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ABSTRACT Computer-Aided Diagnosis (CAD) can improve the accuracy of diagnosis effectively, reduce
the rate of misdiagnosis, and provide the support for the valid decision. In clinical applications, high
requirements are often imposed on the execution speed and accuracy of CAD systems. The classifier is
regarded as the core of the CAD system, that is, the performance of the classifier will have a decisive influence
on the operating affection of the CAD system. Extreme Learning Machine (ELM) is a fast learning algorithm
using Single Hidden Layer Feedforward Neural Network (SLFN) structure. With its advantages in training
speed, generalization performance and accuracy, ELM has draw attention in many research fields, including
the development of CAD system. The applications of ELM in CAD are reviewed in this research. First,
the mathematical model of ELM and framework of CAD system are briefly introduced. Then, the application
of ELM in CAD is reviewed in detail, including the feature modeling method combined with ELM in CAD
and the specific application of ELM. Finally, we summarized the current research status of CAD systems
based on ELM, and the future work is prospected.

INDEX TERMS Computer-aided diagnosis, extreme learning machine, machine learning, review.

I. INTRODUCTION

Since the last century, with the continuous efforts of
researchers in various fields, our knowledge of human
anatomy and physiology has grown significantly. Meanwhile,
human examination tools based on imaging technologies
such as X-ray, ultrasound, and Magnetic Resonance Imag-
ing (MRI) have also made great progress [1], [2]. Neverthe-
less, in terms of clinical diagnose, the complexity of medical
diagnosis process, the diversity of diseases, and the increasing
number of medical data significantly greatly increase the
workload and difficulty of doctors, resulting in the possibility
of misdiagnosis due to fatigue or empiricism. Short after the
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arrival of the computer age, biomedical researchers began to
explore the possibility of using computers to research and
solve biological and medical problems [3]. In 1963, Lodwick
et al. [4]proposed the method of digitizing X-ray films. This
provides a practical foundation for the use of computers
to extract multidimensional information from medical data
to assist doctors in diagnosis. CAD refers to the combina-
tion of imaging, medical image processing technology and
other possible physiological and biochemical methods with
computer analysis and calculation, which is used to assist
in the detection of lesions or the classification of benign
and malignant diseases [5].Through the objective judgment
provided by CAD, it plays an active role in improving the
efficiency of doctors, the accuracy of diagnosis, reducing
the rate of misdiagnose and so on. In order to further meet
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the requirements of clinical diagnosis, to achieve an efficient
and accurate CAD system is still a ultimate goal of many
researchers.

At present, many CAD systems are oriented to medical
image. The main components of these CAD systems include
preprocessing, segmentation, feature modeling, and classifi-
cation (detection/diagnosis). Among these components, clas-
sification is often regarded as the core of CAD system.
It refers to a data mining process that assigns labels or classes
to different groups. Selecting an appropriate machine learn-
ing method to establish a classifier responsible for detecting
or distinguishing different types of lesions is a key component
of CAD system development [6]. On the other hand, ELM is a
new type of fast learning algorithm which has attracted much
attention in recent years. Compared with other classifiers,
it has significant advantages in training speed and accuracy.
As a promising algorithm, it is widely used in various related
researches [7], including the design and implementation of
CAD system.

ELM is a training algorithm for SLFNs proposed by
Huang et al. [8] of Nanyang Technological University, Sin-
gapore. In the past 10 years of its research and develop-
ment, ELM has attracted the attention of a large number
of researchers, and related improved algorithms have also
been proposed to deal with some specific problems: Online
Sequential Extreme Learning Machine (OS-ELM) [9] can
learn from a growing data set. Furthermore, the Convex
Incremental Extreme Learning Machine (CI-ELM), which
can solve the problem of new node training in the incremental
model, was proposed in [10]. Wang et al. [11] implemented
Effective Extreme Learning Machine (EELM), which adjusts
the weights and biases of the input layer before calculat-
ing the output layer weights so that the output conditions
of the hidden layer satisfy the column full rank condi-
tion. The improved EELM algorithm can reduce training
time, improve network robustness and classification accu-
racy. Cao et al. [12] proposed Voting based Extreme Learning
Machine (V-ELM) to avoid the instability of classification
results caused by randomly generated hidden layer weights
and biases. In order to solve the classification problem of
non-equilibrium data, Cao er al. [12] proposed Weighted
Extreme Learning Machine (WELM). This algorithm can be
directly used for multi-classification problems, and it can
also be extended to cost-sensitive learning. Liu et al. [13]
proposed the Multiple Kernel Extreme Learning Machine
(MK-ELM) as a general-purpose learning framework that can
be used to solve the selection and optimization of ELM kernel
functions.

Existing CAD systems based on ELM or improved algo-
rithms have achieved good performance. The purpose of this
study is to systematically organize and review these existing
research results, to provide reference for researchers in the
field of ELM algorithm and CAD system design. The struc-
ture of the rest of this paper is as follows: ELM algorithm and
CAD framework respectively are introduced in Section II.
Section III sorts out the feature modeling methods used in
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ELM based CAD systems. Section IV summarizes the spe-
cific application of ELM and its improved algorithm in CAD.
Section V demonstrates the effectiveness of ELM in CAD.
Section VI provides an outlook for the future development of
ELM. In Section VII, the use of open data sets in references
and systematic evaluation methods are sorted out. Finally,
Section VIII summarizes this research.

Il. BACKGROUND
In this section, we will briefly introduce the classic ELM
algorithm and the basic structure of the CAD system.

A. CLASSICELM

The network structure of ELM [8] is shown in Figure 1.
In simple terms, the network structure of ELM model is the
same as that of SLFN, except that in the training stage, it is no
longer the gradient based algorithm (backward propagation)
in the traditional neural network, but the random weight and
deviation of input layer are used, and the output layer weight
is calculated by the generalized inverse matrix theory. The
training of ELM is completed after the weights and deviations
of all network nodes are obtained. Therefore, when the test
data comes, the output layer weights just obtained can be used
to calculate the network output to complete the prediction of
data. The specific principle of ELM is as follows.

FIGURE 1. Network structure of ELM.

