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ABSTRACT This paper proposes an efficient control strategy to enhance frequency stability of three-area
power system considering a high penetration level of wind energy. The proposed strategy is based on a
combination of a Proportional Integral Derivative (PID) controller with a Linear Quadratic Gaussian (LQG)
approach. The parameters of the proposed controller (i.e., PID-LQG) are optimally designed by a novel
natural physical based-algorithm called Lightning Attachment Procedure Optimization (LAPO). The main
objective is to keep the frequency fluctuation at its acceptable value in the presence of high penetration
of wind energy, high load disturbance and system uncertainties. The superiority of the proposed PID-LQG
controller is validated by comparing its performance with optimal Coefficient Diagram Method (CDM) con-
troller, conventional CDM controller, optimal PID controller-based LAPO, and integral controller. Moreover,
the exhaustive results completely demonstrate that the proposed controller gives better performance in terms
of overshoot, undershoot, and settling time as well as provides reliable frequency stability for interconnected
power systems considering high wind penetration and system uncertainties.

INDEX TERMS Frequency stability, interconnected power systems, linear quadratic Gaussian (LQG),

lightning attachment procedure optimization (LAPO), high penetration of wind energy.

I. INTRODUCTION

The energy demand is gradually increasing which requires
establishing renewable energy sources (RESs), transmission
lines as well as interconnection among power system areas
to meet future demands. Carbon reduction requires a large
establishing of renewable generating units instead of gener-
ating units produce fossil fuels. Moreover, RESs are abun-
dant, friendly to the environment, cheap, and clean [1]. Wind
energy is considered one of the most consequential RESs,
where its installation cost is less than the photovoltaic (PV)
plants. Therefore, wind energy represents a larger segment of
installed resources from renewable power plants [2]. In the
context of planning to expand generation, the total price
of electricity decreases when renewables power penetration
increases in the power system [3], [4].
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With increasing the penetration level of RESs into the
power systems, the impact of low system inertia on dynamic
system performance and stability increases. In addition,
the random nature of the RESs causes many control issues
(e.g., frequency instability), that may restrict their high pen-
etration [5]. Therefore, many efforts have been done to
minimize the effect of the high penetration of RESs in the
power system by determining the amount of required power
from RESs. A Monte Carlo method based on the particle
swarm optimization (PSO) algorithm is proposed to deter-
mine the power required of RESs to meet the load demand [6].
Also, a heuristic-based approach to load demand prediction
is applied to determine the power needed from distributed
energy sources (i.e. wind turbine generator, Photovoltaic (PV)
system, energy storage systems) [7]. On the other hand, fre-
quency fluctuations may result from unbalancing between
the required power for the load and the supplied power
from generation plants. Therefore, this issue has significant
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influences on the electrical systems include their operation,
reliability, security, transmission lines overloading, and the
protection devices triggering [8]. Thus, these effects must
be eliminated by enhancing frequency stability. Four con-
trol loops (i.e. primary control, secondary control, tertiary
control, and emergency control) are responsible to enhance
frequency stability and overcome any fluctuations that occur
in the power system [9].

Various control approaches have been developed to
enhance frequency stability and control unscheduled tie-
line power divergence against system variations such as
adaptive fuzzy logic controller [10], model predictive con-
trol (MPC) [11], adaptive neural network controller [12],
an adaptive neuro-fuzzy controller [13], sliding mode con-
trol [14]. Though the above-mentioned controllers can
successfully handle the system frequency deviation, they
suffer from many shortcomings such as (i) its reliant on
the designer experience to arrive at the right concept, (ii)
its processing time is long, (iii) its complex procedures,
and (iv) its high cost compared to traditional controllers.
Admittedly, PID controllers are commonly used in industrial
applications due to its simplest in structure, its lower cost
compared to other control techniques [15]. However, the PID
controllers are more sensitive to systems uncertainties. So,
it is essential to design optimal PID controller whose param-
eters selected based optimization techniques to withstand
any variations recently. Therefore, some optimization algo-
rithms are employed to obtain the optimum PID controller
gains such as; artificial bee colony algorithm (ABC) [16],
salp swarm algorithm(SSA) [17], Improved sine cosine algo-
rithm (ISCA) [18], Bacteria foraging optimization (BFO)
[19], cuckoo search technique [20], bat inspired algorithm
(BIA) [21], Moth-flame optimization (MFO) [22], bat algo-
rithm (BA) [23], Jaya algorithm [24], and Elephant Herding
Optimization (EHO) [25]. Although, these algorithms can
able to obtain optimal parameters that lead to successful
results, the shortage of these techniques is that they long
elapsed time and very sensitive to their parameters.

