations computed from four consecutive input frames.
Eq. 4 and Eq. 5 are applied on both components to enhance
temporal information in a frame by considering the flow
vectors of previous and next frames. Mx,y and ©, y are the
resultant magnitude and orientation at location x, y. Mx,y is
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FIGURE 8. Snapshots of MU-Interaction2 from multiple views capturing different activities.

then scaled between 0-255 and thresholding is applied on
linearly scaled magnitude as follows:

. 0 if M,y < Ty,

Moy =14 o (©6)
Mx,y lfo’y > TV,

. 0 if &,y < 1o,

Sey=1, .0 ° ©)
ex,y lf ex,y Z Te,

where t)7 and tg are empirically selected. Fig. 3 shows the
detected flow vectors on four consecutive frames and the
resultant magnitude after applying second order difference
and thresholding.
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C. DEEP FEATURE EXTRACTION

Deep features are extracted using Alexnet [30]. In this paper,
we used Alexnet only for the extraction of features, which
requires a single pass on input frames. The Alexnet architec-
ture consists of 8 layers in total. Five layers of Alexnet are
primarily convolution layers (Conv1l, Conv2, Conv3, Conv4,
Conv5) and last three layers are the fully connected layers
(FC6, FC7, FC8). The architecture of Alexnet network is
depicted in Fig. 4. In Alexnet architecture a rectified linear
unit (ReLU) is applied after each convolution step and then
normalization is applied after ReLU in the first two layers.
Max pooling is applied in three layers: first two layers after
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normalization and in the fifth layer after ReLLU. In this paper,
we used the output of FC7, which contains 4096 dimension
feature vector to represent the interaction between two per-
sons. Deep features are computed in each frame returning
4096 dimensional feature vector. Hence, N4096 dimensional
feature is extracted from each input video, where N is the
total number of frames in a video. The deep output features
of N consecutive frames from a video are concatenated by
applying median absolute deviation (MAD).

Faeep(V) = Wteep(Yoey — median(feep). 8)

D. INTERACTION REPRESENTATION

This paper proposes to combine deep features and temporal
features for the anticipation of ongoing interactions. We sim-
ply concatenated both features as follows:

Seat(V) = [fopf» faeep] 9

where feat(V) denotes the final feature vector after concate-
nating deep and temporal feature extracted from video V. f,,r
is temporal feature (either represented by concatenating both
components or by using HTOM and fg.p is the output deep
feature vector. After feature representation is completed,
training is performed on features by using SVM classifier.

E. REPRESENTATION OF TEMPORAL FEATURES

Temporal features can be represented in two way: (a) by
simply concatenating the histograms of magnitude and ori-
entation i.e.

fopr = [HM), H()], (10)

where H is the histogram. (b) By computing histogram of
transformed oriented magnitude (HTOM) to represent trans-
formed components like HOFM in [31]. Unlike HOFM,
second order difference and thresholding is applied on opti-
cal flow components before computing oriented magnitudes
from the overall region of interest. Following are the steps to
compute HTOM:

« Orientations are represented with 8-bins in the range
—12 to 412 which is set as follows: —8x*mw /2 : 2xm /2 :
8xm/2

o The histogram computation is performed by considering
the magnitude and orientation values at each pixel loca-
tion.

o The bins for histogram are chosen from orientations and
the votes for bins are chosen on the basis of magnitude.

o For the orientation value greater than 12; magnitude is
added to the last bin i.e. 12. Magnitude is added to the
first bin if the orientation value is less than —12. Figure 5
depicts the process of computing HTOM.

o The histograms of all frames of a video V are fused by
applying Median Absolute Deviation (MAD) as follows
[32]:

Fopt (V) = fopp (KN_| — median(fopr)l  (11)
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where, fo,r (k) is the temporal feature histogram at frame.
HTOMs of kick interaction are shown in Fig. 6.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We have performed experiments on multi-view camera
datasets for the evaluation of the proposed approach. Exper-
iments are performed on multi-view datasets (MU-
Interactionl and MU-Interaction2) and on publicly available
UT-Interaction dataset [33] and results are compared with
state-of-the-art approaches.

A. DATASETS

MU-Interactionl is captured in front of Mirpur Univer-
sity’s secretariat building using three Dahua IP cameras and
includes 7 interaction classes: Bend, Faint, Handshake, Hug,
Kick, Punch and Push. These interactions are performed by
8 people. No restrictions are imposed on the people regarding
their positions and actions. Each camera has resolution of
1920 x 1080 pixels and the frame rate is 30 Hz. Figure 7
shows the snapshots of each camera view.