For any N different samples (xj,¢#), where x; =
[le,sz, s ,x]‘n]T € RP and 1= [l‘jl, /77 l]m]T € R™.
x;j represents the jth data example, f; represents the label
corresponding to the jth data example, and the set (x;, ¢;) refers
to all training data. Obviously, in Figure 1, the input of the
neural network from left to right is the training sample set x,
and there is a hidden layer in the middle. From the input layer
to the hidden layer, there is a full connection. Note that the
output of the hidden layer is H (x), and the calculation formula
of the output H (x) of the hidden layer is as follows:

H(x) = [h1(x), - -+, hp (x)] ey

The output of the hidden layer is obtained by multiplying
the input by the corresponding weight plus the deviation, and
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then summing the results of all nodes of a nonlinear function.
H(x) = [h(x),---, hr(x)] is the ELM nonlinear mapping
(hidden layer output matrix), and %;(x) is the output of the ith
hidden layer node. The output function of the hidden layer
node is not unique. Different output functions can be used
for different hidden layer neurons. Generally, in practical
application, h;(x) is expressed as follows:

hi(x) = g(x) @

where g(x)is the activation function, which is a nonlinear
piecewise continuous function satisfying the general approx-
imation ability theorem of ELM. The standard SLFNs math-
ematical model with L hidden nodes and activation function
g(x) is modeled as:

L L
D Bigitg) =Y Bigi(wi - xj+ bi) = 0] 3)

i=1 i=1

where w; = [wj1, wip, - -- , win]? is the weight vector con-
necting the iy, hidden node with the input node. B; =
[Bit, Bizs - -+ ,,Bim]T is the weight vector connecting the iy,
hidden node with the output node. b; is the threshold of iy,
hidden node. o; =[o0j1, 02, - - -, Q/m]T is the j;, output vector
of SLFNSs.

Standard SLFNs with L hidden nodes and activation func-
tion g(x) can approximate N samples with zero error. It means
that ZjLzl [loj — tj|| =0 and there are B;, w; and b; as follows:

L
D oBigwi-xi+b) =14 (i=1,2,---,N) (4
i=1

The above equation can be succinctly expressed as:
HB=T 5)

where (6) and (7), as shown at the bottom of the page, H
is called the hidden layer output matrix of the neural net-
work and the iy column of H is the iy hidden node output

with respect to inputs xi,x2,---,xy. The smallest norm
least-squares solution of the above linear system is:

B=H'T ®)

where HT is the Moore-Penrose generalized inverse of
matrix H. The the output function of ELM can be modeled
as follows:

() =h(x)f = h(x)H'T ©9)

B. WORKFLOW OF CAD SYSTEM

The CAD system based on the medical image can be divided
into two categories: one is the Computer-Aided Detec-
tion (CADe) system which detects and locates anomalies
on medical images; the other is the Computer-Aided Diag-
nosis (CADx) system which detects anomalies on medical
images and helps doctors determine the types of anomalies
and malignant levels. The specific links of CAD systems for
different diseases and application areas are slightly different,
but the main structures are almost similar. The general pro-
cessing framework for CADe and CADx systems is shown
in Figure 2.

CAD systems generally include the following modules:

1) Image acquisition: Image acquisition refers to the
way the system acquires medical images. Generally,
there are three ways. The first is to acquire images
from self-built image libraries, which are generally
built using medical images obtained from partner hos-
pitals [14]. The second is to acquire images through
the system attached to the image generation equipment,
such as Picture Archiving and Communication Systems
(PACS) [15]. The third is to obtain data directly from
the imaging system in real-time [16].

2) Preprocessing: The preprocessing process refers to
correcting the distortion caused by media attenuation,
noise, or motion artifacts, normalizing the original
image [17], and enhancing the display quality of the

Hwi,wa, -+ ,wr,b1,by, -+ ,br,x1,x2, -+ ,xL)
gwr-x1+b1)  gwa-x1+b2) gwr-x1+br)
gwi-xa+b1)  gwa-x2+b2) gwr -x2+by) ©
| gwi-xn+b1)  g(wa-xy+b2) gwr Xy +bL) |y
B Bz - PBim
Por P - Pom
B=1 . : : :
| Br1 B2 Bim 1w
[ 111 3] e Hm
11 fn - D
T = ) @)
| INL IN2 INm |y m
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Image acquisition

Pre-processing

FIGURE 2. Workflow of computer aided detection/diagnosis systems.

image by denoising and increasing the contrast [18] for
subsequent processing.

3) Segmentation: In order to reduce the interference of
peripheral tissues or background on the detection of the
region of interest, and reduce the amount of calculation,
some CAD systems also need to perform a one-step
image segmentation operation after preprocessing to
separate the area to be studied from the background or
surrounding tissues. Image segmentation is the basis
for this step of the CAD system [19]. Most image
description and recognition techniques rely heavily on
the results of segmentation [20].

4) Feature modeling: Feature extraction is performed in
the feature modeling component, and if necessary, fea-
ture selection or dimensionality reduction is performed.
Feature extraction uses algorithms to calculate various
feature values of the Region Of Interest (ROI), such
as color features, texture features, shape features, and
spatial relationship features. When the feature dimen-
sion is large, in order to ensure the performance of the
system, it is necessary to make the optimal selection
of the features, and only the features that have a large
effect on the classification result which is the feature
selection. The purpose is to reduce redundant features
and reduce feature dimensions to improve computa-
tional efficiency and maximize classification accuracy.

5) Detection/Diagnosis: Detection refers to labeling and
locating abnormal symptoms. Diagnosis refers to the
classification of benign and malignant lesions. These
two functions are the core of CADe and CADxX respec-
tively, and both rely on classifiers for implementation.

lIl. FEATURE MODELING

The high-dimensional irrelevance of medical image features,
the heterogeneity of feature subsets, and the uneven distribu-
tion of sample categories have been obstacles to improving
the accuracy of detection and diagnosis of various diseases.
Therefore, feature modeling can be regarded as a key part of
detecting lesions or identifying benign and malignant lesions.
The general feature modeling part mainly includes fea-
ture extraction and feature selection. The method of feature
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extraction and selection will directly affect the performance
of classifier.

