
Received June 10, 2020, accepted July 19, 2020, date of publication July 27, 2020, date of current version August 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012190

An Optimal Recovery Approach for Liberation
Codes in Distributed Storage Systems
NINGJING LIANG 1, XINGJUN ZHANG1, (Associate Member, IEEE),
HAILONG YANG 2, (Member, IEEE), XIAOSHE DONG1,
AND CHANGJIANG ZHANG1
1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710048, China
2School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Corresponding author: Xingjun Zhang (xjzhang@xjtu.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2016YFB1000303.

ABSTRACT To reduce the storage cost, distributed storage systems are gradually using erasure codes to
ensure data reliability. Liberation codes, which satisfy the maximum distance separable (MDS) property and
provide optimal modification overhead, are a class of popular two fault tolerant erasure codes. However,
erasure codes need to read from surviving nodes and transfer across the network large amounts of data
when recovering from single node failures. Existing single node failure recovery approaches for Liberation
codes are either time-consuming or suboptimal. In this article, firstly, we prove the minimum number of
symbols required to recover one failed node for a Liberation coded system. Then we derive the conditions
that optimal recovery solutions need to satisfy. Finally, we propose an algorithm, called Disk Read Optimal
Recovery (DROR), which can determine an optimal recovery solution in linear time and recover the failed
node reading theminimum amount of data.We have implementedDROR in a real-world storage systemCeph
and evaluated DROR on a cluster of Amazon EC2 instances. We show that DROR reduces the reconstruction
time by up to 23.6% compared to that of the recovery approach in Ceph.

INDEX TERMS Liberation codes, minimum amount of data, optimal recovery approach, single node
failures.

I. INTRODUCTION
Inexpensive components are preferred for use in modern
distributed storage systems due to the economic benefits;
however, these components are less reliable, and data may
become temporarily or permanently unavailable. Therefore,
a crucial requirement for building distributed storage systems
is their reliability in the face of component failures. High
reliability can be obtained by equipping the system with
redundancy techniques, which are mainly classified into the
following two categories: replication and erasure codes.

Replication has been widely used in modern storage sys-
tems, for example, in GFS [1] and Dynamo [2]. Replication
generates several copies of the original data and dispatches
each copy to a different node. Node in this article refers to
an independent failure domain, which can be a disk or a stor-
age node. The major drawback of replication is consuming
massive amounts of extra storage space.

The associate editor coordinating the review of this manuscript and

approving it for publication was Congduan Li .

Increasingly, storage systems [3]–[6], [7] are gradually
beginning to use erasure codes to maintain high reliabil-
ity. Compared to replication under the same fault-tolerance
condition, erasure codes usually have lower storage cost.
For example, (6,4) Reed-Solomon (RS) code [8] and 3-way
replication can both tolerate any two node failure, while the
former has half the storage cost of the latter. When using a
(n, k) code, the original object is divided into k equal-sized
data chunks, and m (= n− k) parity chunks are calculated by
these k data chunks. There is one kind of widely used erasure
codes — maximum distance separable (MDS) codes, which
can tolerant any m node failure under the minimum storage
cost.

MDS codes can greatly reduce the consumption of storage
space; however, their recovery performance is far lower than
that of replication. Single node failures represent 99.75% of
recoveries [9] and attract more attention recent years [10],
[11]. In a (n, k)MDS coded system, k chunkswill be retrieved
from (n − 1) surviving nodes to reconstruct any missing
chunk. While, in a 3-way replicated system, the failed chunk

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 137631

https://orcid.org/0000-0002-7547-0483
https://orcid.org/0000-0003-1101-7927
https://orcid.org/0000-0003-0495-332X

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

can be recovered by copying any one surviving replica. This
k-factor increases both in disk I/O1 and network traffic2 result
in a long recovery time, whichmay seriously affect the system
service performance. In addition, too long reconstruction
time will lead to an increase in the probability of data loss
[12]. Therefore, improving the recovery performance is of
much concern, especially the performance of single node
recovery.

Unlike general erasure codes using expensive Galois
Field arithmetic, XOR-based codes perform only effective
XOR operations, which is desired for storage systems. Two
fault tolerant erasure codes, known as RAID-6 codes, have
received more attention in recent decades, since the prob-
ability of multiple node failures is higher than ever [9],
[13]. Typical XOR-based RAID-6 codes include EVENODD
[14], RDP [15], Blaum-Roth [16], Liberation code [17],
Liber8tion code [18], CRS code [19], X-code [20], B-Code
[21], H-code [22], P-code [23], HV-code [24], etc. X-code,
B-Code, H-code, P-code and HV-code are vertical codes,
which are seldom used in practical systems due to their
complex placement rules for parity chunks. Liberation codes
provide nearly optimal encoding and decoding performance,
and most importantly, they reach the lower bound in terms of
modification overhead among all horizontal RAID-6 codes.
Therefore, Liberation codes have great potential in providing
high endurance of parity disks for storage systems built with
solid-state drives (SSDs).

