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ABSTRACT Integration of non-conventional renewables such as wind and solar to the power system may
affect the system reliability, especially when the proportion of renewable power in the system is large.
Therefore, with a significant level of renewable penetration, the intermittency and both diurnal and seasonal
variations of renewable power generation should be deliberately modeled in order to accurately quantify the
power system reliability. This paper presents a novel method based on Kernel Density Estimation (KDE) for
modeling intermittency and both diurnal and seasonal variations of wind and solar power generation using
historical renewable power generation data. The proposed KDE based renewable power models are used with
non-sequential Monte Carlo simulation to evaluate the generation system adequacy. Several case studies are
conducted on IEEE reliability test system to analyze the impact of increasing renewables on the generation
system adequacy. The results show that the generation system adequacy tends to decay exponentially when
the renewable integration is increased. It is shown that the reliability values obtained using the proposed
approach are very close to those provided by the time-consuming sequential simulations. Importance of
modeling seasonal variations of wind and solar is also investigated.

INDEX TERMS Kernel density estimation, Monte Carlo simulation, generation system adequacy, reliability

assessment, renewable power, wind and solar.

I. INTRODUCTION
Integration of renewable power, especially wind and solar
PV is showing a rapid growth in modern power systems [1].
Considerable variations of fossil fuel prices, technological
advancements, price reduction in solar panels and environ-
mental concerns have accelerated the renewable power uti-
lization. Moreover, many governments have implemented
policies to integrate more renewable power generation to
electricity grids [1].

The intermittent nature and both diurnal and seasonal
variations of renewable energy sources such as wind and solar
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often lead to vary the amount of renewable power injection to
the power grid. Hence, with an increased proportion of renew-
able power in the grid, the power system reliability varies
drastically throughout the year. Therefore, the intermittency
and both diurnal and seasonal variations of renewable power
generation should be considered in the reliability evaluation
of modern wind and solar integrated power systems.

Power system reliability can be divided into two separate
categories i.e. system adequacy and security [2]. System
adequacy studies investigate the power system’s ability to sat-
isfy consumer demand using existing facilities of the system
whereas security is a measure of the ability of the system to
respond to dynamic and transient disturbances arising in the
system. Adequacy studies are performed in three Hierarchical
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Levels (HLs) which are defined based on the power sys-
tem’s functional zones i.e. generation, transmission, and
distribution [2]. These three HLs are;

° HL I — Generation system adequacy evaluation.

° HL II — Composite system adequacy evaluation
which considers the adequacy of both generation
and transmission systems.

o HL I - Adequacy evaluation of generation,
transmission and distribution systems.

The focus of this study is on HL I assessment of a wind and

solar integrated power system.

The probabilistic techniques which have been proposed for
generating system adequacy evaluation can be categorized as
analytical techniques and Monte Carlo Simulations (MCSs).
Analytical methods use mathematical modeling of the power
system and provide direct analytical solutions. Various
analytical approaches for generation adequacy assessments
with renewable integration can be found in the literature
[3]-[7]. Analytical methods such as Markov chain-based
Capacity Outage Probability Table (COPT) [3]-[6] and
universal generating functions [7] cannot model diurnal
and seasonal variations of the renewable power generation.
Moreover, when the renewable power penetration is high,
the above methods become more complex and a significant
amount of computational power will be required.

MCS is a popular probabilistic method of estimating
system reliability indices. There are two main types of
Monte Carlo methods i.e. Sequential Monte Carlo Simula-
tion (SMCS) and Non-Sequential Monte Carlo Simulation
(NSMCS). SMCS generates chronological system states to
obtain state residence series for each component in a system.
Then, the series of all the components are combined to get
the series of system status to evaluate the system reliability
indices [8]. In [9]-[12], SMCS is used for the adequacy
evaluation of generating systems. Chronological wind power
simulation models are combined with SMCS to evaluate the
adequacy of wind integrated generating systems in [11], [12].
Historical wind speed or wind power generation data are used
to implement Auto-Regressive Moving Average (ARMA)
time-series models for simulating chronological wind speed
or wind power generation for a specific time period for e.g.
one year [11]-[13]. However, the ARMA model integrated
SMCS requires a significant amount of simulation time [11].
Moreover, ARMA models presented in [11], [12] lack season-
ality modeling. The seasonal ARMA models require a huge
amount of simulation time because the seasonal trend repeats
once in every 8760 hours. Auto-Regressive Integrated Mov-
ing Average (ARIMA) based model proposed in [14] repre-
sents seasonal variations, but diurnal variations are neglected
in this model.