A. FEATURE EXTRACTION

The features of the image can reveal the basic attributes
of the image. The CAD system can extract feature values on
the ROI region from the perspectives of morphology, texture,
shape, color, and so on. Then the algorithm model is trained
according to the sample database marked by experienced doc-
tors, and these feature values are used to distinguish different
classes of similar objects. The feature extraction method used
in the ELM-based CAD system is organized in Table 1.

It can be found that image texture and shape features have
been widely used in ELM-based CAD systems. For these
two common feature types, some experiments have carried
out intuitive experimental comparisons on feature extraction
methods, which provides a reference for the selection of fea-
ture extraction methods in CAD systems based on ELM. For
shape features, [28] combines three shape feature extraction
methods, Scale Invariant Feature Transform (SIFT), Harris
corner detection and Zernike Moments, with Deep Neural
Network (DNN) and ELM respectively for brain tumor clas-
sification based on MRI. The experimental results show that
the combination of Zernike moment and ELM is the best.
Reference [38] discusses the availability of multiple feature
extraction methods and classifiers when using thermal images
for breast disease. When ELM is used as a classifier, the Har-
alick moment and Zernike moment are combined to obtain the
best result, and this result is superior to other combinations.
This indicates that both texture and shape informations are
related to the identification of breast lesions by thermography.
For texture features, three texture-based feature extraction
methods, wavelet feature, Gray Level Spatial Dependence
Matrix (GLSDM) and Gabor filter-based techniques, are
compared in [31], [32]. Wavelet-based tissue texture analy-
sis combined with ELM or CC-ELM for microcalcification
detection in digitized mammograms can achieve better clas-
sification performance.

In order to fully express the image features or imitate
the doctor’s diagnostic process to obtain better classifica-
tion performance, many studies have adopted mixed feature
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TABLE 1. Summary of feature extraction methods.

Feature types Methods References
Geometric features - [21]-[24]
Roundness [21], [22], [24]

Entropy of Standardized Radius
Variance of Standardized Radius
Ratio of Area
Roughness
Circularity
Length-width ratio
Squareness
Shape feature -
Harris Corner Detection
Zernike Moments
SIFT

[21], [22], [24]
[21], [22], [24]
[21], [22], [24]
[21], [22], [24]
(24]

[24]

[24]

[25]-[29]

(28]

[25], [27], [28]
(28]

Histogram of Oriented Gridients [29]

(HOG)
Textural features -

Grey-Level Co-occurrence Matrix

[21]-[27], [30]-[47]
[22], [24], [26], [30], [31], [35], [38], [44], [47], [48]

(GLCM)
3D GLCM [42]-[44]
GLSDM (31], [32]
Haralick [27]
Gabor [31], [35], [38], [46]
LBP [44]
Wavelet features [31], [32], [34], [49]
SURF [35]
Discrete Tchebichef Transform (DT- [36]
T)
Gray Run Length [42]
3D-GRLM [42]
Run-Length Matrix (RLM) [43]
CNN - [49], [50]
MFC-CNN [51]
3D-CNN [52]
Color features - [45]
Gray level features - [33]
Density feature - [24]
EIS features - [53]
Spectroscopic features - [54]
TABLE 2. Evaluation indicators of diagnosis in [24].
Category  Classfier ~ Accuracy  Sensitivity — Specificity =~ TP Ratio TN Ratio  AUC
BP 0.73 0.713 0.718 0.784 0.603 0.71
GT SVM 0.812 0.8 0.793 0.877 0.694 0.798
ELM 0.833 0.821 0.81 0.903 0.719 0.824
BP 0.744 0.761 0.741 0.802 0.644 0.738
GD SVM 0.827 0.848 0.819 0.894 0.729 0.818
ELM 0.851 0.866 0.842 0.917 0.753 0.848
BP 0.753 0.771 0.734 0.818 0.725 0.767
TD SVM 0.838 0.859 0.814 0.901 0.812 0.849
ELM 0.864 0.882 0.835 0.925 0.83 0.862
BP 0.789 0.814 0.776 0.84 0.747 0.798
GTD SVM 0.871 0.903 0.847 0.929 0.838 0.871
ELM 0.895 0.926 0.873 0.948 0.846 0.881

models or extracted features from a new perspective. In [48],
the eigenvector model was established by mathematical meth-
ods, and the geometric and texture feature sets were combined
for breast cancer diagnosis on digital mammography. On the
basis of this feature model, [22] proposed a fused feature
model that blends features of single views with comparative
features of double views to simulate the process of doctor’s
film reading. In [24], the feature model and classifier are val-
idated respectively in breast mass detection, and local fusion
features with sub-region density are established. This method

VOLUME 8, 2020

combines geometric features, texture features, and density
features to build a local feature model for breast cancer detec-
tion and diagnosis. When the classifier is ELM, this feature
model is superior to the geometry features + texture fea-
tures (GT) model, geometry features + density features (GD)
model and the nature features + density features (TD) model.
The specific experimental results are shown in Table 2. The
GTD model mentioned in this paper has obvious advan-
tages in large-scale diagnosis. In [25], wavelet transform and
Zernike moments were used to extract the texture features
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TABLE 3. Summary of feature selection methods.

Feature selection method References
Heuristic search [30]
Principal component analysis (PCA) [32], [36]
GAS [22]-[24], [34], [42], [47], [49], [62], [63]
Impact value selection [22], [23]
SFS [22], [23]
CBF [26]
Glowworm Swarm Optimization(GSO) [35]
Linear discriminant analysis (LDA) [36]
Rough set (RS) [64]
Coefficient approach [65]
Information theoretic criterion [53]
Differential evolution (DE) algorithm [43]
Choose the feature with the largest variance [44]
SVM+ELM [33]

ReliefF method

[61]

and shape features on the brain magnetic resonance images
(MRI), respectively, for the benign and malignant identi-
fication of brain tumors. Although wavelet-based feature
extraction methods are widely used in CAD systems, most
methods are limited to expressing the correlation within each
wavelet scale, while ignoring the correlation between wavelet
scales. Reference [34] proposed a Hidden Markov Tree model
of Dual-Tree Complex Wavelet Transform (DTCWT-HMT),
and combined DTCWT-HMT based features with DTCWT
based features for a microcalcification diagnosis system.
This method effectively simulates the statistical distribution
of wavelet coefficients and better reflects the correlation
between wavelet coefficients. In [44], for feature extraction
of brain MRI, first use LBP method to extract local feature
information, and then use GLCM method to extract global
features. In this way, the local and global features are used to
fully describe the brain image.