Though RAID-6 codes were originally designed for RAID
disk arrays, they have recently been applied successfully to
distributed storage systems [25], [26] [27], [28] [29], [30].
For example, Fan et al. [25] propose DiskReduce, which inte-
grates Blaum-Roth code into HDFS and can reduce storage
overhead from 200% to 25% (when n = 10, k = 8) at a little
expense of the performance of large reads. The consensus
for storage systems is that two-failure tolerance is the right
level of tolerance, assuming that data stripes are not large.
Our work supports this trend, we are concerned with one kind
of MDS RAID-6 codes — Liberation codes and investigate
their recovery performance in distributed storage systems.

Note that, for practical distributed storage systems, it is
significant to reduce repair time without sacrificing stor-
age cost and data reliability; however, it is challenging to
achieve this goal. Some techniques for existing MDS codes,
especially for RAID-6 codes, have emerged to reduce the
amount of data required during recovery. For example, the
minimum amount of data read for RDP, EVENODD, and
X-code when recovering single node failures are derived [10],
[31], [32]. However, none of them has conducted experi-
ments on real-world storage systems. Authors of [10] evaluate
their recovery approaches for RDP using a disk simulator.
Authors of [31] do not carry out experiments evaluating
their efficient recovery approach for EVENODD. Authors

1disk I/O means the amount of data read from disks, and is also konwn as
disk read or the number of symbols read.

2network traffic means the amount of data transferred across network.

TABLE 1. Major notations used in this article.

of [32] conduct testbed experiments for the optimal recovery
approach of X-code on their own small-scale experimental
file system called NCFS, which can encode and decode the
data on multiple storage devices according to a specified
erasure code. Unfortunately, NCFS can be hardly used in an
actual production environment due to its extremely simple
functions. So making evaluations on a simulator or NCFS can
not reflect the performance of various recovery approaches
in real-world storage systems. In this work, we focus on
theoretically researching the issue of optimal recovery for
Liberation codes. In addition, we implement the read-optimal
recovery approach in a real-world storage system and draw
the conclusion that more than 20% recovery time can be
reduced when the size of symbol is relatively large.

II. BACKGROUND
To facilitate the discussion, we summarize the notations used
in this article in Table 1.

We consider a storage system using a (n, k,w) XOR-based
erasure code. The system consists of n nodes, k of which store
the raw data and the remainingm (= n−k) of which hold par-
ity information. The data nodes are labeled asD0, · · · ,Dk−1,
and parity nodes are marked as C0, · · · ,Cm−1. Each node is
divided into multiple equal-sized chunks, and the chunk itself
is composed ofw symbols. The set of k+m chunks, including
k data chunks and the resultant m parity chunks, is called
a stripe. Fig. 1 illustrates an example of stripes. In reality,
a symbol is on the order of kilobytes or megabytes, which

137632 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

FIGURE 1. One stripe of erasure coded storage system when
k = 4, m = 2, and w = 2.

depends on the specific storage system implementation. In the
system, the stripes are encoded and decoded independently,
so we only consider a single stripe.

A. MATRIX-VECTOR DEFINITION
XOR-based erasure codes can be expressed in terms of a bit
matrix-vector product. A stripe of (k+m)w bits are generated
by multiplying the (k + m)w × kw bit matrix and a column
vector composed of kw data bits. The bit matrix, called a
binary distribution matrix (BDM), is made up of two parts.
The first part contains a kw × kw identity matrix, which can
be thought of as a k × k matrix, each of whose elements is
a w × w bit matrix. The second part termed as the coding
distribution matrix (CDM), comprises amw×kwmatrix. The
CDM determines the generation of parity data. Therefore,
we can use a CDM to specify one unique XOR-based code.

When the encoding methodology of XOR-based codes is
applied to RAID-6 cods, m = 2, the two parity nodes C0
and C1 are called P and Q respectively, and the P node
is computed as the parity of the data nodes. For simplicity
of description, we propose the concepts of P-matrix and
Q-matrix to represent the first w rows and the second w rows
of CDM. For RAID-6 codes, the P-matrix is composed of k
matrices, each of which is a w × w identity matrix; and the
Q-matrix is composed of k bit matrices, which are labeled as
X0, · · · ,Xk−1. TheQ-matrices are different for various kinds
of RAID-6 codes.

Liberation codes are one of the lowest density RAID-6
codes. The value of w is a prime number greater than 2 and
w ≥ k . The definition of Liberation codes is as follows:

X0 = Iw, (1)

Xi = Iw
→i + O

w
y,y+i−1, (2)

where Iw is the w×w identity matrix, Iw
→i is derived through

rotating columns of Iw to the right by i columns, Owy,y+i−1 is
a w × w matrix whose element in row < y>w and column
< y + i − 1>w is one and every other element equals zero
(< x>w = x mod w), and y is

y =
i(w− 1)

2
. (3)

An alternate and equivalent specification of y is

y =

w− i
2

, i is odd

w−
i
2
, i is even.

(4)

FIGURE 2. Encoding of the Liberation code when k = w = 5.

We present an example of Liberation codes in Fig. 2. In this
figure, k = 5, m = 2,, w = 5, and Ri represents the row i of
the BDM, which will be used in Section III-A2.