On the other hand, various advanced robust control tech-
niques have been applied for frequency stability of power
systems. Where, robust control techniques have advantages
in considering disturbances, uncertainties and physical con-
straints. According to this consideration, numerous studies
related to application of the robust control for power sys-
tem have been depicted [26]-[29]. In [26], a coefficient
diagram (CDM) method is applied to a virtual inertia con-
trol loop to improve the frequency stability of an islanded
microgrid considering a high penetration level of renewables.
A robust control technique based on the H-infinity approach
is applied for controlling frequency in an islanded microgrid
considering RESs penetration [27]. Also, a robust controller-
based p synthesis for improving the stability of the microgrid
considering energy storage system (ESS) [28]. In addition,
the H-infinity approach is applied in combination with p
synthesis for the LFC problem in an islanded microgrid [29].
Based on the aforementioned robust controllers, the robust
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controllers have a drawback that they need to have a good
knowledge of the system. In addition, they have weak effects
with an unknown variable input.

A few researchers have prompted studies on optimal con-
trol techniques that their design based on minimizing of the
cost function e.g. the linear quadratic regulator (LQR) for
achieving the superior goal by keep frequency at acceptable
range in power system have been presented in [30]-[35].
In [30] the LQR controller is applied in addition to Kalman
filter (KF) to form (LQR-KF) to eliminate frequency fluctua-
tions in an interconnected power system. Therefore, the LQR
is applied in addition to Model predictive control (MPC) for
eliminating the frequency deviation in small power system
area considering generation rate constraint (GRC) and gov-
ernor dead band (GDB) [31]. Moreover, the linear quadratic
Gaussian (LQG) linked with MPC to improve frequency
stability in power system depends on conventional generat-
ing unit [32]. The LQR is applied to a two-area intercon-
nected area in smart grid design for regulating the frequency
[33]. Moreover, a Kalman filter is proposed to form linear
quadratic gaussian to diminish any deviation in frequency
according to system uncertainties [34]. In [35] an effective
integral linear quadratic gaussian (ILQG) controller is pro-
posed to reduce the fluctuations in frequency response in
two power system areas populated with Plug-in hybrid elec-
tric vehicles (PHEV).Although these approaches success to
solve LFC problems, they depended on the designer experi-
ence and the trial and error methods to select the controller
parameters.

Referring to the presented studies of the LFC topic, con-
ventional controllers such that the PID controller suffer from
difficulties in parameter selection. Moreover, few works
focused on LQR and LQG controllers to solve the LFC issue.
However, these few studies didn’t consider any optimization
algorithms for finding the LQR and LQG control parameters
where they mostly used trial and error methods. On the other
hand, there are few studies devoted to LFC considering high
the RESs penetration in the interconnected power systems.
Motived by the above observations, this study proposes a
combination of the PID controller with the LQG approach,
to obtain a robust PID-LQG controller for the frequency sta-
bility of a multi-area interconnected power system consider-
ing a high penetration level of wind energy and uncertainties.
Moreover, the lightning Attachment Procedure Optimization
(LAPO) algorithm is proposed to find the optimal parameters
of the proposed PID-LQG controller. The LAPO algorithm
presented by Nematollahi er al. [36]. This algorithm sim-
ulates the Lightning phenomena in nature. The LAPO is
based on for steps which are: leader upward direction, section
fading, downward leader orientation, and the strike point
which mimics the optimal solution [37]. Therefore, it has
high searching capability applied for solving several opti-
mization problems. In [36], the LAPO algorithm is applied
to determine the optimal power flow for power system. It is
applied for the same issue in the presence of a unified power
flow controller in [38]. Also, the LAPO algorithm is applied
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FIGURE 1. A simplified model of the studied three area interconnected power system.

to capture the optimal placement and size of the distributed
generators in [39].

According to the above investigation, the main paper con-

tributions and features are listed as follows:

i. Proposing a new control strategy based on a PID-LQG
controller to diminish the deviation in frequency of the
multi-area power system considering high penetration
of wind energy.

ii. The proposed PID-LQG controller is based on the PID
controller combine with the LQG controller to enhance
frequency stability and face the high penetration of
wind farms.

iii. The PID-LQG controller parameters are optimally
assigned by implementation a new algorithm: called the
LAPO algorithm, which hasn’t applied yet to select the
optimum parameters for the PID controller.

iv. It is the first attempt applying an optimization tech-
nique to select the parameters of the LQG controller,
unlike the previous efforts, the design of the LQG
controller parameters depends on the design experience
with the use of trial and error method.

v. The system uncertainties such as the governor dead
band (GDB), the generation rate constraint (GRC), and
load/RESs fluctuations are considered in designing the
proposed controller.

vi. This study considers the high-penetration level of wind
power in the interconnected power system including
the three-area power system, unlike most previous
research have considered the penetration of RESs in the
single-area power system.

The rest paper sections are arranged as follows. Section 2
presents the dynamical model of the studied power sys-
tem, wind generation modelling, and the state-space dynamic
equations. The proposed controller technique for the stud-
ied power system based on the LAPO algorithm is
depicted in Section 3. The exhaustive simulation results
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are presented in Section 4. The conclusion is listed in
Section 5.