Although various excellent algorithms appear in the field
of medical image diagnosis, feature extraction and model
selection established by traditional methods are always dif-
ficult to generalize robustly. Convolutional Neural Net-
work (CNN) is one of the representative network structures in
deep learning technology, and its application has solved this
problem well. CNN is based on artificial neural networks. For
different classification tasks, the backpropagation algorithm
is used to automatically strengthen or reduce the weight of
corresponding features. The filters are used to automatically
extract features in the convolution layer to achieve image
feature extraction [55]. The images can be directly used
as the input of CNN, thus avoiding the complex feature
extraction design and data reconstruction process in tradi-
tional algorithms. Some studies have proved that using CNN
combined with ELM or its improved method achieve a better
performance in the diagnosis of malignant diseases based on
medical image data. Reference [56] uses CNN for feature
extraction in brain tumor diagnosis systems. In [50], CNN and
Discrete Wavelet Transform-Singular Value Decomposition
(DWT-SVD) are combined to propose a new perceptual hash
function. This method effectively reduces the execution time
of CNN structure and the space occupied by image data on
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the hard disk, and achieves good classification performance
in ELM. The accuracy rate of benign and malignant classifi-
cation of liver tumors in CT images is 97.3%.

B. FEATURE SELECTION

Whether the feature set contains irrelevant or redundant infor-
mation directly affects the performance of the classifier. Fea-
ture selection refers to the process of selecting a subset of
features that make the classification results most significant
[57]. Its purpose is to reduce redundant features and reduce
feature dimensions to improve computational efficiency and
maximize classification accuracy [58]. When the size of
the feature set is too large, an appropriate feature selection
method is the key to giving full play to the performance of
the ELM classifier. The feature selection methods used in
conjunction with ELM in related studies are summarized in
table 3.

There are two classical algorithms for feature dimension-
ality reduction: Linear Discriminant Analysis (LDA) [59]
and Principal Component Analysis (PCA) [60]. LDA per-
forms a new projection on the feature values. After projec-
tion, the distances of data points of different properties are
greater, and the distances of data points of the same nature
are more compact. PCA maps high-dimensional features to
low-dimensional space from the perspective of covariance
and expects that the variance of the data is the largest in the
projected dimension. In order to obtain better classification
performance and simplify classification tasks, PCA and LDA
are fused in [36]. Experiments have proved that compared
with PAC, PCA + LDA can do the same with relatively few
features. Feature selection does not do projection or mapping,
but only selects some features from all features. Common
algorithms include ReliefF Method [61], Sequential Forward
Selection (SFS) [22], [23] and Genetic Algorithm Selection
(GAS) [22]-[24], [34], [42], [47], [49], [62], [63]. In the
research process of references [22] and [23], three popular
feature selection algorithms, GAS, impact value selection
and SFS, are compared and tested. From the results, GAS is
the algorithm with the best obvious effect on ELM classifier
performance optimization.
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In addition, there are some feature selection methods
and conclusions that have certain reference significance for
future work. Reference [30] analyzes the number of features
and neurons needed to achieve the best classification per-
formance when using ELM to classify breast benign and
malignant tumors, through heuristic search. It provides a
reference for the determination of parameters in the future
research. In [33], ELM and Support Vector Machine (SVM)
are combined for feature eliminations. The mean of accuracy
obtained by SVM and ELM classifier is used as the score
of each feature, and the features that have little influence
on SVM and ELM are deleted recursively. This method can
select the most suitable feature combination for the two clas-
sifiers. In [26], the Correlation Based Feature (CBF) selection
method is used for feature selection, which is faster than other
methods in essence. Reference [64] used Rough Set (RS)
to reduce the attribute set in the database, and proposed the
RS-ELM model. RS theory provides an effective tool for
studying the analysis and reasoning of inaccurate data, min-
ing the relationships between data, and discovering potential
knowledge.

IV. APPLICATION OF ELM IN CAD

In addition to detection and diagnosis, ELM has also been
applied in cancer prognosis prediction [65], tumor segmenta-
tion [48] and feature selection [33], which shows that ELM
has great application space and development potential in
CAD system. Table 7 lists the application of ELM and its
improved algorithms in CAD.

In order to further improve the efficiency and performance
of the system, some improved algorithms based on Classic
ELM are applied to the CAD system. The performance of
ELM depends on the input weights and the bias. In order to
avoid high computational complexity and fall into local opti-
mal solutions, it is especially important to set the appropriate
parameter values. In [31], krill herd algorithm is used to opti-
mize the weight. As a low-level animal foraging algorithm,
krill herd algorithm has few function parameters and strong
group tendency, which provides a good structural framework
for solving the optimization problem. In [65], the parameters
of ELM were optimized by BAT algorithm. The biomimetic
model, BATELM, was used to predict the recurrence and
recurrence time of breast cancer, which provided an impor-
tant reference for cancer risk prediction. However, the above
two methods of optimizing parameters have shortcomings
of slow convergence speed and poor globality. Compared
with the former two optimization algorithms, Particle Swarm
Optimization (PSO) has faster convergence speed and higher
accuracy. PSO-ELM model and Improved PSO-ELM (IPSO-
ELM) model start from the best individual obtained in the
learning stage, have good generalization ability, and have
been applied in the fields of brain tumor diagnosis [42], [54]
and abnormal detection of ceramic cancer cells [56]. A breast
cancer diagnosis system based on Multi-Layer ELM (ML-
ELM) is proposed in [66]. The Area Under the Receiver
Operating Characteristic (AUROC) curves is used as the
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performance index to analyze the performance of ELM, and
the system is optimized by weight attenuation method accord-
ing to the analysis results. In [36], a parameter less based
global optimization algorithm called Improved Gray Wolf
Optimization-based ELM (IGWO-ELM) is proposed. The
algorithm uses GWO to adaptively calculate the optimization
value of ELM hidden node parameters, and then uses Moore
Penrose inverse to analyze. In the experiment of benign and
malignant diagnosis of breast tumor, the highest accuracy rate
is 100%.