In NSMCS, the reliability indices such as Loss of Load
Probability (LOLP), Loss of Load Expectation (LOLE)
and Loss of Energy Expectation (LOEE) are repetitively
computed through stochastically sampling the states of the
power system until the selected indices are converged with
an acceptable Coefficient of Variation (COV) [8]. In [15],
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wind power, photovoltaic (PV) generation, and electricity
demand are modeled as time-dependent clusters for NSMCS.
Renewable power and load data are clustered according to the
earth’s seasons (spring, summer, etc.) and it is not effective
and efficient, for an example, even though there are four sea-
sons, wind power generation may show only two distinctive
wind seasons (high and low) throughout the year. In [15],
renewable power models represent diurnal correlations, but
seasonal correlations are not modeled in the NSMCS algo-
rithm. Moreover, renewable power output is split into a fixed
number of steps (8 power levels) using the Fuzzy C-means
clustering method. It does not represent the actual renew-
able power generation because intermediate power values
between the steps are not considered. In [6], [16] wind power
generation is modeled analytically using multi-state models.
Probabilistic distributions such as Weibull, Burr, lognormal
and gamma are used to model wind speed in [17]. These
methods do not represent the diurnal and seasonal wind power
variations. Thus, the correlation between renewable power
generation and the load is neglected. In [18], a linear regres-
sion function is utilized to describe the relationship between
correlated random variables such as the renewable generation
and the load. However, the strength of the relationship is
important, and it depends on the region’s load profile and
renewable power generation patterns. In [19], a solar radiation
simulation method is proposed for generating data at each
hour based on the probability of occurrence of solar radiation
at n previous hours. Even though the accuracy of the diurnal
distribution of solar radiation is tested, the seasonal distribu-
tion is not validated. The power generation of barrage-type
tidal power plants is modeled in [20]. The failure rates of the
composed components and the effect of tidal height variation
on the components’ failure rate are considered in the tidal
generation model that is used for evaluating the adequacy
of power generation systems. Variance reduction methods
such as importance sampling [21]-[24] and Latin Hypercube
sampling [18] can be used to reduce the convergence time of
MCSs.

In addition to the above MCS models, population-based
methods can be used for evaluating the generating system
adequacy [25]. Population-based Intelligent Search (PIS) is
used to discover a set of probable failure states, which sig-
nificantly contribute to the generation system adequacy. PIS
is based on the guided stochastic search methods which
are inspired by biological or social systems. Genetic algo-
rithms [26], [27], particle swarm optimization [28], [29], ant
colony optimization and artificial immune systems are some
population-based intelligent search methods.

Previously proposed chronological and non-chronological
renewable power generation models lack either diurnal, sea-
sonal or both variations [6], [7], [11], [12], [15]-[18], [22],
[24]. In the adequacy evaluation of wind and solar inte-
grated power generation systems, SMCS struggles with the
modeling of seasonal variations due to the computational
cost of the ARIMA method [6], [11], [12]. On the other
hand, the NSMCS method proposed in [15] lacks modeling
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of seasonal variations of renewable power generation. Both
diurnal and seasonal variations of wind power generation are
not modeled in the NSMCS proposed in [16], [17]. Analytical
renewable power models proposed in [7], [18], [22], [24]
also lack diurnal and seasonal variations. Therefore, to accu-
rately evaluate the impact of increasing renewables on the
generation system adequacy, novel renewable power models
that represent the intermittency and both diurnal and seasonal
variations are needed. Moreover, the impact of integrating
a large proportion of renewable power on the adequacy of
generation systems is not yet analyzed in the literature, while
considering the intermittency, diurnal and seasonal variations
of renewable power [6], [7], [11], [12], [15]-[18], [22], [24].
Further, studies are required to emphasize the importance
of modeling seasonal variations of renewable power gener-
ation in reliability evaluations. The computational cost of
renewable power generation models is also important because
in the real-world power systems the reliability evaluation
algorithms may suffer due to the “curse of dimensionality.”

There are three main contributions of this paper. Firstly,
a novel approach for modeling renewable power generation
is proposed using Kernel Density Estimation (KDE) to model
both seasonal and diurnal variations of renewable power gen-
eration incorporating its intermittent nature. KDE is used to
find the probability densities of renewable power generation
in different hours of the day and different seasons throughout
the year. Apart from modeling both diurnal and seasonal vari-
ations and intermittency, the proposed KDE based clustering
approach has several advantages. In these proposed models,
the number of seasons of each renewable power is decided
according to the monthly average renewable power gener-
ation throughout the year (For e.g. for wind, three seasons
may be identified as high, medium and low wind seasons).
Thus, the flexibility of the proposed model is high because
the appropriate number of seasons can be selected according
to climate patterns of the region. The system load is also
modeled as time-dependent clusters and the KDE is used
to identify the probability densities of the system load in
different hours of the day and different seasons throughout the
year. The proposed KDE based renewable power models and
the system load model allow NSMCS to model the correlation
between renewable power generation and the chronologically
varying system load. A novel generating system adequacy
evaluation framework based on NSMCS is then developed
using the proposed renewable power and load models. SMCS
with pre simulated renewable power data is used to validate
the proposed generating system adequacy evaluation frame-
work.

Secondly, the proposed framework is used to analyze the
impact of increasing renewables on generation system ade-
quacy. The system adequacy variation with different levels
of renewable integration is rationalized considering differ-
ent characteristics of renewable power and the system load.
Thirdly, the importance of modeling seasonal variations of
renewable power generation is further studied by conducting
several case studies.
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This paper is organized as follows. Section II describes
the proposed methodology for modeling intermittency and
both diurnal and seasonal variations of renewable power
generation. In Section III, a framework based on NSMCS
is proposed for evaluating the generating system adequacy
using the developed renewable power models. In Section IV,
the impact of increasing renewables on generating sys-
tem reliability is evaluated under several case studies.
In Section V, the proposed framework is validated and the
importance of modeling seasonal renewable power variations
is discussed. Conclusions are given in Section VI.