TABLE 2. Interaction anticipation accuracies (percentages) of proposed
method on MU-Interaction1 dataset (TOFCs are represented with
concatenated histograms) (Average accuracy = 91.5%). Rows: Predicted
labels Columns: True labels.

Bend 85.71 | 14.29 0 0 0 0 0
Faint 0 100 0 20 0 0 0
Handshake 0 0 100 0 0 0 0
Hug 0 0 0 100 0 0 0
Kick 0 0 0 0 91.67 8.33 0
Punch 0 0 0 14.285 0 71.43 | 14.285
Push 0 0 0 0 0 8.33 91.67

MU-Interaction2 is a challenging outdoor dataset cap-
tured at university’s entrance using 3 Dahua IP cameras
having the resolution of 1920 x 1080 and 10fps, it includes
5 interaction class videos: Hug, Handshake, Kick, Punch
and Push which are recorded by 8 persons. 70 samples are
collected totally under each camera. In this dataset, shadows
and illumination variations are very prominent. One camera
captures the scene from the top and the other two cameras are
placed on the left and right of the entrance gate. Snapshots of
this scenario are provided in Fig. 8.

UT-Interaction dataset is a publicly available dataset
containing videos recorded with single camera and having
6 interaction classes: Handshake, Hug, Kick, Punch, Push
and Point with 10 instances of each class. Figure 9 shows the
snapshots of the dataset.

B. EVALUATION METHOD

For experiments, the region of interest (ROI) includes both
interacting people, chosen by combining both people’s
bounding boxes. Deep features are extracted from ROI using
Alexnet model and the output of FC7 is used as deep fea-
ture vector. Temporal features (TOFCs) are extracted by
extracting optical flow from four consecutive frames and
applying second order difference on optical flow components
(magnitude and orientation). The resulting components are
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FIGURE 9. Snapshots of UT-Interaction dataset.
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TABLE 3. Interaction anticipation accuracies (percentages) of proposed method on MU-Interaction1 dataset (TOFCs are represented with HTOM) (Average

accuracy = 92.72%). Rows: Predicted labels Columns: True labels.

Bend | Faint | Handshake | Hug Kick | Punch | Push
Bend 100 0 0 0 0 0 0
Faint 0 100 0 0 0 0 0
Handshake 0 0 80 20 0 0 0
Hug 0 0 16.67 83.33 0 0 0
Kick 0 0 0 0 100 0 0
Punch 0 0 0 0 0 85.71 | 14.29
Push 0 0 0 0 0 0 100

further thresholded on the basis of an empirically chosen
threshold value 7 (t = 20 for MU-Interactionl and t = 35
for MU-Interaction2). The lower value of t retains the small
variations caused by cluttered background and illumination
changes. The higher the value of t, many useful flow values
will also be thresholded. The threshold value is different for
both datasets because each dataset is recorded in different
environment. The extracted TOFCs are then represented with
histograms and Median Absolute Deviation is applied to com-
bine the histograms of one video stream. Deep features and
temporal features are combined to represent the interaction
between two persons. SVM classifier is used for training
and classification. SVMs are binary classifiers and we opted
one-against-one method to perform multi class classification.
Classification is performed under each camera view and
the results are fused to get the final decision. We applied
majority voting to decide the final interaction class among
all classifiers [34]. If all classifiers select distinct interaction
classes, the classifier whose probability of correct classifi-
cation is high will be considered as reliable classifier [35].
The effectiveness of the proposed complex human interaction
method is tested by using cross-validation under each camera
view separately. Leave-one-out cross-validation is applied to
assess the performance of the proposed method. Instead of
providing complete video frames, partial observations are
given for anticipation. Experiments are carried out on distinct
observation ratios, from 0.2 to 1.0, with step size of 0.1 after
the same procedure as in [9]. Here 0.2 indicates that 20% of
total frames are utilized for classification. If there are total N
frames in a video then [1, round (0.3 x N)] means that 30% of
N frames are used to anticipate the interactions.