For dealing with real value classification, in [67], the Cir-
cular Complex Valued ELM (CC-ELM) is proposed. This
method shows obvious performance advantages in the case
of highly unbalanced data sets. In this study, CC-ELM is
used in mammography classification. Compared with tradi-
tional ELM classifier, the performance of classification is
improved by nearly 9%. In [32], CC-ELM was tested on
DDSM database, which was used to diagnose microcalci-
fications on mammogram images. Good results were also
obtained, with an accuracy of 96.2%.

For the improvement of operation efficiency, in [29], aim-
ing at the problem of brain tumor cell recognition, the H-ELM
based on Histogram Orientation Gradient (HOG) is imple-
mented. On this basis, Parallel H-ELM (PH-ELM) is pro-
posed, which is accelerated by GPU, further improving the
performance of H-ELM in high-dimensional and large image
data set computing complexity. In the experiment, compared
with ELM and H-ELM, the speed of PH-ELM is increased
by 7 times and 3 times respectively.

For the multi-classification problem, it has been proved in
[68] that ELM can be directly used to solve regression and
multi-classification problems, which provides a theoretical
basis for the use of ELM in the diagnosis of multiple types
of tumors. In [28] and [46], Kernel based ELM (KELM)
and Regulated ELM (RELM) are applied to the classification
of various brain tumors. Among them, KELM has a strong
ability to solve multi-class recognition problems, and the
RELM not only avoids the number of iterations and local
minimums, but also has better generalization, robustness, and
controllability [69].

The ensemble method is a meta-algorithm which com-
bines several machine learning technologies into a predic-
tion model to achieve the effect of reducing variance and
boosting or improving prediction. With reference to this idea,
the ensemble learning of multiple-view 3D-CNNs model for
micro-nodules identification is now available in [52]. In this
model, 5 3D-CNN components are integrated using ELM,
and the final classification results are generated. In particular,
for the integration method, ELM has better performance than
majority voting, averaging, operators, and autoencoders. The
difference in the number of hidden neurons in the ELM will
lead to different results in a particular classification task, that
is, each ELM classifier with a different structure can provide
different classification information. According to the idea of
ensemble learning, combining these classifiers can improve
the efficiency and accuracy of the overall system [70]. In [53],
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ELM classifiers with different structures are used for clas-
sification, and then their amount classification results are
combined using SVM to classify breast tissue.

Learning sample scarcity is a problem that must be faced
in all machine learning research. The size and quality of the
data set have a significant impact on the performance of the
system. In some studies, solutions have been proposed for
data shortages. Huang et al. [41] used one-class ELM to
provide a preliminary detection scheme for liver tumors on
CT images. This method can still detect most tumors even
when the training set is incomplete. Reference [39] further
improves the method in [41], and proposes Random Fea-
ture Subspace Ensemble based ELM (RFSE-ELM). In this
method, KELM is selected as the basic classifier, and then
the classification results of the basic classifier set are fused
using the majority voting method. Without training data,
the one-class RFSE-ELM can also detect liver tumors. The
previous algorithm is improved again in [40], and Data and
Feature Mixed Ensemble based ELM (DFEN-ELM) was pro-
posed. This method combines multiple weak classifiers to
implement a strong classifier, which overcomes the problem
of overfitting while maintaining the advantage of ELM in
training speed. This study implements ELM based on one
and two types of integrations, and uses the new training data
to improve system performance. Sequential kernel learning
was further used in the experiments to achieve fast retraining
and iteratively enhance image segmentation performance.
In [47],Semi Supervised ELM (SS-ELM) was used to achieve
the auxiliary diagnosis of pulmonary nodules. This method
can input both labeled feature sets and unlabeled feature sets.
It has faster learning speed and higher test accuracy, and
it also has better generalization performance. Furthermore,
in Document [24], Unsupervised ELM (US-ELM) is used to
cluster the density features on the sub-regions to realize the
detection of breast tumors. Then use ELM to complete the
benign and malignant diagnosis of breast tumors.

V. PERFORMANCE OF ELM IN CAD
ELM is a very simple and fast neural network learning
algorithm. In the past decade, the theory and application of
ELM has been widely studied. From the point of view of
learning efficiency, ELM has the advantages of less train-
ing parameters, fast learning speed and strong generalization
ability. In a large number of experiments on the standard
UCT data set, it is shown that ELM has faster training speed
and better generalization performance than Back-Propagation
(BP) [71] algorithm and SVM method [72]. In order to further
explain the performance of ELM in CAD, we will discuss
the performance of ELM in specific application by analyzing
the experimental results in related research. The comparison
experiments between ELM and other classifiers are widely
used in related researches. In Table 4, we give a brief exam-
ple of some experimental results. It can be seen that ELM
generally performs well in the research.

ELM not only has remarkable performance when it is used
alone, but also can be combined with other algorithms to
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TABLE 4. Comparison of different classifiers.

References  Classifier Acc Sn Sp
SVM 0.82 0.86 0.78
VSVM 0.84 0.93 0.74
[30] RFDC 0.9 0.9 0.98
KNN 0.84 091 1
ELM 0.91 0.9 0.98
SVM 0.968 - -
[73] ELM 1 - -
Naive Bayes  0.959 - -
[49] SVM 0.864 0.882 0.863
ELM 0.924 0913 0.921
SVM 0942 0951 0.922
[47] ELM 095 0964 0.928
PNN 0.833 0.894 0.857
MLP 0.859 0.861 0.883

TABLE 5. The performance of E-CNN method and compare with other
classifiers in [49].

Features Classifier ~ Accuracy
KELM 0.937
MLP 0.888
Stacking 0.869

Feature selected using CNN XGBoost 0.873
SVM 0.875
RBF 0.868
Fully-

CNN connected 0.811
layer

get better system performance. Combined with the current
popular CNN network, ELM and its improved algorithm also
have good performance in the experiment [49], [50]. Table 5
shows the experimental results in [49]. It can be seen that the
addition of KELM improves the overall accuracy of nearly
10% compared with CNN network, and is significantly better
than other classifiers in this study. It is worth noting that ELM
can also be used in combination with 3D CNN and improve
the overall efficiency, which provides an effective solution for
the realization of 3D medical data oriented CAD [52]. In [53],
the combination of ELM and SVM is used to classify breast
tissue, and the effect of this method is better than that of SVM
alone or ELM alone. Similarly, in [26], the combination of RF
and ELM is much better than the effect of using RF alone.