Il. MODELING OF RENEWABLE POWER

This section explains the methodology of modeling
renewable power generation. Subsection A provides a brief
description on historical renewable generation data used for
modeling renewable power generation. Then, the procedure
of modeling wind and solar power generation using KDE is
presented in subsection B.

A. HISTORICAL WIND AND SOLAR POWER DATA SETS
The simulated wind and solar power generation data of
Belgium are obtained from [30], [31]. The data sets include
renewable power generation data with a resolution of 1 hour.
Independent system operators also use hourly based produc-
tion of wind power in their reliability and planning stud-
ies [32]. Smaller resolution of renewable power data which
is less than 1 hour would require large computational time as
well as more data collection. In [30], [31], authors have used
NASA’s MERRA-2 global meteorological reanalyzes as well
as the Meteosat-based CMSAF SARAH satellite data set to
produce hourly PV and wind simulations across Europe. The
results of the simulation algorithm are validated using real
PV and wind generation data in the European region. The
total solar and wind power generation of Belgium in year
2014, 2015 and 2016 is used to implement renewable power
generation models. The renewable power data are normalized
using the respective total wind or solar installed capacities.
Hence, several penetration levels of wind or solar power
can be added to the power generating system by multiplying
the normalized power values by respective installed capacity
values (For e.g. the annual wind power output of a 100MW
wind plant can be obtained by multiplying the normalized
annual wind power data by 100).

B. MODELING WIND AND SOLAR POWER GENERATION
USING KERNEL DENSITY ESTIMATION

The intermittency and both seasonal and diurnal variations
of wind and solar power generation should be considered
in the process of state sampling i.e. if a load is selected,
say from November 13" 9 a.m. hour then both wind and
solar power generated in that exact date and time should be
selected. If data are available for several years, a random
value of renewable power generation can be selected for
that exact date and time. However, in many situations, it is
difficult to obtain renewable power generation data recorded
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FIGURE 1. An example of the clustering approach.

over a significant number of years. Thus, the intermittency
of renewables cannot be modeled. A practical solution to this
problem is clustering of data sets according to hours of the
day and seasons of the year. An example of this approach is
illustrated in Fig. 1. The selection of the number of clusters
mainly depends on the seasonal changes throughout the year,
i.e. if there are two distinctive wind seasons, there will be
48 clusters (24 x 2). Then for each cluster, a Probability
Density Function (PDF) of respective renewable power gen-
eration is obtained by KDE method. These PDFs can be used
to model intermittency and both diurnal and seasonal varia-
tions of wind or solar power generation throughout the year.
Hence, in NSMCS, a random renewable power generation
value can be obtained for a specific hour of the day and season
of the year considering the probabilistic nature of renewable
generation.

It should be noted that the outage of renewable generators
is not considered in this work. Renewable generator outages
do not significantly change the overall renewable power out-
put due to the small generating unit capacities of the large
number of renewable generators. In these systems, the varia-
tion of renewable power generation is more significant than
the outage of generating units.

1) KERNEL DENSITY ESTIMATION
The PDF of each renewable power cluster can be determined
using either parametric methods such as mixture models
or non-parametric methods such as KDE method. In mix-
ture models, the underlying distribution of each cluster is
constructed using multiple parametric distributions. Further,
there exist numerous levels of renewable power generation
due to the large variability of renewables. Hence, the iden-
tification of a suitable number of parametric distributions
increases the complexity of the generation system adequacy
evaluation algorithm. Moreover, the parameters of each dis-
tribution are needed to construct the mixture model for each
of the clusters in the clustering model shown in Fig. 1.

On the other hand, KDE avoids the problem of the choice
of the number of components by using one component
(a Kernel) centered on each point of the dataset [33].
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FIGURE 2. Monthly average wind power generation in Belgium.

It provides a smooth PDF for a given set of data points.
KDE is widely used in the applications in which the PDF
is unknown or poorly defined e.g. forecasting error distribu-
tions [34]. The Kernel can be a proper PDF such as normal,
Weibull, etc. When determining the PDF of a given random
variable, the center of the Kernel is placed right over each data
point. According to the type of the chosen Kernel, the influ-
ence of each data point is spread about its neighborhood.
Finally, the PDF can be obtained by summing the contribution
of each data point. Smoothness of the density estimate can be
controlled by changing the bandwidth of the selected Kernel.

Given a random sample of observations xi,xp,...,X,
with a continuous, uni-variate density f, the Kernel density
estimator is,

@i —x0)
fmm—m;K - (1

where xq is the target point, K is the Kernel and % is the
bandwidth.

2) SEASONALITY DETECTION USING K-MEANS

CLUSTERING METHOD

Instead of manual determination of seasonal durations of
renewable power generation, a K-means clustering algorithm
can be used to cluster the months into different seasons.
In K-means clustering, n observations can be partitioned into
K clusters. The observations are clustered based on feature
similarity. The centroids of the K clusters and labels (cluster
names) for the observations are the results of a K means
clustering algorithm [35].