C. EXPERIMENTAL RESULTS

1) EXPERIMENTS ON MU-INTERACTION1 DATASET

The first set of experiments on this dataset is performed by
representing TOFCs with concatenated histograms (eq. 7).
Deep features and histogram of TOFCs from one video are
concatenated resulting 1 x 4068 dimensional feature vector.
The proposed method is applied by selecting different obser-
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TABLE 4. Interaction anticipation accuracies (percentages) of the
proposed method on MU-Interaction2 dataset (TOFCs are represented
with concatenated histograms) (Average accuracy = 86.34%). Rows:
Predicted labels Columns: True labels.

Handshake Hug Kick | Punch | Push
Handshake 71.42 14.29 0 14.29 0
Hug 11.11 88.89 0 0 0
Kick 0 0 100 0 0
Punch 7.14 0 0 92.86 0
Push 0 7.14 0 14.29 | 78.57

TABLE 5. Interaction anticipation accuracies (percentages) of the
proposed method on MU-Interaction2 dataset (TOFCs are represented
with HTOM) (Average accuracy = 90.95%). Rows: Predicted labels
Columns: True labels.

Handshake Hug Kick | Punch | Push
Handshake 85.71 14.29 0 0 0
Hug 5.56 83.33 0 0 0
Kick 0 0 100 0 0
Punch 0 0 0 100 0
Push 0 0 0 1429 | 85.71

vation ratios. 30% accuracy is achieved with observation
ratio 0.2, the accuracy of the proposed method enhanced by
20% if 30% of the entire interaction is used for anticipation.
15% improvement is observed with 40% observation ratio.
The accuracy attained on 60% observation ratio is further
noteworthy (92.59%). The observation ratios above 60% are
closer towards the completion of interactions so we have
chosen 0.6 of the entire video for the anticipation task. 8%
of error rate is observed with leave-one-out cross-validation.
The improvement of 2.5% (accuracy = 94.5%) is observed
when classification is performed on the entire video (the
recognition of complete interaction pattern).

The confusion matrix of interaction anticipation accuracies
attained using 0.6 of entire observation is depicted in Table 2.
Rows of confusion matrices correspond to the predicted
labels and columns correspond to true labels. These results
are accomplished by fusing the classification results of all
camera views. Majority voting based fusion is performed
i.e. all instances of faint are recognized in Cam; and Cams3
(accuracy = 100%), hence on the basis of majority voting,
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TABLE 6. Average precision, recall and f-measure of proposed method on both datasets.

MU-Interaction] MU-Interaction2
Deep feat.+concat. TOFCs | Deep feat +HTOM | Deep feat.+concat. TOFCs | Deep feat. +HTOM
Avg. Accuracy 0.91 0.927 0.86 0.90
Avg. Precision 0.90 0.93 0.87 0.91
Avg. Recall 0.92 0.93 0.86 0.91
Avg. F-measure 0.91 0.93 0.86 0.91

TABLE 7. Results of applying T-test.

95% confidence interval of the difference
Sig. Mean Lower Upper
Deep features 0.025 | 62.500 | 30.734 94.266
TOFCs 0.027 | 58.500 | 26.734 90.265
Deep features+TOFCs | 0.006 | 91.835 | 80.950 100.000

all instances of faint are correctly identified. It is noteworthy
that in the context of this paper, ““fainting down” and “falling
down” are same action patterns. However, we distinguish
“fainting down” or ““falling down” from normal *“‘bending
down” event by considering the movements of nearby per-
son(s). Often, If the person is falling down or fainting down,
nearby people shall run to aid that person. In case of normal
bending, motion of nearby people will not matter.

The second set of experiment on MU-Interactionl is per-
formed by combining deep features with HTOM. The com-
putation of HTOM is similar to the process described in
[31], except we have transformed optical flow components
before extracting HTOM. The TOFCs are represented with 9-
bin histogram and concatenated with deep features returning
1 x 4105D feature vector. Experiments are performed on dif-
ferent observation ratios and the performance of the proposed
method is improved 1.5% to 2% in each observation ratio
as compared to the concatenation method. 94% accuracy is
attained by the proposed method when 60% observations are
provided as input. Confusion matrix depicted in Table 3 expli-
cates that anticipation accuracy of all classes is improved with
this method.

TABLE 8. Accuracy comparison with state-of-the-art approaches.