B. TWO-DIMENSIONAL ARRAY DESCRIPTION
For conveniently describing the recovery problem of single
node failures, a w× (k+2) two-dimensional array experssion
of Liberation codes is introduced. The first k columns in
the array, corresponding to the k data nodes, store the data
symbols. The last two columns hold the parity symbols,
which comprise the contents of the P node and Q node,
respectively. We call the first parity column horizontal parity
column, and the second parity column anti-diagonal parity
column. A symbol in the horizontal parity column is referred
to as horizontal parity symbol, analogously, and a symbol in
the anti-diagonal parity column is called anti-diagonal parity
symbol.

Assume di,j (0 ≤ i ≤ w− 1, 0 ≤ j ≤ k + 1) represents the
i-th symbol in column j. The horizontal parity symbol di,k and
anti-diagonal parity symbol di,k+1 can be obtained as follows:

di,k =
k−1
⊕
r=0

di,r , (5)

di,k+1 =

k−1
⊕
r=0

d<i+r>w,r , i = 0

k−1
⊕
r=0

d<i+r>w,r ⊕ dw−1−i,w−<2i>w ,

0 < i ≤ w− 1.

(6)

Note that, in Equation 6, dw−1−i,w−<2i>w = 0, if w− <

2i>w > (k − 1).
Example 1: Fig. 3 shows an example of the two-

dimensional array of one Liberation code. In this figure, each
parity symbol is calculated by XOR-summing the data sym-
bols with the same shape and color. Fig. 3a shows that, every
horizontal parity symbol di,5(0 ≤ i ≤ 4) is related to the data

VOLUME 8, 2020 137633

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

FIGURE 3. Two-dimensional array form of the Liberation code when
k = w = 5.

symbols in the same row, e.g., d0,5 = d0,0⊕d0,1⊕d0,2⊕d0,3⊕
d0,4. We can see from Fig. 3b that, the first anti-diagonal par-
ity symbol d0,6 is associated with the data symbols along the
same anti-diagonal; and each of the remaining anti-diagonal
parity symbols d1,6, d2,6, d3,6, and d4,6 associates with an
extra symbol d3,3, d2,1, d1,4, and d0,2 respectively, apart from
the data symbols along the same anti-diagonal. For example,
d1,6 = d1,0 ⊕ d2,1 ⊕ d3,2 ⊕ d4,3 ⊕ d0,4⊕ d3,3.

In this article, we focus on the Liberation codes where k
is equal to w. The Liberation codes mentioned in the rest of
this article all meet the above conditions unless otherwise
indicated. For the purpose of analysis, we introduce a new
parameter p (p = k = w) to describe Liberation codes.

III. RELATED WORK AND MOTIVATION
A. SINGLE NODE FAILURE RECOVERY
In XOR-based erasure coded systems, if the failed node is a
data node, the conventional method only uses the horizontal
parity node to recover it. Each failed symbol can be recov-
ered by XOR-summing the horizontal parity symbol and all
the other surviving data symbols along the same row. This
method is referred to as Recovering From P Drive (RFPD).
It needs to read k symbols to recover each erased symbol for
any XOR-based erasure code. If the failed node is a parity
node, it simply needs to perform the corresponding encoding
process to reconstruct the failed parity symbols.

There has been some work on reducing the amount of data
needed to recover a failed node in a XOR-based erasure coded
system, which can bemainly categorized asHybrid Recovery,
Enumeration Recovery, and Hill-climbing Recovery.

1) HYBRID RECOVERY
The authors of [10] first consider the problem of single node
recovery for RDP. The lower bound of disk read is proven and

FIGURE 4. Encoding of RDP code when p = 5.

an efficient recovery approach is proposed in [10]. Another
related and independent research, which was published at
nearly the same time, can be found in [31]; in this work,
single disk recovery methods for EVENODD, X-code, and
STAR code were studied. The authors show that the lower
bound of X-code is (3p2 − 2p + 5). Xu et al. [32] prove the
tight lower bound of X-code soon afterwards and consider
the load balancing problem among different nodes. All the
studies above follow the same idea of hybrid recovery for
RDP [10], which makes use of the horizontal parity symbols
and diagonal parity symbols interchangeably to reconstruct
the failed symbols. RDP is defined with a (p − 1) × (p + 1)
(w = p − 1, n = p + 1) two-dimensional array, where p is a
prime. Refer to [15] for more details. Fig. 4 shows an example
of RDP code. Next, we explain the recovery idea using this
RDP code.
Example 2: Fig. 5 shows an example of RFPD and Hybrid

Recovery for RDP. In this figure, p = 5 and Node1 happens
failure. In Fig. 5a, we label the failed symbols with ‘‘×’’
and the surviving symbols read with ‘‘© ’’. We can see that
all the surviving data symbols from Node0, Node2, Node3
and the horizontal parity symbols from Node4 are required
to be read. Hence, we need to read (p − 1)2 = 16 symbols
in total. In Fig. 5b, the symbols read through the horizontal
parity column and anti-diagonal parity column are labeled
with ‘‘© ’’ and ‘‘� ’’ respectively. When recovering a failed
symbol, we call the symbol that has been read overlapping
symbol. Overlapping symbols are marked by using both ‘‘©
’’ and ‘‘ � ’’.