The seasonal variations of wind and solar power generation
are illustrated in Figs. 2 and 3 respectively. Wind power
generation data of 36 months in 2014, 2015 and 2016 can be
categorized into 2 clusters i.e. 2 seasons and solar power data
can be categorized into 3 clusters. Silhouette analysis [36] is
used to identify the appropriate number of seasonal clusters
of wind and solar power generation throughout the year.
The silhouette plot illustrates a measure of distance between
each point in one cluster to points in the adjacent clusters.
Silhouette score lies in the range of [—1, 4+1]. A value of
+1 implies that the sample is far away from its adjacent
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FIGURE 3. Monthly average solar power generation in Belgium.

TABLE 1. Clustering table for three solar seasons.

Month Year 2014  Year 2015  Year 2016  Selected season

January Low Low Low Low
February Low Low Low Low

March Moderate Moderate Moderate Moderate
April High High High High
May High High High High
June High High High High
July High High High High
August High High High High

September ~ Moderate ~ Moderate High Moderate

October Moderate Moderate Moderate Moderate
November Low Low Low Low
December Low Low Low Low

clusters whereas a value of —1 implies that the sample is far
away from its assigned cluster. Hence, the cluster configura-
tion which provides the largest Silhouette score is preferred.
Then, the most suitable set of months for each cluster is
selected considering the number of votes for the respective
cluster. Results of the K-means clustering process conducted
for solar power are shown in Table 1.

3) WIND POWER GENERATION MODEL

As discussed in Section II B2), wind power generation data
is divided into two seasons. Then, using K-means cluster-
ing, months belong to each season are identified. Months of
November, December, January, February, and March are in
high wind season and the rest of the months are in low wind
season.

For each season, 24 clusters are created according to the
hour of the day. Then, KDE is used to derive the PDFs of
each cluster. The “normal” distribution given by (2) is used
as the Kernel function. The “normal” distribution provides
more accurate results than “box”, “triangle” and ‘“‘epanech-
nikov”’ Kernels. Moreover, it provides a smooth probability
density curve. Hence, all the cluster PDFs are obtained by
utilizing the “normal” Kernel. The most suitable value for
the bandwidth is automatically selected by the algorithm
as 0.04. Fig. 4 illustrates the PDFs of wind power gener-
ation from 00.00 a.m. to 01.00 a.m. in the high wind and
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FIGURE 4. Probability density of wind power from 00.00 a.m.
to 01.00 a.m. in different wind seasons.

low wind seasons, respectively.

P(x) = e [207 )

oA 21

where @ and o are the mean and the variance of the
distribution P.

4) SOLAR POWER GENERATION MODEL

In solar power modeling, seasons with high and low irradi-
ance levels should be identified. Three distinctive seasons
are identified by the Silhouette analysis. Then, the K-means
clustering algorithm is used to obtain the respective months.

o High irradiance season- April, May, June, July and

August.

e Medium irradiance season- March, September and
October.

e Low irradiance season-  January, February,

November and December.

With having three seasons, 72 clusters are created. Then,
PDFs for each cluster are obtained using the KDE and this
procedure is similar to the procedure used to find PDFs of
wind clusters in Section II B3). Fig. 5 illustrates the PDFs of
solar power generation from 12.00 p.m. to 01.00 p.m. in the
three seasons. It can be clearly observed that the PDFs sig-
nificantly differ from each other representing the probability
density of solar power generation in each season.

IIl. RELIABILITY EVALUATION USING THE PROPOSED
KDE BASED RENEWABLE POWER MODELS

The proposed renewable power generation models are used
with the IEEE Reliability Test System (RTS)-79 in order to
evaluate the impact of increasing renewables on generation
system adequacy. A brief description of IEEE RTS-79 is
given in subsection A. The reliability indices used for quan-
tifying the generation system adequacy are explained in sub-
section B. Subsection C describes the methods of modeling
conventional generation, load and renewable generation in
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FIGURE 6. Diurnal and seasonal variations of the system load.

the NSMCS algorithm. The proposed framework for calcu-
lating the generating system reliability indices is presented in
subsection D.

A. IEEE RTS-79

IEEE RTS-79 [37] consists of 32 generation units, with unit
capacities ranging from 12 MW to 400 MW. This system has
atotal power output of 3405 MW, and the peak load of the sys-
tem is 2850 MW. The annual hourly chronological load curve
shows diurnal and seasonal variations of the system demand
as illustrated in Fig. 6. The generation system is modified by
adding renewable generation. This Modified RTS (MRTS) is
used to evaluate generation system adequacy under several
case studies in Section I'V. Moreover, the proposed generation
system adequacy evaluation methodology is validated and
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the importance of modeling seasonal renewable variations is
explored using the MRTS in Section V.

B. RELIABILITY INDICES

1) LOLP

LOLP is a measure of the probability that the system demand
exceeds the generating capacity during a given period [8].
In NSMCS, LOLP can be calculated by dividing the total
number of failure states by the total number of system states.

2) LOLE

LOLE is the expected number of days (or hours) in a specified
period in which the daily peak load exceeds the available
generating capacity [8]. LOLE in hours per year can be
calculated by multiplying LOLP by 8760.