Il. SYSTEM MODELLING AND CONFIGURATION
A. DYNAMIC MODEL OF A THREE-AREA POWER SYSTEM
A three-area power system model is considered as the studied
power system. The studied power system consists of three
areas tied by tie-lines. Moreover, each area consists of a
thermal generating unit, wind generating unit, and loads. The
simplified model of the studied power system is shown in
Figure 1. The dynamic model of the studied three-area inter-
connected power system with the proposed PID-LQG con-
troller scheme is shown in Figure 2, and the system param-
eters are given in Table 1 [8]. Frequency measurement is
considered an important pointer to control frequency in each
area besides its role in the interconnection between areas.
During abnormal conditions, the tie lines are connected to
exchange power among the interconnected areas and furnish
inter-area support. The mismatches should be adjusted by the
supplementary control. Area control error (ACE) results from
a combination of the frequency error (AF) and tie-line power
error (APy;.). This combination is the input of load frequency
controllers which affects the area performance. The main task
of the LFC system in each area is to handle tie-line power
deviations and enhance frequency stability. Hence, the LFC
problem should consider the tie-line power signal.

The relationship between the incremental mismatch
power(AP,,;—APr; — APwr;) and the Af; can be express as:

Af; = L) ap,, L\ ap, - (2 Af
o) \ow ) T T ol ) Y

1 1
— = )APuei — | = ) . APy (1
<2Hi> tie,i <2Hi> WTi ( )

whereas, the dynamic of the governor can be interpreted as:

. 1 1
AP, = (f) APgi — (f) AP, 2)
] 1

VOLUME 8, 2020



M. Khamies et al.: Efficient Control Strategy for Enhancing Frequency Stability of Multi-Area Power System

IEEE Access

Primary
control
loop

Governor Deadband

APy

1+ 5Ty

Turbine GRC
1

sTy

4 secondary

; control
loop

(LFC)

300s
300s +1

APw1(Vw1)

AF,

AF, — AF,

1
M;s + Dy

Power
system
area 1

2m T2

Governor Deadband

Turbine GRC

AP,

1
Mzs + D3

White
Noise2

300s
300s +1

wind farm 2 Vw2

APWTZ
APw2(Vw2)

Power AF; — AF;
system

area2

21 Ty

i
B
v Governor Deadband Turbine GRC
1 + 1
1+ sTg3 / ) sT3
AP, T

APw3(Vo3)

AF, — AF.
Power B 3

system
area3

2 Ty

FIGURE 2. The dynamic model of the three-area interconnected power system.

The dynamic of the turbine can be interpreted as:

. 1 1 1
AP, =(—) AP, — Afi——) ar,; G
¥ (Tgi> “ (RiTgi> d (Tgi> @ )

Moreover, the dynamic model of wind turbine can be inter-
preted as:

. 1 1
APyri = (T_> Pryina,i — <—) APyt 4

WTi
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Then, the total tie-line power change can be expressed as

follow:

. N N
APiio i =2m. | > =1 Ty =Y j=1 TiAf; | (5
JFI JFI

In the supplementary feedback loop, ACE should be applied
to regulate the frequency of interconnected power system.
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TABLE 1. The studied power system nominal parameters.

TABLE 2. The parameters of wind farms 1, and 2 [40].

Parameters Area-1 Area-2 Area-3 Parameter Value Parameter Value
D(pu MW /HZ) 0.015 0.016 0.015 P, 750 KW [ 116
2H(pu.MW s) 0.1667 0.2017 0.1247 v, 15m/s [ 0.4
R(Hz/pu.MW) 3.00 2.73 2.82 p 1.225 kg.m3 Cy 0
T, (sec) 0.08 0.06 0.07 A 1648m2 Cs 5
T, (sec) 0.40 0.44 0.3 Trr 229 m Co 21
B(pw/HZ) 0.3483 0.3827 0.3692 ny 22.5 rpm [ 0.1405
T12=0.2 T21=0.2 T31=0.25 cq -0.6175
Tyj (pu/HZ) T13=0.25 T23=0.15 T32=0.12
equations [40]:
300s 1
3 3
300s 41 Py = EPATVWCP (A, B) (®)
Wind

Turbine ——
Generator APy

White
Noise
Wind

Speed

AP (Vo)

FIGURE 3. A model of wind power generating source.

ACE expressed as follow:
ACE; = APy i + BiAfi (6)

The state space model of power system area according (1)
to (6), can calculated using (7), as shown at the bottom of the
page.