The symbol sets used to recover Node1 are as follows:

•

{
d1,0, d3,3, d2,4, d1,5

}
→ d0,1

•

{
d2,0, d0,2, d3,4, d2,5

}
→ d1,1

•

{
d2,0, d2,2, d2,3, d2,4

}
→ d2,1

•

{
d3,0, d3,2, d3,3, d3,4

}
→ d3,1.

137634 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

FIGURE 5. Recovery approaches for RDP code when p = 5.

Therefore, the number of symbols read is (p−1)2−noverlap =
12, where noverlap means the number of overlapping symbols.

From the above analysis, we can see that the essence of
Hybrid Recovery is maximizing the number of overlapping
symbols. The advantage of this method is that it can deter-
mine the optimal amount of data read before performing
the reconstruction operation and offer an optimal recovery
algorithm with low computational complexity.

In this article, we solve the optimal recovery problem of
Liberation codes based on the idea of Hybrid Recovery since
Hybrid Recovery owns above distinct advantages and Lib-
eration and RDP codes share the similar generative rules of
parities. However, it is difficult to apply the optimal recovery
conclusion of Hybrid Recovery to other erasure codes. Firstly,
considering the derivation of the lower bound of disk read, if t
erasure symbols are recovered from diagonal parity sets and
the remaining (p− 1− t) failed symbols are recovered from
row parity sets, noverlap = t(p − 1 − t) [10]. The problem is
converted to solving the maximum of a quadratic equation.

When it comes to Liberation codes, it is almost impos-
sible to express noverlap with a formula since the intersec-
tions between different parity sets are complicated. We use a
relaxation technique, which introduces a simplified form and
converts the problem into solving the optimal solution of the
simplified form. Secondly, it is challenging to find an optimal
recovery solution that meets the lower bound of disk read for
Liberation codes due to its more complicated generative rule
of theQ node compared to RDP.We deduce several sufficient
and necessary conditions that optimal recovery solutions need
to satisfy and design an algorithm to determine one optimal
recovery solution with low linear time complexity.

2) ENUMERATION RECOVERY
Through above analysis, we see that it is difficult to
extend Hybrid Recovery to other erasure codes that tolerate

two or more node failures. Hence, the authors of [11]
model the recovery problem of single node failure for any
XOR-based code as an combinatorial optimization problem,
and they search for an optimal solution using an enumeration
approach.
Example 3: We use the example of Liberation code in

Fig. 2 to explain how it works. Assume D1 happens failure,
and each symbol is represented by Ri(0 ≤ i < (k + m)w)
corresponding to one row in the BDM.We call the set of sym-
bols whose corresponding rows in the BDM sum to a vector
of zeroes a decoding equation, which indicates that we can
decode any one symbol so long as the remaining symbols are
survived. An example is e0 = {R0,R5,R10,R15,R20,R25}.
The set F includes all the failed symbols, e.g., F =

{R5,R6,R7,R8,R9}. For every symbol Ri ∈ F , it has a
decoding equation set Ei. An equation ei ∈ Ei only if ei∩F =
Ri, for example, e0 is one equation for R5, since e0 ∩ F = R5
and R0 ⊕ R5 ⊕ R10 ⊕ R15 ⊕ R20 ⊕ R25 = 0. Suppose we can
enumerate all decoding equations of the BDM to determine
E5 − E9. Then the problem of optimal recovery for D1 is
formulated as follows: selecting one equation from each Ei
for Ri (5 ≤ i ≤ 9), such that the number of symbols in the
union of all selected equations is minimized. Actually, there
are up to 2mw−1 equations to be searched for. Therefore, it is
time-consuming to select w equations.

3) HILL-CLIMBING RECOVERY
To reduce the computation burden, the authors of [33] solve
the above problem using a heuristic algorithm. The idea is
based on the assumption that any optimal recovery solu-
tion e0, e1, · · · , ew−1 (selected from E0,E1, · · · ,Ew−1) has
exactly w parity symbols. Thus, the search space is reduced
from

(2mw−1
w

)
to
(mw
w

)
. Then, it uses a hill-climbing technique

to search for an optimal recovery solution.
Example 4: To illustrate, we use the example of Liberation

code in Fig. 2 and assume D1 happens failure. Let Pi(1 ≤
i ≤ m) be the set of parity symbols in the ith parity node, X
be the set of w symbols considered now, Ns be the number
of symbols read, and Y be the collection symbols to replace
the elements in X . Initially, P1 = {R25,R26,R27,R28,R29},
P2 = {R30,R31,R32,R33,R34}, X = P1, Ns = 25 and
Y = P2. Then, it starts to update X . In every update process,
it tries to use yj(0 < j < 5) ∈ Y to replace one element
xi(0 < i < 5) ∈ X each time; if the replacement is valid
(can recover all failed symbols) and reduce the number of
symbols read, it will perform a replace operation. In the
first update, it can be verified that, y0, y1, y2, y3, y4 can only
replace x1, x2, {x3, x2}, x4, x0 respectively to ensure X valid.
The replacements of y0, y1, and y3 can reduce Ns to a smaller
value 21. Suppose we replace x1 = R25 by y0 = R30 and
remove R30 from Y . Having X = {R30,R26,R27,R28,R29}
and Y = {R31,R32,R33,R34}, we contiune the second
update. We replace x2 = R27 by y1 = R31, reduce Ns
to 19 and remove R31 from Y . Ns can not be reduced fur-
ther in the third update process, so we stop the iteration