3) LOEE
LOEE is the expected unsupplied energy due to generat-
ing inadequacy [8]. State-wise unsupplied energy can be
calculated in each failure state and then by accumulating
each unsupplied energy value, the overall LOEE can be
obtained.

C. MODELING OF CONVENTIONAL GENERATION,
RENEWABLE GENERATION AND LOAD IN NSMCS
Conventional generators are modeled using 2-state Markov
models. Forced Outage Rate (FOR) of each generator is
used to determine the availability of the generator. Thus,
the stochastic operating nature of generators is considered in
the simulation.

The derived PDFs of renewable power generation models
can be transformed into Inverse Cumulative Density Func-
tions (ICDFs). Two uniform random numbers ranging from
1-24 (hour of the day) and 1-365 (day of the year) are used
to select the respective wind and solar clusters i.e. ICDFs.
If a uniform random number between O and 1 is used as
the input to an ICDF of the selected cluster, the output will
be a renewable power generation value which is generated
according to the historical power generation of the same
cluster.

The load is modeled in the same manner as the
renewable power models. The annual load curve which con-
sists of hourly chronological demand values is used to imple-
ment the time dependent load clusters. The annual demand
curve can be divided to three distinctive seasons i.e. summer,
winter and spring/fall as described in [37]. The “normal”
Kernel is used to form the respective PDFs of the load
clusters using KDE. The most suitable bandwidth value is
selected as 5 which is obtained by the trial and error method.
Then, the finalized load model is obtained by converting all
the PDFs to their respective ICDFs. In NSMCS sampling,
the same uniform random numbers which are generated to
obtain wind and solar clusters are used to select the corre-
sponding load cluster. This approach is needed to accommo-
date the correlation between load, wind generation and solar
generation in NSMCS.
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D. PROPOSED KDE BASED NSMCS FRAMEWORK FOR
CALCULATING RELIABILITY INDICES

In NSMCS, states of the power system are generated
randomly and analyzed to check whether the available gen-
eration can satisfy consumer demand or not. The Monte
Carlo Simulation is a fluctuating convergence process. The
longer the simulation period, the larger is the number of
samples and higher is the accuracy of the estimated system
adequacy indices. Hence, the simulation should be stopped
when the estimated reliability indices achieve a specified
degree of confidence. The purpose of a stopping rule is to
provide a compromise between the accuracy needed and the
computation cost.

The COV is often used as the convergence criterion in
Monte Carlo simulation [8].The smaller the prespecified tol-
erance of COV the higher the accuracy of adequacy esti-
mations as it leads to tighter upper and lower bounds to
the estimated value for a given level of confidence [38].
Hence, the tolerance value of COV should be selected consid-
ering the accuracy needed and the computational cost. In this
work, the tolerance value of COV is selected by conducting
several simulation trials. The tolerance value which provides
acceptable estimations in a computationally efficient manner
is selected. Therefore, it is assumed that the NSMCS is con-
verged if the Coefficient of Variation (COV) of LOLE is less
than a defined margin €. This is illustrated in (3).

Jvar(E[f]) 3)
E[f]

where E[f] is the estimator of the expected value of the

LOLE. The COV of LOLE margin ¢ is selected as 107>,

The maximum number of sampling states is limited to 108.

In order to make the NSMCS more efficient, the convergence

is assessed in blocks of 10000 samples.

The proposed framework for calculating the generating
system adequacy indices is briefly described below. Further,
the adequacy evaluation methodology is illustrated in Fig. 7.

Step 1: Initialize H (Number of failure states) = 0, N
(Total number of states) = 0, E (Energy not
supplied) = 0.

Step 2: Fori =1, 2,3, ..., n where n is the total number
of conventional generators in the generating sys-
tem, repeat the following step; i.e. step 3 to find
out the availability of conventional generators.

Step 3: Generate a uniform random number U; between

cov =

0Oand 1.
If Ul < FOR of ith generator (G;), then the unit
is not available (C; = 0) otherwise the unit is

available with full capacity (C; = Capacity of G;).
Step 4: Calculate the total available conventional generat-
ing capacity C, using (4),

n
Cc=) G €5
i=1
Step 5: Generate a uniform random number U, between

1 and 365.
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FIGURE 7. An overview of the proposed generation system adequacy
evaluation framework.

Step 6: Generate a uniform random number U3 between
1 and 24.

Step 7: Select the respective ICDFs of wind and solar
models for the U3" day of the year and UZ" hour
of the day.

Step 8: Select the corresponding ICDF of the load model
for the UL day of the year and U hour of the day.

Step 9: Generate a uniform random number Us between
0 and 1 and obtain the respective wind power
output (C,,) from the ICDF of wind.

Step 10: Generate a uniform random number Us between
0 and 1 and obtain the respective solar power
output (Cy) from the ICDF of solar.

Step 11: Generate a uniform random number Ug between
0 and 1 and obtain the respective demand value

(L) from the ICDF of load.
Step 12: Calculate the total power generation C using (5),
C:CC+Cw+Cs (5)

Step 13: If C < L then H = H + 1 (Failure state),
E=E+L—-C),N=N+1l,elseN=N+1
Step 14: Calculate,

LOLP = H/N (6)
LOLE = LOLP x 8760 (7)
LOEE = (E x 8760)/N (8)

Step 15: Repeat steps 2-14 until the stopping rule is
reached.