The nonlinearity effect of this studied system is considered
in two inherent nonlinearities. The GDB which has an effect
on the governor unit and its value equals 0.05 pu for every
area. While, the GRC is considered at a value of 10% for the
turbine unit.

wherever, v; = Zy _1 TyAf;

JFi
B. WIND FARM
The random wind power fluctuations result from wind
farm accomplished by a model designed by MATLAB/
SIMULINK program. According to the designed model, ran-
dom speed is multiplied by wind speed, which resulted by a

white noise block as shown in Figure 3 [40]. Wind power gen-
eration system (WPGS) model is captured form the following

wherever, Py is wind turbine output power, p is air density
in kg/m3, A7 is swept area by rotor in m2, Vy is rated
wind speed in m/s. Cp denotes the rotor blades coefficient.
Equation. (8) describes Cp based on turbine coefficients
C) — C7 [41].

Cp(A, B)=C1 x T—C3ﬂ—c4ﬂ - Cs
1
—C6
xe* +Cihr (9
wherever, B denotes pitch angle while At relates to the opti-
mum tip-speed ratio (TSR) can be obtained from (9).
wr X rr
Vw
Throughout all wind speed situations, variable speed wind
turbines run at optimum TSR value. Referring to previous
equation, r represents rotor radius. Moreover, A1 denotes the
intermittent TSR which is given using (11).
1 1 0.035
A1 A7 40088 B341
The nominal parameters of wind turbine for three wind farms
are given in Tables 2, and 3.

ar = A9F = (10)

(11)

lIl. PROPOSED CONTROL STRATEGY AND PROBLEM
FORMULATION

A. PROPOSED PID-LQG CONTROLLER

Due to the high-level penetration of wind energy and system
uncertainties, it is important to propose a robust controller

- ) ;
) : 0 0
Tfi | Ri.Tg;
APgi P —_— 0 0 0
APy L T _D 1 —1
AL =1 0 5 YT 2 2
ol 0 0 0 — 0
APy i Twri
N
0 0 27)j=1T; 0 0
L j#i i
140066

0 0 0 1
APg; 0 0 0 T
APy -1 0 0 AP 5'
AF; + 2Hi Av; + 0 AP
APwry 0 0 1 APyingi 0
APriei Twri 0
L0 0 —27¢ |
@)
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TABLE 3. The parameters of wind farm 3 [40].

Parameter Value Parameter Value
P, 3000 KW [ 116
Vy 12 m/s [ 0.4
P 1.225 kg.m3 Cy 0
Ar 5905 m2 Cs 5
Trr 43.63 m Ce 21
ny 22.5 rpm Cy 0.0192
[ 0.3915

to face these variations and improve system performance.
Therefore, this study proposes a robust PID-LQG controller,
which is a combination of the PID controller and the LQG
controller to take the advantages of these two controllers.
The PID controller is feasible and easy to be implemented.
Where, the PID gains can be designed based upon the sys-
tem parameters if they can be achieved precisely. However,
the PID controller generally has to balance all three-gain
impact on the whole system and may compromise the tran-
sient response, such as settling time, overshoots, and oscilla-
tions. If the system parameters cannot be precisely estimated,
the designed PID gains may not resist the uncertainties and
disturbances, and thus lead to low robustness. According to
this limitation of the PID controller, the LQG controller is
proposed to combine with the PID controller due to its major
advantages as follow:

i. Providing a time-varying control signal in each
moment which causes the system to follow the proper
trajectory.

ii. Minimizing a cost function during transient periods
while specifying a trade-off among the state regulation
and control action.

iii. Robustness and possibility of choosing different con-
troller configurations according to the non-uniqueness
property of optimal control.

Therefore, the proposed controller can give high robustness
compared to the PID controller alone due to the many afore-
mentioned merits of the LQG controller. Moreover, the pro-
posed controller has also advantaged of optimal control due
to its ability in minimizing cost function and feedback control
due to its ability to minimize feedback gain. The simplified
block diagram of the proposed control strategy is shown
in Figure 4. The proposed approach designing depends on
the PID controller gains, LQR controller gains, and Kalman
filter which is applied to measure all the state variables and
avoiding the LQR limitations.

The proposed controller designing procedures is listed in
the pseudocode in Table 4. Where the designing process
depending on the following steps:

i. Design the PID controller.
ii. Design the LQR controller.
iii. Design a Kalman filter.
iv. Combining the LQR controller and Kalman filter gain
to obtain the LQG controller.
v. Combine the PID controller and LQG controller to
obtain the proposed controller (PID-LQG).
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FIGURE 4. The block diagram of the proposed (PID-LQG) controller for
i-area power system.

TABLE 4. PID-LQG pseudo code.

Construct the feedback gain and Kalman filter gain & check the
stability of system

Identify the system data

Find the state space model of the system

Create the system matrix A, B and C according to system data.
Design the Kalman filter gain L.

Construct the weighting matrix Q.

Construct the controlling matrix R.

1If 0>0 and R>0

Capture the feedback gain K (ki-k4-k-k;g).

Else,

Update the values for Q and R matrix.