VOLUME 8, 2020 137635

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

process of update. Finally, we obtain the optimal solution
{R30,R26,R31,R28,R29}.
The complexity of Hill-climbing Recovery is O(mw3),

which gains a great reduction compared to Enumeration
Recovery. However, the algorithm is based upon greedy
thoughts that cause the defect of easily falling into the local
optimum solution. In addition, it needs to performmw3 valid-
ity verification and mw3 calculations of Ns at most, which is
time-consuming when the value of w is large.

B. MOTIVATION
In general, existing Hybrid Recovery methods can only be
applied to RDP code or X-code. The Enumeration Recovery
algorithm has an extremely high time complexity, for exam-
ple, it needs to select w from 2mw − 1 (m = n− k) decoding
equations to achieve optimal recovery for a (n, k,w) erasure
code. Thus, it would not be feasible to apply the enumeration
algorithm to real-world systems. The Hill-climbing algorithm
can search for a recovery solution in polynomial time; here,
the time complexity can be O(mw3). However, the algorithm
uses greedy thoughts that the solution searched may not be
necessarily global optimal and the time complexity is still a
little high when the value of w is large. In this article, we pro-
pose a recovery algorithm based on an analysis of optimal
recovery solutions of Liberation codes. The algorithm can
ensure the total number of symbols required for data recovery
is minimal and has low linear time complexity. The main
contributions of this article are as follows:

1) We derive the lower bound of disk read in distributed
storage systems using Liberation codes with k = w
when recovering from a single node failure.

2) We propose a recovery algorithm called Disk Read
Optimal Recovery (DROR), which reaches the lower
bound of disk read and decreases almost 25% of the
disk read in theory compared with that of the conven-
tional approach.

3) To evaluate the proposed recovery algorithm, we per-
form a great deal of experiments on Ceph, a popular
storage system used in production. Our experimental
results are consistent with our theoretical discovery.
DROR reduces the recovery time by up to 23.6% com-
pared with that of the conventional approach.

IV. THE READ-OPTIMAL RECOVERY METHOD
We first give a lower bound of symbols read through The-
orem 1. We then point out the conditions that the optimal
recovery sequences need to meet by Theorem 2. Finally,
we propose an algorithm called DROR, which first deter-
mines an optimal recovery sequence quickly according to
Theorem 2 and then recover all failed symbols using the
sequence found.

A. THE LOWER BOUND OF SYMBOLS READ
In order to prove Theorem 1, we provide the following defi-
nitions and lemmas.

Definition 1:
1) Define the i-th horizontal parity set as Hi ={

di,r |0 ≤ r ≤ p
}
, 0 ≤ i ≤ p− 1;

2) Define the j-th anti-diagonal parity set as Aj ={
di,r

∣∣< j+ r>p = i, 0 ≤ r, i ≤ p− 1
}
∪
{
dj,p+1

}
, j =

0 and Aj =
{
di,r

∣∣< j+ r>p = i, 0 ≤ i, r ≤ p− 1
}

∪
{
dp−1−j,p−<2j>p , dj,p+1

}
, 1 ≤ j ≤ p− 1.

Definition 2: Define a recovery combination as the set
including Hi and Aj (0 ≤ i, j ≤ p − 1) that can recover all
failed symbols for the failed node Nf (0 ≤ f ≤ p+ 1) and has
length p.
Example 5: We use the Liberation code in Fig. 3 to

illustrate Definition 1 and Definition 2. In Fig. 3, each
horizontal parity set and anti-diagonal parity set is com-
posed of symbols with the same shape and color. Each
data symbol is contained in only one horizontal parity set
and anti-diagonal parity set, except for d3,3, d2,1, d1,4, and
d0,2, which are included within two anti-diagonal parity
sets. For example, the 1-th horizontal parity set H1 ={
d1,0, d1,1, d1,2, d1,3, d1,4, d1,5

}
, and the 1-th anti-diagonal

parity set is A1 =
{
d1,0, d2,1, d3,2, d3,3, d4,3, d0,4, d1,6

}
.