IV. THE IMPACT OF INCREASING RENEWABLES ON
GENERATION SYSTEM RELIABILITY

Several case studies are conducted to evaluate the impact
of increasing renewables on generation system reliability.
Subsection A provides a brief description of case studies
conducted on MRTS. Then, the results are discussed in
subsection B.

A. CASE STUDIES
The proposed KDE based NSMCS framework is used to per-
form three case studies. In case studies 1 and 2, LOLP, LOLE
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TABLE 2. LOLP, LOLE and LOEE values for different proportions of wind.

Total Gen, Lok Wind LOLE LOEE

MW) load capacity LOLP (hours/year)  (MWh)
(MW) %

35842 3000 5 0.002 17 2252

37831 3166.7 10 0.004 32.78 4697
4005 3352.9 15 0.008 65.90 10417
42562 35625 20 0.016 137.12 24252
4540 3800 25 0.032 277.21 56698
48643 40714 30 0.059 51635 125739
52385 43846 35 0.103 902.87 273609
5675 4750 40 0159 139028 546728

TABLE 3. LOLP, LOLE and LOEE values for different proportions of solar.

Total Gen, Lok Solar LOLE LOEE

MW) load capacity LOLP (hours/year)  (MWh)
(MW) %

35842 3000 5 0.002 2025 2758

37833 3166.7 10 0.005 44.56 6779
40059  3352.9 15 0.011 99.34 16995
42563 35625 20 0.024 214.12 42349
4540 3800 25 0.052 456.69 105710
48643 40714 30 0.099 86472 245431
52385 43846 35 0.162 14213 508785
5675 4750 40 0240 209876 978586

and LOEE values are calculated for different proportions
of wind power and solar power respectively. Then, in case
study 3, the same reliability indices are calculated by varying
both solar and wind in equal proportions.
The reserve margin of a power system can be defined as
follows [2].
Max_gen_cap — Max_demand

Reserve margin = ©)]
Max_demand

where Max_gen_cap is the maximum available generating
capacity and Max_demand is the maximum annual demand.
The reserve margin of the IEEE test system is 19.47% [40].
All 3 case studies are performed by maintaining the reserve
margin at its original value (19.47%).

B. RESULTS AND DISCUSSION

The results of case studies 1, 2 and 3 are tabulated in Tables 2,
3 and 4 respectively. Fig. 8 shows the variation of LOLE
values with different renewable penetration levels considered
in case studies 1, 2 and 3. As can be seen in Fig. 8§, LOLE
increases almost linearly up to 10% of wind or solar in
the system. Then, it exponentially increases when wind or
solar energy proportion is further increased. The results of
case studies 1 and 2 show that the power system reliability
degrades more in solar power integration than in wind power
integration. This difference in LOLE of wind and solar drasti-
cally increases after the 15% penetration level as can be seen
in Fig. 8. This can happen due to two main reasons. Firstly,
the variability of solar power is higher than that of wind power
and it significantly affects the system reliability especially,
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TABLE 4. LOLP, LOLE and LOEE values for different proportions of wind
and solar.

Peak Wind Solar

Total Gen. LOLE LOEE
load capacity capacity LOLP
MW hours MWh
( ) MW) % % (hours/year) ( )
3584.2 3000 2.5 2.5 0.002 18.05 2420
37833  3166.7 5 5 0.004 36.07 5255
4005.8 33529 7.5 7.5 0.008 73.22 11716
42563  3562.5 10 10 0.018 153.45 27917
4540 3800 12.5 12.5 0.035 308.1 63376
4864.3 40714 15 15 0.066 581.45 143545
5238.5 4384.6 17.5 17.5 0.115 1007.94 305743
5675 4750 20 20 0.181 1587.49 607436
900
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FIGURE 8. Variation of LOLE values with different proportions of
renewable power in the system.

when the proportion of renewable power in the system
is large. Secondly, solar power is unavailable in the nighttime
and when a large proportion of solar power presents in the
system, solar power injection to the power grid in the day
time significantly varies from that of the nighttime.

The adequacy of a wind and solar integrated power system
may get affected by two characteristics of renewable power
generation. The first characteristic is the average amount of
renewable power generation. Different forms of renewable
sources provide different amounts of electrical power out-
put for a fixed capacity installment. As shown in Figs. 2,
3 and [39], the normalized average wind power output is
greater and more consistent than the normalized average solar
power output. The second characteristic is the diurnal and
seasonal correlations between the load and renewable power
generation. These attributes of renewable power generation
are analyzed to rationalize the LOLE curves shown in Fig. 8.

Out of three case studies, MRTS is more reliable in case
study 1. The average renewable power generation in case
study 1 is higher than that in case studies 2 and 3. Moreover,
the correlation coefficients of diurnal and seasonal variations
of wind power generation and the load are found to be
0.39 and 0.17 respectively. Hence, the diurnal and seasonal
wind power generation show a weak relationship with the
load. However, the reliability of MRTS is improved due to
the relatively large and consistent wind power input to the
generation system.
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FIGURE 9. Normalized monthly average wind and solar power generation.