Combine the two gains K and L to form optimal LQG.
Construct the PID controller gains ky-k; - kg

Combine the PID controller gains and LQG controller gains
Check the system stability.

For all values of gains

If Stability of the system enhancement.

Keep the values of all gains

Else,

Update the values for Q and R matrix to update the LQR controller
gains

Update the PID controller gains k- k; - kq

End if,

The gain values achieve stability of the system.

Identify the values of matrix Q and R and all designed gains

The PID controller is termed as follows according to [42]:
k.
Ge (s) = ky + ? + kys. (12)

Then, the LQG gains are selected by applying the state-space
model of the system, and finding the value of optimal state
feedback u* (t) through the following equation [43]:

u (1) = —K (t)x (1) (13)
The state variable of the system is defined as follow:
X(t)=Ax(t)+Bu(t) (14)
Then, the output of the system is defined as follow:
Y (t) = Cx (t) + Du () (15)

where A, B and C are the system matrixes and u(t) is the
control input. Moreover, the optimal gain matrix K of the
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TABLE 5. The LAPO algorithm pseudo code.

Calculate the objective function for any check point
. Define the parameters of algorithm (search agent
numbers).
. Define the system data (lower, upper limit and objective
function).
e Initialize the trial spots(x’,)
. Obtain the objective function of trial spots (F,,, J-xs"t )-
Determine the mean point of check points and its objective
function ( Fy,, and xt,,).
If
F obj <F, avr:
Calculate the new value of trial spots as
Xk o = X& +rand X (Xqpr + Aby)
Else,
Calculate the new value of trial spots as
Af.‘s,new = Xtis —rand X (Xavr + Xlis)
Diminishing the section to determine the new check points
If
F, tls_new <F tls ) .
The new value is X¢s = X{s new
Otherwise,
The new value is X{; new = Xl .
Determining the value of an exponent factor (S)
. Find the objective function of the updated points.
o Determine the worst and best solutions X,oys - Xtese
Finding the optimal solution
Print the best solution

G

’ Define system data ‘

v

Create the state space
model

v
’ Define the matrix A,Band C
according to¢svstem data

Define the lower and upper

limits of PID-LQG controller <—|
parameters

Update the value of
control parameters

7y

v
Define the controlling
parameters of LAPO
algorithm

IS the cost function
minimum?

Yes NO

FIGURE 5. Flow chart of the proposed approach using LAPO algorithm.

LQR controller is calculated to diminish the cost function J
as follows:

iy ) .
J= / (Ox + uRu + 2XNu)dt (16)
o
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TABLE 6. LAPO algorithm initial values and limitations of the proposed
controller gains.

Number of Test points 40
Number of iterations 100
Range of (k,; — k;; — kg;) [5 -20]
Range of Q; [0 20]
Range of R; [0 150]

Convergence curve

PID-LQG
Optimal PID | -

The objective function

20 40 60 80 100
Iteration

FIGURE 6. Convergence curve for normal system parameters.

Therefore, the constraint problem can be resolved by the
n-vector of Lagrange multipliers, A. The minimization of
unconstrained problem is reduced as follows:

L (x, u,t) = [£Qx + iRu] + A[Ax + Bu — %] (17)
Moreover, the most fitted values symbolized by subscript (*).

Then, they are obtained by equating the partial derivatives to
Zeros.

aL

P Ax* + Bu* — x* = 0x* = Ax* + Bu*  (18)

aL . 1 ,

— =2Ru*+AB=0u*=—-R"'\B (19)
ou 2

aL ., o S

oo =20 FATIA =04 = -20x" — AL (20)
X

Here, Q denotes the matrix of state weighting and R denotes
the matrix control weighting. It is important to build the
weighting matrix symmetric, real and positive semi definite.
The matrix of control weighting real, symmetric and positive
definite character. The time varying positive definite matrix
P(¢) should satisfy:

A = 2P(t)x* @21)

Then, the derivative of (21) as follows:
A = 2(Px* + Px*) (22)

According to the values in, (13), the optimal closed-loop
control law is given as depicted (23).

u* (f) = —R™'Bp (1) x* (23)
Solving the Riccati equation as follows:
P=—-P(t)A—AP(1)—Q+P®)BR'BP(1). (24)

The optimal feed-back gain and the state response of the
assumed system have been solved by solving the Riccati
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FIGURE 7. The frequency and tie-line power deviations of the studied power system for scenario 1, case A.

TABLE 7. Parameters of the PID and PID-LQG controllers based on the LAPO algorithm at normal system operation.