{H0,H1,A1,A2,A3} is a recovery combination since it can
reconstruct {d0,0, d1,0, d2,0, d3,0, d4,0} when N0 is failed.
Note that, given a failed symbol d , d can only be recon-

structed through the parity sets to which it belongs as long as
the remaining symbols are surviving. We give the recovery
principle of any failed symbol through Lemma 1.
Lemma 1: Given a failed node Nf , 0 ≤ f ≤ p+ 1,
1) If 0 ≤ f ≤ p− 1, it means that the failed node Nf is a

data node.
a) If f = 0, di,0 ∈ Hi and di,0 ∈ Ai. Symbol di,0 can

be recovered through either Hi or Ai.
b) If f 6= 0
• When i 6=< f (p + 1)/2 − 1>p or 6=< f (p +
1)/2>p, di,f ∈ Hi and di,f ∈ A<i−f>p . Sym-
bol di,f can be recovered through either Hi or
A<i−f>p .

• When i =< f (p + 1)/2 − 1>p and j = i + 1,
di,f ∈ Hi, di,f ∈ A<i−f>p , and di,f ∈ Ap−1−i;
dj,f ∈ Hj and dj,f ∈ A<j−f>p . di,f can be
recovered through either Hi or A<i−f>p , and in
the meanwhile dj,f can be recovered throughHj
or A<j−f>p . In addition, di,f can be recovered
through Ap−1−i only if dj,f has been recovered
through Hj.

2) If f = p, it means that the failed node is the P node,
so di,p ∈ Hi, di,p can only be recovered through Hi.

3) If f = p+1, it means that the failed node is theQ node,
so di,p+1 ∈ Ai, di,p+1 can only be recovered through Ai.

Example 6: We illustrate Lemma 1 using the Liberation
code in Fig. 3. There are four cases as follows:
1) If N0 happens failure, its symbol d0,0 can be recovered

through H0 or A0, since d0,0 ∈ H0, d0,0 ∈ A0, and other sym-
bols in H0 or A0 are all surviving. Similarly, other symbols in
N0 can be recovered through the corresponding parity sets.

137636 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

2) The recovery situation of the failure node from N1 to
N4 is same, and here we take N1 for example. When f = 1,
i ≤ 0 ≤ 4(i 6= 2, i 6= 3), symbol di,1 can be recovered
through Hi or A<i−1>p . When i = 2, j = 3, d2,1 can be
recovered through H2 or A<2−1>5 = A1, at this moment,
d3,1 can be recovered through H3 or A<3−1>5 = A2, since
the missing symbol d2,1 has been reconstructed and other
symbols are all surviving. In addition, d2,1 can be recovered
through A5−1−2 = A2, unless the missing symbol d3,1 has
been reconstructed through H3.
3) If N5 is failure, the symbol di,5 ∈ Hi and can only be

recovered by the corresponding Hi.
4) If N6 is failure, the symbol di,6 ∈ Ai and can only be

recovered by the corresponding Ai.
Lemma 2: The intersection between any two parity set is

as follows:

1) For any i, j, 0 ≤ i, j ≤ p− 1, i 6= j, Hi ∩ Hj = ∅.
2) For any i, 1 ≤ i ≤ p − 2, if j = i − 1, Ai ∩ Aj =

dp−1−i,p−<2i>p ; if j = i+ 1, Ai ∩Aj = dp−1−j,p−<2j>p ;
otherwise, Ai ∩ Aj = ∅.

3) For any i, j, 1 ≤ i ≤ p−1, 0 ≤ j ≤ p−1, if j = p−i−1,
Ai ∩ Hj =

{
dp−1−i,<p−1−2i>p , dp−1−i,p−<2i>p

}
, oth-

erwise, Ai ∩ Hj = dj,<j−i>p ; for any j, 0 ≤ j ≤ p − 1,
A0 ∩ Hj = dj,j.

Example 7:We explain Lemma 2 with the Liberation code
in Fig. 3. 1) of Lemma 3 means that there is no intersection
between any two different horizontal parity sets, e.g., H0 ∩

Hi ∈ {H1,H2,H3,H4} = ∅. From 2) of Lemma 2, we can
see that there is one overlapping element between Ai and
Ai−1, and between Ai and Ai+1, if Ai−1 or Ai+1 exits. There
is no overlapping element between Ai and other different
anti-diagonal parity sets. For example, A1 ∩ A0 = d3,3,
A1 ∩ A2 = d2,1, and A1 ∩ Aj ∈ {A3,A4} = ∅. 3) of
Lemma 3 indicates the overlapping situations between Ai and
Hj: when i = 0, the number of overlapping element between
them is 1; when i > 0, j 6= p− i− 1, the number also equals
one; when i > 0, j = p − i − 1, the overlapping number
is two. For example, A0 ∩ H0 = d0,0, A1 ∩ H0 = d0,4, and
A1 ∩ H3 =

{
d3,2, d3,3

}
.

Theorem 1: For any failed node Nf , (0 ≤ f ≤ p − 1),
a lower bound of symbols read for the recovery of a single
node failure is (3p2 + 1)/4.