In case study 2, MRTS has the lowest system reliability
levels. The average renewable power generation in case study
2 is less than that in case studies 1 and 3. The correlation
coefficients of diurnal and seasonal variations of solar power
generation and the load are 0.58 and —0.26 respectively. This
implies that although solar PV contributes to the system reli-
ability diurnally, it reduces the system reliability seasonally
due to the negative correlation with the load. Therefore, due
to the intermittency, relatively low power output and weak
seasonal correlations of solar PV, case study 2 has the highest
LOLE values.

According to the results of case study 3, when wind and
solar have equal penetration levels, reliability indices have
improved significantly than in case study 2. As can be seen
in Fig. 8, the system reliability curve of case study 3 lies in
between those of case studies 1 and 2. However, the system
reliability curve of case study 3 is closer to that of case study
1 because the contribution of wind to the power system relia-
bility is larger than that of solar [15]. The diurnal correlation
coefficient of cumulative renewable power generation and the
load is 0.63 which shows a moderately strong relationship.
Hence, the reliability improvement in case study 3 is entirely
due to the comparatively high renewable power output and
the moderately strong diurnal correlation between renewable
power generation and the load. Moreover, the seasonal corre-
lation coefficient of cumulative renewable generation and the
load is found to be 0.09 which reflects a weak relationship.
Thus, seasonal renewable power variations are minimized
when the system has both wind and solar power in equal
capacities. This is illustrated in Fig. 9.

The diurnal and seasonal correlation coefficients of wind
and solar generation are —0.24 and —0.43. If there is a strong
negative correlation i.e. a correlation coefficient close to —1,
integration of both wind and solar will further increase the
generating system reliability. Then, when the wind generation
is low, solar generation will be high and vice versa, the renew-
able power supply variation will be minimized.

This study also shows that, a higher reserve margin
does not guarantee an acceptable adequacy level when the
renewable energy proportion in the grid is large. The system
adequacy degrades even though the reserve margin is kept
constant at 19.47%. Therefore, capacity credit of wind and
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TABLE 5. Comparison of LOLE (hours/year) obtained from different
methods for wind integration.

WlFld SMCS Proposed Error % Crude Error %
capacity % framework NSMCS

5 16.92 17 0.47 17.52 3.52
10 32.83 32.78 0.15 34.42 4.83
15 66.78 65.9 1.32 70.2 5.13
20 137.88 137.12 0.55 144.94 5.12
25 278.14 277.21 0.33 291.92 4.95
30 526.24 516.35 1.88 551.64 4.83
35 899.44 902.87 0.38 943.18 4.86
40 1363.3 1390.28 1.98 1427.82 4.73

solar generation should be considered when deciding the
capacity of conventional generation for a given peak load.

V. MODEL VALIDATION AND THE IMPORTANCE OF
MODELING SEASONAL RENEWABLE

POWER VARIATIONS

This section provides brief descriptions on model validation
and the importance of modeling seasonal variations of
renewable power. Subsection A describes the validation
procedure of the proposed KDE based NSMCS frame-
work. In subsection B, the importance of modeling seasonal
renewable power variations is analyzed using results of a
crude NSMCS which considers only diurnal variations of
renewable power generation.

A. VALIDATION OF THE PROPOSED FRAMEWORK

Firstly, the NSMCS algorithm used in this study is validated
by conducting a reliability evaluation of the generating sys-
tem without adding renewables. Obtained LOLP, LOLE
and LOEE of the system without renewables are 0.0011,
9.3928 hours and 1.179 GWh per annum, respectively. These
values are very close to the reference values presented in [40]
i.e. 0.001072, 9.39418 hours and 1.176 GWh per annum
respectively.

Then, SMCS is used to validate the proposed KDE based
NSMCS model. Simulated chronological hourly wind and
solar power generation data obtained from [30], [31] are
used for SMCS. SMCS using hourly renewable and load data
with tight COV should provide good reference values for
validation.

Second, third and fourth columns of Tables 5, 6 and 7 show
the LOLE values of SMCS and the proposed framework and
the percentage error in LOLE of the proposed framework w.r.t
SMCS for different penetration levels of wind and solar.

The sequential Monte Carlo simulation provides the
system adequacy indices very close to those provided by the
proposed algorithm. This shows that the renewable genera-
tion and the correlation between renewable generation and the
load are modeled in this work. Given that both NSMCS and
SMCS are probabilistic simulation methods, a certain degree
of estimation error in LOLE of the proposed framework w.r.t
SMCS is acceptable. This shows that the proposed KDE
based NSMCS framework can be used to accurately evaluate
the reliability indices of power systems.
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TABLE 6. Comparison of LOLE (hours/year) obtained from different
methods for solar integration.

Solar gvies  Proposed g re O porg
capacity % framework NSMCS

5 19.88 20.25 1.86 19.09 4
10 43.96 44.56 1.36 40.45 7.99
15 98.56 99.34 0.79 87.25 11.47
20 220.43 214.12 2.86 187.61 14.89
25 461.50 456.69 1.04 388.70 15.77
30 893.48 864.72 322 739.23 17.26
35 1463.18 1421.3 2.86 1281.93 12.39
40 2131.56  2098.76 1.54 1955.3 8.27

TABLE 7. Comparison of LOLE (hours/year) obtained from different
methods for both wind and solar integration.