To sum up, from many related research results, it can be
seen that using ELM or its improved algorithm as classifier in
CAD can often obtain satisfactory results, and has advantages
in training and testing time. In addition, ELM can be used
with many other algorithms, and can improve the overall
performance of the system. Therefore, ELM is suitable for
solving the classification problems in CAD, and has a broad
application prospect and high research value in CAD-related
fields.

VI. PROBLEMS AND POSSIBLE RESEARCH DIRECTIONS

It can be seen from the above overview that more and more
CAD systems based on ELM are implemented, and the supe-
riority of ELM algorithm can be shown by many experiments.
It can not only ensure high accuracy and short training time
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of CAD, but also be widely used in many forms of medical
data. Although remarkable experimental results have been
obtained in most studies, a large part of them are tested in
small samples or under specific circumstances, and the CAD
system based on ELM still faces some challenges in practical
application. In the clinical situation, the experimental subjects
will become ordinary random cases, but the content structure
of the actual unprocessed medical related data set is not
standardized and there may be incomplete information, these
factors may have a significant impact on the diagnosis results.
To sum up, the CAD system based on ELM still cannot
fully meet the needs of the practical clinical application, and
there is room for improvement. According to the development
trend, we think that further research can be carried out from
the following aspects:

1) Because of the randomness of hidden layer parameters,
the generalization performance of ELM trained by dif-
ferent initial parameters is different, which affects its
stability and robustness. In order to avoid the instability
of classification results caused by uncertain param-
eters, some researches are devoted to improving the
ELM hidden layer node structure or optimizing the net-
work parameter selection method [36], [65]. Although
the existing research has proposed effective selection
methods for ELM parameters, but the performance of
these methods will be affected by the parameters in the
introduced algorithm, resulting in the hidden danger of
reducing the performance of the whole model caused
by the parameters has not been fundamentally elimi-
nated. The future research can take the realization of
nonparametric method as the goal, mainly study the
hybrid model of adaptive optimization parameter algo-
rithm and ELM, in order to reduce or even completely
avoid the negative impact of unreasonable parameter
selection on system performance.

2) With the rapid popularization of Electronic Medical
Record (EMR) systems in medical institutions, a large
amount of important medical-related information is
stored in the medical information system in electronic
form. These data records important information in clin-
ical medicine, such as examination results, diagnos-
tic information, medications, etc., and their data types
can be roughly divided into three types: text, num-
bers, and images. Researching a certain type of data
alone cannot completely inherit the doctor’s experi-
ence, so a complete auxiliary diagnosis system must
combine these three types of data as the research
object. Therefore, in addition to medical imaging,
future research can realize multi-modal data analy-
sis based on pathology, electronic medical records
and other data to assist clinical department diagnosis
and treatment plan recommendation. And further form
the whole-process intelligent assistance system from
screening to tumor grading and staging, and then to
treatment plan recommendation.

VOLUME 8, 2020

3)

4)

Medical image classification based on visual seman-
tics has always been a challenging research field. For
medical images, there are not only many kinds of
images, but also many variables (such as illumination
change, dislocation, deformation, etc.) in each kind of
image, which may affect the accuracy of classification.
In this respect, deep learning shows good performance
in image feature learning. The existing research has
proved that the combination of deep learning method
and ELM can effectively avoid the negative impact of
segmentation error and human subjectivity brought in
by hand-designed feature extraction model on the final
classification and improve the accuracy of CAD diag-
nosis. Moreover, ELM can also have a positive impact
on the efficiency of the system [49], [51]. Furthermore,
in order to comprehensively analyze the information
contained in the 3D medical data to obtain more accu-
rate diagnosis results, deep learning algorithms for 3D
data, such as 3D CNN, have also begun to be used
in the diagnosis of diseases. 3D CNN can be used in
conjunction with ELM, and can also achieve excellent
results [52]. At present, the main problem of deep
learning related research is that due to the complexity
of the calculation process, it is often accompanied by
high storage space requirements and calculation com-
plexity while obtaining excellent accuracy. Using GPU
to train neural network has become the standard of deep
learning algorithm. However, in the actual deployment,
the traditional general computing platform, including
GPU and CPU, can not meet the comprehensive needs
of power consumption and performance (or energy effi-
ciency ratio) in the actual model deployment in most
cases, which also makes some hardware with higher
comprehensive energy efficiency ratio, such as Field
Programmable Gate Array (FPGA) and Application
Specific Integrated Circuit (ASIC) chips for Al appli-
cations gradually get attention. In order to meet the
computing power and energy efficiency requirements
of the deep neural network model in different applica-
tion scenarios, on one hand, we could use the inher-
ent redundancy of the existing deep neural network
model to cut and optimize the model from the algo-
rithm level without losing the accuracy of the model.
On the other hand, we could also design a high-energy
hardware architecture to optimize the calculation mode
of the deep neural network model, which is used
to accelerate the calculation process of the model.
Of course, we could also combine these two aspects
to design and optimize the algorithm and hardware
together.

The lack of training data set is one of the difficul-
ties for machine learning algorithm. For medical data,
unlabeled data is easy to collect, but these data cannot
be directly used for ELM training. Traditional ELM
classifier can only use labeled data for training. How-
ever, it is very difficult to obtain the complete labeled
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TABLE 6. Add caption.