Parameters Area (1) Area (2) Area (3)
Optimal PID PID-LQG Optimal PID PID-LQG Optimal PID PID-LQG
k, 0.0043 -4.2 -9.41 -18 -9.51 -16
k; -2.017 -2 -1.86 -4.3 -4.065 -8.2
kg -0.577 -2.1 -3.69 -18 -9.764 -13
k, - 0.335 - 0.46 - 1.14
k, - 0.356 - 0.39 - 0.295
k, - -0.101 - -0.4 - -0.13
kg - -0.39 - 0.005 - -0.3
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FIGURE 8. The frequency and tie-line power deviations of the studied power system for scenario 1, case B.

TABLE 8. The system operating conditions for scenario 2, case A. TABLE 9. The system operating conditions for scenario 2, case B.
Source Area Start Stop time  Value Source Area Start  Stop time  Value
time (sec) (pu) time (sec) (pu)
(sec) (sec)
Wind farm 1 Area 1 30 1200 0.038 Wind farm 1 Area 1 initial 1200 0.038
Wind farm 2 Area 2 90 1200 0.038 Wind farm 2 Area 2 initial 1200 0.038
Wind farm 3 Area 3 10 1200 0.023 Wind farm 3 Area 3 initial 1200 0.023
Load disturbance 1 Area 1 60 1200 0.02 Load disturbance 1 Area 1 60 1200 0.02
Load disturbance 2 Area 2 120 1200 0.02 Load disturbance 2 Area 2 120 1200 0.02
Load disturbance 3 Area 3 160 1200 0.02 Load disturbance 3 Area 3 160 1200 0.02
140070
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TABLE 10. The optimal values of the studied controllers with system parameters variation.

Parameters Area (1) Area (2) Area (3)
Optimal PID PID-LQG Optimal PID PID-LQG Optimal PID PID-LQG
k, -0.457 -04 -2411 -19 -0.717 -19
k; - 0.897 -1.1 -8.419 -5 -1.563 -9
kg -0.344 -0.6 -3.05 -16 -1.14 -7.3
k, - 1.99 - 2 - 1.99
kq - 0.014 - 1.915 - 1.98
k. - -0.49 - -0.59 - 1.73
ke R 2055 R 051 - -0.59
04 . . After selecting the value of feed gain matrix, we should
sl select the value of Kalman gain matrix (L) that responsible
T to minimize the covariance estimation error R, (¢, t).
o
G 00
T
| ‘ | | Re (t,1) = Ele (1) .} (1)] (30)
vz 200 400 600 800 1000 1200 .
Here, the ¢ (f) estimated error can express as follows:
eo (1) = x (1) — xo(2). (€29

1
40 600 Time (sce ) 800 1000 1200

FIGURE 9. The wind power fluctuations of three wind farms.

equation [44].

K =—R'BP (25)
Referring to the expression of the system input and the second
order system taking in consideration the intervals of inputs
and finding the state feedback gain according to this relation:

Y E
) _ a _E® 26)
UGs) s2+bis+by  U(s)
Then, finding the state space model as follows:
X1 0 1 0 X1 0
X | =10 0 1 x |+[0{U @27
X3 0 —-by —-by X3 a

From (27), the matrices A and B can expressed as follows:

0 1 0 ] 0
A = [[space]] | O 0 1 , B=1|0 (28)
0 —-b1 —bo | a
By resolving (25), using the values of matrix B.
[ P11 P12 Pi3
k=-R"'BTP=—-R"'[0 0 a]| Pu Pxn P
| P31 P32 P33
=—R'a[P;3 Pz Piz]=—[k k; k] (29
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According to input of the system, the state equation of
Kalman filter can be expressed as follows:

X (1) = Axo (1) + Bu (t) + L[Y (t) — cxo (t) — Du (1)]
(32)

By compensating (31), in (32), and finding the optimal esti-
mation error as follows:

b0 (t) = [A—LCleo (1) + Fv () —Lz(r)  (33)
w(t) = Fv(t) — Lz(t) (34)

Then, summarizing (33), and (34), as follows:
eo (t) =Aep (1) +w(t) — LCeq (1) (35)

According to the Riccatic equation and then the covariance
of estimation error can be express as:

dRV(,
% =A-Rt,0) +R0(t,1)- AT — RV (1, 1)

CT. 27V R, ) + FV()FT  (36)

From the matrix Riccatic equation, the value of is Rg(t, t)
found out and then the value of (L) is found out by the below
equation:

0 -1
L=R\.cT.z7! (37)

Now, combining the two resulted gains K and L to form

the optimal LQG controller. Then, the optimal state-space

realization of LQG controller can be expressed as follows:
Xo=[A—BX —LC+LDK]Xo+LY. (38)

According to figure 4, the proposed controller depends on the
weighting matrixes Q and R which are responsible to obtain
the gains for the LQG controller and the PID controller gains.
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FIGURE 10. The frequency and tie-line power deviations of the studied power system for scenario 2, case A.