Method Accuracy
Proposed 94%
Ke et al. [10] 86.67%
Ke et al. [9] 88.3%
Lanetal. [11] 88.1%
Ryoo et al. [8] 70.0%
Ye et al. [21] 91.7%

2) EXPERIMENTS ON MU-INTERACTION2 DATASET

The first experiment on MU-Interaction2 is performed by
representing TOFCs with concatenated histograms and com-
bined with deep features for interaction representation. This
dataset is very challenging as it is captured in an outdoor
environment having illumination variations and shadows.
Learning and testing are performed under each camera view
and classification results are fused to get a final decision.
Experiments are performed on different observation ratios
(as on MU-Interactionl dataset). The experimental results
revealed that accuracy increases in first 8 observation ratios,
accuracy decrement of 0.5% is observed when the entire
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video is used for training and testing. By utilizing 60%
observations, the proposed method attained 88% accuracy for
the anticipation of complex interactions. Results are given
in Table 4. These results are attained after fusing the accu-
racies of separate classifiers under all camera views.

The second set of experiments on MU-Interaction2 dataset
is performed by representing TOFCs with HTOM and com-
bining with deep features. The anticipation accuracy of the
proposed method on this dataset is improved when TOFCs
are represented with HTOM.

An overall 3.3% improvement in accuracy is observed
and the improvement ratio of accuracy is also improved
when experimented with distinct observation ratios. An over-
all 91.30% accuracy is achieved using leave-one-out cross-
validation and the results are depicted in Table 5. The
average precision, recall and f-measure values are shown
in Table 6 which clearly depicts that the proposed method
attained acceptable results using deep + HTOM features.

3) SIGNIFICANCE TEST

T-test is applied to measure the significance of classifier on
proposed features. The rule to check the significance is that
if p >= 0.05 then the results are significant. Table 7 shows
the results of T-test applied on separate and combined feature
elements. Sig. (p value) on combined features is 0.006 which
indicates that the results of proposed features are significant
as compared to separate elements. Mean accuracy of pro-
posed features is 91.84 which is also significantly different
from the mean accuracies on the results of separate features.

4) COMPARISON

Comparison of the proposed method is performed with five
state-of-the-art approaches on UT-Interaction dataset [8]-
[11], [21] . Videos in this dataset are recorded with single
camera and having 6 interaction classes: Handshake, Hug,
Kick, Punch, Push and Point with 10 instances of each class.
Training and testing splitis not provided with this dataset. The
Performance is assessed by using leave-one-out cross valida-
tion. Table 8 shows the accuracy of the proposed method and
previous methods for UT-Interaction dataset. The proposed
method attained better performance and outperforms other
approaches. Ke et al. [10] combined the structure of interac-
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tion context with the spatial and temporal information of input
videos. Long short-term network (LSTM) is used to learn the
spatial and temporal models. The proposed approach when
compared with [10] achieved the improvement of about 8%
on 60% observation ratio. An improvement of about 6% is
achieved as compared to [9] which utilized temporal images
for deep feature extractions. The hierarchal movements [11]
achieved 83.1% accuracy on 50% observation ratio. The
proposed method outperform the integral histogram based
activity representation method [8] by 24%. This is an early
work on interaction prediction that achieved 70% accuracy
on half observations. Finally, Ye et al. [21] achieved accuracy
of 91.7%, which is lower by 2.3% compare to the proposed
approach.

V. CONCLUSION

In this research, we have proposed a novice method for the
anticipation of ongoing person-to-person interactions from
multiple camera views in outdoor environments. The antic-
ipation of ongoing interactions in an outdoor environment is
a challenging problem due to cluttered background, shadow
and illumination variations. We proposed to represent the
interactions with deep features and temporal features. Deep
features are extracted by using Alexnet model and temporal
features are extracted by applying optical flow. It is further
proposed to transform optical flow components by apply-
ing second order difference and thresholding the transformed
components. In addition, the proposed approach is tested on
real out door scenarios. The proposed method achieved 92%
and 89% average accuracy on MU-Interactionl and MU-
Interaction2 datasets, respectively. The proposed method is
also tested on single camera-view dataset (UT-Interaction)
and compared with state-of-the-art approaches. The proposed
approach attained the accuracy of 94%, which is at least
6% better than existing state-of-the art approaches. In future,
we are intended to extend this work to perform human inter-
action anticipation in multiple camera scenarios having both
partially overlapping and non-overlapping views to cover
more area in public places. Also, we intend to explore deep
learning for classification purpose in the context of real world
event anticipation problems; depending upon the computa-
tional viability of these networks.
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