Dataset Data categories Sample size Reference
DDSM Mammograms 2620 cases [32]-[34], [36]
Mini- 322 cases, 207 are [33], [34], [36]
MIAS Mammograms normal, 63 are benig, [26], [30], [31]

52 are malignant [48]

Pulmonary CT, e
LIDC CR. DX 1010 cases [47], [52], [62]
. 11 Variables, 699

WBCD Non-image data Observations [64], [66], [73], [76]
WPBC Non-image data 35 attributes and 198 [65]
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FIGURE 3. Distribution of evaluation metrics used in references.

medical sample data, which requires the efforts of
experienced annotators. For the utilization of unlabeled
data, semi-supervised learning and unsupervised learn-
ing can provide solutions to this problem. In some
researches, semi-supervised learning or unsupervised
learning has been combined with ELM to solve the
problem of insufficient labeled samples by making full
use of unlabeled data [24], [47]. However, the current
research is not deep enough. The specific improve-
ments of algorithms specifically for medical diagnosis
have not been discussed in depth, and there is still room
for development. To solve the problem of insufficient
label data, transfer learning can transfer the model suit-
able for large label data set to small data set. By using
the existing knowledge, it can solve the problem of
insufficient label data in the target domain, which can
broaden the application scope of existing data and
improve the utilization of effective resources. For rare
diseases, transfer learning may be a good way to solve
the problem of data set shortage. ELM is more and
more popular in the field of transfer learning because of
its simplicity, training speed and ease of use in online
sequential learning [74]. But the research of this kind
of algorithm in disease diagnosis is very few. It is a
very promising research direction to apply the ELM
based transfer learning algorithms to the diagnosis of
diseases.
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VII. DATA SETS AND EVALUATION METHODS

After the training of the classifier, the performance of the
classifier will be evaluated with test data. The use of public
medical sample data sets for testing is the basis of effec-
tive, objective and fair evaluation of the performance of
various CAD systems [75]. The use of the private data sets
hinders the analysis and comparison of different algorithms
and makes them invalid. In the current related researches,
the commonly used public data sets are Digital Database for
Screening Mammography (DDSM), the mini-MIAS database
of mammograms, Lung Image Database Consortium (LIDC),
Wisconsin Breast Cancer Database (WBCD), and database
on Wisconsin Prognostic Breast Cancer (WPBC). We sum-
marize the research using public data sets in Table 6.

The frequency of the use of the evaluation metrics in the
related research is calculated in Figure 3. It can be seen that
the first three evaluation metrics with the highest frequency
of use are Accuracy (Acc), Sensitivity (Sn), and Specificity
(Sp). Acc is the rate at which true positive and true nega-
tive individuals in a subject are correctly identified. Sn, also
known as True Positive Rate (TPR), is the ratio of correctly
identified positives in abnormal areas, and is a measure of the
true positive recognition performance of a system. Sp, also
known as True Negative Rate (TNR), is the ratio of correctly
identified negatives in the normal category. It measures how
well a system can correctly identify negative individuals.
Equations of Acc, Sn, and Sp are given as follows:

TP + TN
Acc = (10)
TP +TN + FP+ FN
P
Sn= (11)
TP + FN
Sp = N (12)
P = IN ¥ FP

where TP, TN, FP, and FN are the detection and diagnosis
results that four CAD systems may output: (1) 7P means that
the diagnosis is positive, and the true value of the object is
also positive. (2) TN means that the diagnosis is negative and
the true value of the subject is also negative. (3) FP means
that the diagnosis is positive, but the true value of the subject
is negative. (4) FN means that the diagnosis is negative, but
the true value of the subject is positive.

In addition, Receiver Operating Characteristic (ROC)
curve is based on statistical decision theory, which is widely
used in the evaluation of CAD system. The TPR of the system
is expressed by the ROC curve as a function of 1 — Sn, and
the overall performance of the CAD system is measured by
the area under the ROC curve (AUC). The closer AUC is
to 1, the better the performance of the system. When the
AUC is 1, the system is perfect, it can correctly classify all
samples. But in general, when the true positive rate of the
system increases, the corresponding false positive rate also
increases, so the AUC of the system will not reach 1.
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TABLE 7. The application of ELM and its improved algorithm in CAD.

Location Data type Scope Improvement  Reference Data set Results
Segment Kappaindex = 0.49
tumor regions (48] MIAS Acc = 0.85

) Acc =0.9672
Feature di- Combine with MIAS Sn = 0.9629
mensionality gy 331 ppsm Sp = 0.9432
reduction AUC = 0.9659
Private Acc = 0.83
[48] 482 images, 246 Sn = 0.86
have tumors FPRatio = 0.82
] Acc = 0.87
Private S —=0.96
[22] 222 pairs of Particularity = 0.90
- mammograms, 112 TPRatio — 0.89
have tumors TN Ratio = 0.84
Private Acc =0.89
Breast mass [23] 490 images, 246 Sn = 0.87
detection have tumors Sp = 0.87
. Acec =0.911
Private S — 0.933
480 mammogrames, Sp = 0.901
US-ELM [24] 246 ha\{e tumors,116 TPRatio = 0.952
are benig,130 are TN Ratio = 0.869
malignant AUC = 0.938
MIAS Acc=1
IGWO-ELM 361 —Spsm Acc = 0.995
Ef ficiency = 0.91
[30] MIAS Sn=0.9
Sp =0.98
Breast Mammography Acc = 0.9672
[(33] MIAS Sn f 0.9629
DDSM Sp =0.9432
AUC = 0.9659
Nijmegen dataset AUC = 0.9856
[34] MIAS AUC = 0.9941
. DDSM AUC = 0.9168
. Acc =0.911
Classification Pr1vz.1te Sn =0.933
of benign and 480 images, 246 Sp = 0.901
malignant (24] han: tumors, 116 are — PRatio = 0.952
masses benig, 130 are TN Ratio = 0.869
malignant AUC = 0.938
. Ef ficiency =1
(241 Private Traintime = 0.047
Private TPR =0.962
CC-ELM o] 400ROIs.200are  “FPR=0.038
benign and 200 are Precision = 0.962
malignant Acc = 0.962
MIAS Acc=1
IGWO-ELM (36] DDSM Acc = 0.985
Classification Acc = 0.98
of tumors and ~ RF-ELM [26]  MIAS Sn =0.89
tissues Sp=0.91
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TABLE 7. (Continued.) The application of ELM and its improved algorithm in CAD.