Proof: We first introduce a simplified form, where X0 =
Ip, Xr = Ip→r , 0 ≤ r ≤ p − 1. An example of simplified
form with p = 5 is shown in Fig. 6. In the simplified
form, the horizontal parity symbols and anti-diagonal parity
symbols are labeled as d ′j,p and d ′j,p+1 (0 ≤ j ≤ p − 1),
respectively. The rule of constructing the anti-diagonal parity
symbols for the simplified form is not exactly the same as
that of the Liberation codes. d ′j,p = dj,p(0 ≤ j ≤ p − 1),
d ′0,p+1 = d0,p+1, and d ′j,p+1 6= dj,p+1(0 < j ≤ p − 1).
For any 0 ≤ i, j, r ≤ p − 1, H ′i =

{
di,r
}
∪
{
d ′i,p

}
, and

A′j =
{
di,r

∣∣< j+ r>p = i
}
∪
{
d ′j,p+1

}
represents the i-th

horizontal parity set and j-th anti-diagonal parity set of the
simplified form, respectively. It is easy to prove the following:

FIGURE 6. The simplified form of Liberation code when p = 5.

(1) for any i, j, 0 ≤ i, j ≤ p − 1, i 6= j,
∣∣H ′i ∩ H ′j∣∣ = 0 and∣∣A′i ∩ A′j∣∣ = 0; (2) for any i, j, 0 ≤ i, j ≤ p−1,

∣∣H ′i ∩ A′j∣∣ =∣∣di,<i−j>p

∣∣ = 1. Similarly, a recovery combination in the
simplified form consists of H ′i and A

′
j of length p.

Then, we provide a lower bound of disk read for Liberation
codes considering the following three cases.

1) When f = 0, failed symbol di,0 (0 ≤ i ≤ p − 1) can
be recovered through Hi or Ai. For any i, 0 ≤ i ≤ p − 1,
Ai includes all the surviving data symbols belonging to A′i,
Ai ⊇ A′i, and Hi = Hi′. For Liberation codes, the alternative
recovery combinations correspond to those that own the same
indices in the parity sets of the simplified form. Thus, the
minimum number of symbols read in Liberation codes is no
less than that in the simplified form, which is given as follows.

In the simplified form, if t failed symbols are recovered
through anti-diagonal parity sets and the remaining (p − t)
symbols are recovered through horizontal parity sets, there
are t(p − t) overlapping symbols in total. The number of
symbols read is as follows:

(p− t)p+ tp− t(p− t) = t2−pt + p2.

When t = (p− 1)/2 or t = (p+ 1)/2, the minimum number
of symbols read is (3p2 + 1)/4.
Thus, when f = 0, a lower bound of disk read for Libera-

tion codes is (3p2 + 1)/4.
2) According to Lemma 3, when f > 0, for each value of

f (0 < f ≤ p − 1), there are two cases for failed symbols to
be recovered and the smaller one is the lower bound that we
want. In either case, the minimum number of symbols read is
no less than that in the simplified form, which is analyzed as
follows.

VOLUME 8, 2020 137637

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

(1) Erased symbol di,f (0 < i ≤ p−1) is recovered through
Hi or A<i−f>p . It is easy to prove that the minimum number
of symbols read in the simplified form is (3p2 + 1)/4 using
the method mentioned in 1), and the number of anti-diagonal
parity sets required is (p− 1)/2 or (p+ 1)/2.
(2) When j =< f (p+1)/2−1>p, dj,f is recovered through

Ap−1−j and d<f−1−j>p,f is recovered through H<f−1−j>p .
In the simplified form, if t anti-diagonal parity sets and (p−t)
horizontal parity sets are read, the total number of surviving
symbols read is as follows:

(p− t)p+ tp− t(p− t)− (p− 1)+ p = t2−pt + p2 + 1.

When t = (p− 1)/2 or t = (p+ 1)/2, the minimum number
of symbols read is (3p2 + 5)/4.
Integrate (1) and (2); when f > 0, a lower bound of disk

read for Liberation codes is (3p2+ 1)/4, and only when each
failed symbol di,f is recovered through Hi or A<i−f>p may
this lower bound be matched.

Thus, Theorem 1 concludes.

B. READ-OPTIMAL RECOVERY SEQUENCES
In the following, we introduce a notion recovery sequence to
state how to reach the lower bound of symbols read derived
in last subsection.
Definition 3: Define a recovery sequence as x0x1 · · · xp−1,

where each failed symbol di,f is recovered through horizontal
parity set Hi or through anti-diagonal parity set A<i−f>p .
xi = 0 means that failed symbol di,f is recovered through
horizontal parity set Hi and xi = 1 means that failed symbol
di,f is recovered through anti-diagonal parity set A<i−f>p .
Note that there are total 2p recovery sequences, which

include the read-optimal recovery combinations according
to Theorem 1. For example, when Nf = N1 is failed and
p = 5, x0x1x2x3x4 = {00011} means d0,1, d1,1, and d2,1 are
recovered usingH0,H1 andH2, respectively; d3,1 and d4,1 are
recovered using A2 and A3, respectively.
Theorem 2: {xi}0≤i≤p−1 is a recovery sequence of Libera-

tion codes that matches the lower bound of disk read for any
failed nodeNf (0 ≤ f ≤ p−1) if the following two conditions
hold:

1)
p−1∑
i=0

xi = (p− 1)/2 or
p−1∑
i=0

xi = (p+ 1)/2

2) For any j, 0 ≤ j ≤ p− 1, j 6= f
a) When f = 0, if xj = 1, x<j−1>p must be one or

xp−1−<j−f>p must be zero;
b) When f > 0, < j− f>p 6=< f (p− 1)/2 >p (that

is, j 6=< f (p+ 1)/2 >p), if xj = 1, x<j−1>p must
be one or xp−1−<j−f>p must be zero.