Renewable Proposed Crude
Error

capacity % SMCS framework % NSMCS Erc;oor
w2.5% & s 2.5% 17.97 18.05 0.45 17.95 0.13
w 5% & s 5% 35.94 36.07 0.36 35.51 1.2
w7.5% & s 7.5% 74.14 73.22 1.24 71.70 3.29
w 10% & s 10% 152.4 153.45 0.69 150.40 1.31
w12.5% & s 12.5%  307.28  308.10 0.27 301.17  1.99
w 15% & s 15% 584.04  581.45 0.44 568 2.75
w 17.5% & s 17.5% 1010.22  1007.94 0.23 992.81 1.72
w 20% & s 20% 1552.19 1587.49 227 1566.61 0.93

Generally, the seasonal renewable power variations are
not modeled in practical applications of SMCS because the
simulation of renewable power generation with both diurnal
and seasonal variations is computationally intractable [6],
[11], [12]. In this work, authors have used a pre-simulated
renewable power dataset with SMCS to validate the proposed
KDE based NSMCS.

Significantly large pre-simulated wind and solar genera-
tion data (say, for more than 20 years) is difficult to obtain
for places where wind and solar farms are located. Hence,
SMCS cannot be implemented using pre-simulated renew-
able power data for real-world applications. On the other
hand, the proposed renewable power models can be imple-
mented using the renewable data of only one year. Thus,
the proposed models can be practically used for reliability
evaluation of real systems together with an NSMCS model,
instead of using sequential renewable power simulations such
as ARIMA method that cannot model seasonal variations.

B. IMPORTANCE OF MODELING SEASONAL VARIATIONS
IN RENEWABLE POWER GENERATION

To analyze the importance of modeling seasonal variations
of renewable power generation, a crude NSMCS model is
implemented without considering seasonal variations. The
developed crude NSMCS considers diurnal variations of wind
and solar power generation as described in [15]. LOLE values
obtained from crude NSMCS and the percentage error in
LOLE of crude NSMCS w.r.t SMCS for different proportions
of wind and solar in the system are shown in fifth and sixth
columns of Tables 5, 6 and 7. As can be seen in these
tables, the error percentages of crude NSMCS w.r.t SMCS are
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significantly different when the system has only wind, only
solar and both wind and solar.

The percentage error in LOLE of crude NSMCS w.r.t
SMCS for wind only case ranges approximately from 3.5%
to 5%. In solar only case, the same percentage error ranges
approximately from 4% to 17%. Therefore, the percentage
error in LOLE of crude NSMCS w.r.t SMCS is relatively high
when the system has only solar. This may happen mainly due
to two reasons. Firstly, the seasonal variation of solar power
generation is relatively large compared to wind as shown
in Figs. 2 and 3. Wind generation doubles the output in the
high wind season and solar generation quadruples the output
in the high solar season. Secondly, the seasonal solar power
generation shows a negative correlation with the system load
as discussed in Section IVB. Hence, crude NSMCS provides
relatively small LOLE values without detecting this negative
correlation between solar power generation and the system
load. When both wind and solar penetrations are equal,
the LOLE values of crude NSMCS and SMCS are very close
due to the reduction of seasonal effects previously discussed
in Section IVB.

This analysis shows that it is important to model the
seasonal variations of renewables to obtain more accurate
reliability indices. Especially, when different regions have
different amounts of wind and solar resources, seasonality
modeling is essential as it significantly affects system
reliability assessments.

VI. CONCLUSION

In this paper, a novel method based on KDE is proposed
to model the intermittency and both diurnal and seasonal
variations of renewable power generation. Then, the proposed
renewable power models are integrated into a NSMCS frame-
work to calculate system reliability indices. Several case stud-
ies are conducted using the proposed framework to evaluate
the impact of increasing wind and solar generation on the
reliability of generating systems. Results show that the reli-
ability decreases when the renewable penetration increases.
The proposed KDE based NSMCS framework is validated
by comparing its reliability evaluations with those obtained
using more time consuming SMCS. It is also shown that the
seasonal variations of renewable power generation should be
taken into account in reliability evaluation of power systems
as it significantly affects the system reliability.

The time needed to implement the proposed
clustering-based renewable power and load models is 71 sec-
onds. The simulation time of the proposed model is not com-
pared with that of the utilized SMCS because the renewable
modeling phase is not included in the SMCS. Renewable
power modeling in SMCS using ARIMA models with diurnal
and seasonal variations is computationally intractable due to
the required significantly large number of simulation years.

In this study, wind generation and solar generation
are modeled using aggregated values of the respective
renewable generation. However, if multiple wind or solar
plant generation data is available, separate KDE based
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clustering models can be integrated into the NSMCS. The
developed renewable power models can be further utilized
to find capacity credit of both wind and solar generation.
In addition, KDE-based renewable power models can be used
with intelligent search-based methods in order to reduce the
computational cost and reliability evaluation time. Energy
storages such as pump storage plants or battery storage sys-
tems can be used to increase the reliability level of a wind and
solar integrated power system. Therefore, an energy storage
model can be combined with the proposed framework to find
out the impact of integrating energy storage on the reliability
of wind and solar integrated power systems.
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