Location Data type Scope Improvement  Reference Data set Results
TPR =0.98
FPR =0.05
Microcalcifi- F — measure = 0.96
cations - [31] MIAS Precision = 0.95
detection AUC = 0.98
Mammography Training efficiency=1
Testing efficiency=0.94
Di'agnosis_of Privgte Ace = 0.96
microcalcifi- ELM-FOA [35] 184 images
cation MIAS Acc =0.98
Classification of carcino-
Use SVM to ma tissue against other
Breast tissue - organize The UCI Machine ~ —ussues: Ace = 0.9775
EIS classification multiple [53] Learning Repository Clas51ﬁc'at10n of all six
ELMs breast tissues: Acc =
0.8895
Ductal Private Sn =093
carcinoma in - [37] 40 thermograms Sp = 0.925
situ detection Acc=0.928
Thermography Private
Classification 219 cyst, 371 benign Acc = 0.7006
of cysts and ) (27] lesions, 235
Breast lesions malignant lesions Kappaindex = 0.6566
Acc=1
[64] WBCD Sn=1
Sp=1
The Breast Cancer Acc = 0.964
Classification - [76] Wisconsin dataset Sn = 0.948
of benign and 699 cases Sp = 0.974
malignant T hg Brea}st Cancer
masses [73] Wisconsin dataset Acc = 0.9899
Non-image data 699 cases
The Breast Cancer Training time(s)< 10~*
ML-ELM [66]  Wisconsin dataset Testing time(s)< 10"
699 cases Acc=0.93
Predict cancer WBCP TrazmngAcc =0.94
recurrence . TestingAcc = 0.93
and the time BATELM [65] .35 attributes and 198 Training time(s)=1.49
instances —=
of recurrence Testing time(s)=0.98
Risk Private Sn =0.913
stratification 63 patients, 36 Sp =0.921
US of fatty liver _ (38] abnormal , 27 Acc = 0.924
disease normal AUC =0.92
VO =0.6715
VD =0.1416
Private =
Liver Liver tumor KELM [41] 20 tumors g?\;ﬁq D 2:227 T?::Lzm
CT detection and MSD = 8.46mm
segmentation VO = 0.6882
VD =0.1412
One-class (39] Private ASD = 1.65mm
RFSE-ELM 20 tumors RMSD =2.11mm
MSD = 7.14mm
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TABLE 7. (Continued.) The application of ELM and its improved algorithm in CAD.

Location Data type Scope Improvement  Reference Data set Results
VO =0.7475
. . VD =0.1189
Liver Fumor Two-class (39] Private ASD = 1.03mm
detection a}nd RFSE-ELM 20 tumors RMSD = 1.28mm
segmentation MSD = 4.77Tmm
CT DFEN-ELM [40] Private VO =0.7526
Classification Sn = 0.964
. of benign and ; Sp = 0.982
Liver malignant PH-C-ELM (501 g(r)l(;/i; images Acc=0.973
masses Youden’s index= 0.946
Ace = 0.967
gs:lf:rous Efriti?s;llzlar (PIII}\]I?\rIi(]iELM 51 11);;’31‘&’ hol gn = 833?
. . - iver patholo p=0.
pathologlcal (HCC) nuclei model (51] images P gy Precision — 0.998
Image grading Flscore = 0.996
Acc =0.72
Classification - [25] Private Sn =0.79
of benign and Sp = 0.67
malignant Private Acc =0.9718
brain tumors ELM-LRF [77] 16 pati ' d Sn = 0.968
patients’ data Sp—0.9712
Private gn f 8 f é
1000 images, 5 Ap —05
- [28] classes and each ="
MRI class has 200 images Errorrate = 0.01
Brain tissue F — measure = 0.66
and IPSO-ELM [42] Private Acc =0.98
pathological . . . Sn = 0.985
Brain tumor Hybrid Krill [44] Private Sp = 0.979
classification herd- ELM 400 sample images Acc = 0.989
KELM [49] Private Acc = 0.9368
ELM-RGSO [43] Private Acc = 0.9368
RELM [46] Private Acc = 0.9423
Brain tissues Private Sn = 0.9801
MRS and MR and tumors IPSO-ELM [54] 35 clinical routine Sp=0.95
classification cases Acc =0.9915
Microscopy Brain tumor Private
images of cell PH-ELM [29] . Acc=0.9
- 13560 tumor-images
cells recognition
Sn = 0.9656
Classification ﬁ?i;{l]l)rinary Sp=0.9503
of benign and nodule images, 454 TrammgAcc = 0.9757
malignant SS-ELM [47] ) ’ TestingAcc = 0.9591
pulmonary benl,gn’ 613 AUC = 0.961
CT nodule ma.hgnant, 372 for FPRatio — 0.9635
Lung training data FNRatio = 0.9538
Micro-nodules ) (52] LIDC-IDRI Acc =0.9113
detection 19081 samples Sn = 0.7349
Multi The UCI Machine
Non-image data  classification Fuzzy ELM [63] Learning Repository ~ Acc = 0.9885
of lung cancer 32 samples
Cervix Earl . Sn = 0.946
uteri FLIM diagi]losis ) 78] Private Sp = 0.843
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TABLE 7. (Continued.) The application of ELM and its improved algorithm in CAD.

Location Data type Scope Improvement  Reference Data set Results
. . Abnormality .
Cervix  Microscopy detection of ~ FastPSO-ELM  [56]  LLVa© Acc = 0.9476
uteri images of cells cells 50 images
. Tissue Tumor Private

Kidney microarrays detection ) 431 90 tissue ROIs Ace = 0.9173

Classification Private Acc = 0.8772
. of benign and 114 benign nodules AUC = 0.8672

Thyroid  US malignant i [61] and 89 malignant Sp = 0.9455

tumors nodules Sn = 0.7889
VIIl. CONCLUSION [10] G.-B. Huang and L. Chen, “Convex incremental extreme learn-

CAD has always been a research hotspot in the field of
medical information processing. The establishment of a pow-
erful, high-performance CAD system can better help doctors
find and diagnose diseases, especially malignant diseases,
improve the survival rate of patients, and improve the quality
of life of patients. Many research results can prove that ELM
can be applied to the construction of CAD, and the research
in this field has important medical and social value.

This paper mainly discusses the feature extraction method,
feature selection method, the application of ELM and its
improved algorithm in CAD, the performance of ELM and
its future development prospect. It can be seen that ELM
algorithm not only has short processing time, but also has
good generalization performance. The application prospect
of ELM in CAD system is broad, and there is still room for
development and improvement, which is worthy of further
study.
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