B. LIGHTNING ATTACHMENT PROCEDURE OPTIMIZER

LAPO is an algorithm that simulates the lightning forma-
tion in natural where cloud contains a huge amount of
charges, this leads to the formation of downward leaders
and therefore the upward leaders that combined at stick
point [31]. The steps of the LAPO algorithm expressed in
code as shown in Table 5. The procedure of formulating

the LAPO technique is scheduled according to the following
procedures:

140072

Step1: Initializing the population
The electric field of a checkpoint which is the solution’s
fitness is determined according to the objective function

Fi; = obj(X;) (39)

Here, X/, is the initial check point and is determined according
to (40) and considered as downward leader:

Xhy = Xt + (Xiax — X)) X rand (40)
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FIGURE 11. The frequency and tie-line power deviations of the studied power system for scenario 2, case B.

The initial check point is depended on the lower bound,
the upper bound and randomly variable. Moreover, the value
of rand is considered between [0-1]. The objective function
of the primary spots can be premeditated as follows:

Step 2: Determine the afterward jump

In this step, the averages of all initial check points is
obtained as follow:

Xavr = mean(Xys) 41)

Then, the objective function of these are determined accord-
ingly the following:

Fayr = 0bj(Xavr) 42)
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The forward jump is chosen according to the comparison of
the value of check point i and the random point j.

First situation, where F; < Fg,, the forward jump can
determine according to equation (43):

ISnew

XL = Xi + rand x (X,m +A§;S) (43)

Second situation, where F; > F_, the forward jump can
determine according to (44):

X o = Xiy = rand x (Xawr + Xh ) (44)
Step 3: Performing new check point
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FIGURE 12. Convergence curve for system parameters variations.

All the afterward check points checked according the value
of its electric field as follow
IF F} < Fj; the check point selected as follow:

ts_new
X;S = X;:Yiﬂew (45)
Otherwise F t’:Y_n ow <F t’; the check point selected as follow:
Xis_new = Xis (46)

Step 4: Leader Upward Movement

Different from the previous consideration for all the pre-
vious steps, the check points are considered upward leader
and their move depend on charging downward leader. Then,
an exponent factor (S) is determined according to the follow-
ing equation:

t
S=1-(

) X exp(—=—) (47)

max max

The pervious operator depends on iteration number t and
maximum iterations #,,,,. Thus, the next step of check point
where is considered as upward leader is formulated as shown
in equation (48):

thsfnew = thsfnew + rand x S x (Xéest - levarst) (48)
X}, is the best solution, while X}, .. is the worst solution.

Step 5: finding the optimal solution

Lightning occurs as soon as up leader combined with down
leader and this led to a point which known as striking point.
This referring to the optimal solution.

C. PROPOSED CONTROLLER BASED ON THE LAPO
ALGORITHM

In this study, the proposed PID-LQG controller is applied to
enhance frequency stability in a three-area power system. The
proposed controller parameters have been designed optimally
by using the LAPO algorithm. The LAPO algorithm serves as
a tool to tune the weighting matrices values Q; and R;, which
are reasonable to select these parameters (kjji—k q; —k i - K gi),
and the (kpi—ki;- kq;) in each area. Moreover, the flow chart of
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the LAPO algorithm procedures in selecting the parameters
of the proposed controller is shown in figure 5.

The integral time-square error (ITSE) is chosen as sin-
gle objective function. Moreover, the optimal setting of the
LAPO algorithm is listed in Table 6. The optimization process
is repeated more than 20 times to yield a minimum fitness
value to minimize the deviations of frequency and tie-line
power. The model of the ITSE objective function is described
as follows:

tsim
ITES = / (AR + (AR + (Af3)? + (AP )2
0
+ (AP 2)? 4 (APie3)*dt - (49)

Here, tg, is the simulation time and Af; the deviation of
frequency for i- area and APy, ; the tie-line power for i- area
for the studied power system.

Therefore, the proposed controller (PID- LQG) gains con-
straints are described in (50).

K;}nin < Kp < K’!nax

K;ﬂin < Kd < K:Jnax

K" < K; < K (50)
Qmin < Q < Qmax

Rmin < R < RMax

IV. SIMULATION STUDY

Computer simulations have been carried out for a three-
area interconnected power system considering the high pen-
etration level of wind energy and nonlinearities as shown
in Figure 2. Moreover, the GDB is adjusted at 0.05% and
GRC to be 10% per minute. The robustness and effectiveness
of the proposed controller is validated by comparing its per-
formance with; integral controller [8], CDM controller [45],
optimal CDM controller [46], and optimal PID controller
based on the LAPO algorithm. The simulation process and
results have been carried out using MATLAB/Simulink
®software. Moreover, the LAPO code is written by M-file
and interface with the system model to implement the opti-
mization process. In this study, the load profile is assumed
to be step change disturbance which can be represented by
losses of generation unit or sudden massive loading switch
off. Graphical and numerical simulation results are discussed
for three scenarios as follows:

Scenario 1. Performance analysis of the studied power
system without wind power penetration.

In this scenario, the performance of the studied power
system is tested at nominal system parameters without wind
power penetration. The optimal values based on the LAPO
algorithm for the proposed PID-LQG controller and the opti-
mal PID controller are listed in Table 7. Figure 6 shows the
convergence profile of the optimal PID controller and the
proposed PID-LQG controller. The simulation results of this
scenario are performed for two different cases as follows:

Case A: a 2 % step load change is applied in area-
3 at 30 sec. The frequency and tie line power deviations of
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FIGURE 13. The frequency and tie-line power deviations of the studied power system for scenario 3.

the studied power system for casel with different control
schemes are shown in Figure 7. According to the simulation
result of this scenario, the proposed controller gives better
performance in comparison with other control strategies (i.e.,
optimal CDM controller, CDM controller, optimal PID-based
LAPO algorithm, and integral controller) in terms of settling
time, overshoot and under shoot.

Case B: a 2 % step load change is applied in area-1 at
20 sec, area-2 at 40 sec, and area-3 at 60 sec, respectively. The
frequency and tie-line power deviations of the studied power
system for this case study with different control schemes
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are presented in Figure 8. The proposed control strategy
has a small value of oscillation compared with other control
strategies.

Scenario 2. Performance analysis of the studied power
system considering high wind power penetration.

In this scenario, the performance of the studied power
system is tested at nominal system parameters consider-
ing high wind power penetration. The power fluctuations
of the three wind farms are shown in Figure 9. The sim-
ulation results are discussed in for different two cases as
follows:

140075



IEEE Access

M. Khamies et al.: Efficient Control Strategy for Enhancing Frequency Stability of Multi-Area Power System

Case A: the operating conditions of wind farms and
load disturbances for this case are listed in Table 8.
Figure 10 shows the frequency and tie-line power deviations
of the studied three-area interconnected power system con-
sidering wind energy with different control schemes (i.e. the
proposed PID-LQG controller-based the LAPO algorithm,
and optimal PID controller-based the LAPO algorithm) for
this case. The proposed PID-LQG controller-based LAPO
algorithm has better performance than the PID controller-
based the LAPO algorithm as its ability in minimizing devia-
tion result from wind farms penetrations and load disturbance
in each area.

Case B: the effect of wind power penetration occurs from
the initial simulation time. The operating conditions of wind
farms and load disturbances for this case are listed in Table 9.
The frequency and tie-line power deviations of the studied
three-area interconnected power system considering wind
energy with different control schemes are shown in Figure 11.
It is clear that the proposed PID-LQG controller-based LAPO
algorithm eliminates deviations in frequency and tie-line
power compared to the optimal PID-based LAPO algorithm
in the face of wind farms penetration at the same time.

Scenario 3. Performance analysis of the studied power
system considering high wind power penetration and system
uncertainties

The performance of the studied three-area interconnected
power system is tested with the proposed PID-LQG controller
under the severe case. The system parameters changed as
follows, the governor and turbine time constants of each
area are increased from their values to T,1 = 0.105 sec,
T = 085 sec, Typ = 0.105 sec, T, = 0.6 sec,
Ty3 = 0.15 sec and T;3 = 0.7 sec. The optimal values of
the PID-LQG controller and the conventional PID controller
based on the LAPO algorithm are listed in Table 10. The
convergence curve for this test is shown in figure 12.

The robustness of the proposed PID-LQG controller-based
LAPO algorithm is examined under the worst-case which
maybe occur to the system. The operating conditions of wind
farms and load disturbance are considered as listed in Table 9.
Figure13 shows the frequency and tie-line power deviations
of the studied three-area interconnected power system for
this scenario. The proposed PID-LQG controller based on the
LAPO algorithm accomplishes frequency deviations better
than the optimal PID controller-based LAPO algorithm in
less settling time. The performance of the proposed controller
has the best values in terms of maximum overshoot and
undershoot.

V. CONCLUSION

This study has proposed a robust control strategy based on
a combination of the PID controller and the LQG approach,
referred to as the PID-LQG controller, for frequency stability
enhancement in a three-area interconnected power system
considering high wind power penetration. The parameters of
the proposed controller were determined based on the LAPO
algorithm due to it has many merits such as good exploration,
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exploitation abilities, and doesn’t require any specific param-
eters. However, the proposed algorithm has drawback of slow
convergence speed. On the other hand, the LQR approach
has proven highly worthy in many engineering applications
due to it provides fast convergence and less mathematical
intricacy. Where it was recently applied with a view to
achieving the best performance of a wind energy conver-
sion system through adjusting the machine-and the grid-side
converter/inverter. The simulation results indicated that the
proposed PID-LQG controller gives better performance than
other control techniques (i.e. conventional controller - CDM
controller- Optimal CDM controller- Optimal PID controller
based LAPO algorithm) against loads/RESs perturbations
and system uncertainties.
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