Proof: Condition 1) means that (p− 1)
/
2 or (p+ 1)

/
2

failed symbols are recovered through anti-diagonal parity
sets, and the remaining failed symbols are recovered through
horizontal parity sets. In the process of proving Theorem 1,
we introduced a simplified form. Only when the number
of anti-diagonal parity sets used is (p− 1)

/
2 or (p+ 1)

/
2

can the lower bound of disk read for the simplified form be

matched, so can the lower bound for Liberation codes be
matched. Therefore, condition 1) holds.

In the following proof, we focus on condition 2). We set
z =< j − f>p, 0 < z ≤ p − 1. xj = 1 means dj,f
is recovered through A<j−f>p = Az, x<j−1>p = 1 means
d<j−1>p,f is recovered through A<<j−1>p−f>p = Az−1, and
xp−1−<j−f>p = 0 means dp−1−<j−f>p,f is recovered through
Hp−1−z. In other words, when f = 0, if we can prove
that for any z, 0 < z ≤ p − 1, if Az is used to recover
a failed symbol, Az−1 or Hp−1−z must be used to recover
another failed symbol, a) of condition 2) holds. Similarly,
when f > 0, if we can prove that for any z, 0 < z ≤ p − 1
and z 6=< f (p − 1)/2 >p, if Az is used to recover a failed
symbol, Az−1 or Hp−1−z must be used to recover another
failed symbol, b) of condition 2) holds.

a) When condition 1) holds, the lower bound of disk read
for the simplified form can be matched. A read-optimal
recovery combination of the simplified form is labeled as

Rc′ =
{
H ′x1 ,H

′
x2 , · · · ,H

′
xp−tA

′
y1 ,A

′
y2 · · · ,A

′
yt
}

and the corresponding recovery combination of Liberation
codes is

Rc =
{
Hx1 ,Hx2 , · · · ,Hxp−tAy1 ,Ay2 , · · · ,Ayt

}
,

where t = (p− 1)
/
2 or t = (p+ 1)

/
2, 0 ≤ xi, yj ≤ p − 1,

1 ≤ i ≤ p − t , 1 ≤ j ≤ t . The relationship between Hi (Aj)
and H ′i (A

′
j) is as follows:

Hi = Hi′

Aj =

Aj′ −

{
d ′j,p+1

}
+
{
dj,p+1

}
, j = 0

Aj′ −
{
d ′j,p+1

}
+
{
dj,p+1

}
+
{
dp−1−j,p−<2j>p

}
,

j 6= 0.

When f = 0, for any j (0 < j ≤ p − 1), Aj will introduce
an extra surviving symbol dp−1−j,p−<2j>p compared with
A′j. There are t anti-diagonal parity sets Ay1 ,Ay2 , · · · ,Ayt in
Rc, so Ayj (j 6= 0) introduces an extra surviving symbol
dp−1−yj,p−<2yj>p compared with the corresponding A′yj . If all
extra surviving symbols dp−1−yj,p−<2yj>p belong to Rc′, the
number of disk read of Rcwill be equal to that of Rc′ and will
match the lower bound.

We assume Rc matches the lower bound of disk read, and
∃Az ∈ Rc, 0 < z ≤ p− 1, Az−1 /∈ Rc and Hp−1−z /∈ Rc. The
extra surviving symbol introduced by Az is dp−1−z,p−<2z>p

compared with Az′. From Lemma 2, we obtain that Az ∩Az−1
= dp−1−z,p−<2z>p , Az ∩ Hp−1−z = dp−1−z,p−<2z>p , and
the overlapping symbols between Az and other parity sets
do not include dp−1−z,p−<2z>p . According to the relationship
between Liberation codes and the simplified form, we can
infer that there are just two parity sets A′z−1 and H ′p−1−z
including dp−1−z,p−<2z>p . In addition, A′z−1 /∈ Rc′ and
H ′p−1−z /∈ Rc′, so dp−1−z,p−<2z>p /∈ Rc′. Therefore, the
number of disk read of Rc is at least one more than that of
Rc′, which contradicts that Rc matches the lower bound of
disk read. Therefore, a) of condition 2) holds.

137638 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

b) When f > 0 and z =< j − f>p =< f (p − 1)/2 >p,
the extra symbol introduced by Aj is dp−1−j,f , which is a
failed symbol. Thus,Aj does not introduce any extra surviving
symbol comparedwithAj′. So if z =< f (p−1)/2 >p (f > 0),
Theorem 2 holds when condition 1) is satisfied. If z 6=<

f (p − 1)/2 >p (f > 0), it can be proved that for any z,
0 < z ≤ p− 1, if Az is used to recover a failed symbol, Az−1
or Hp−1−z must be used to recover another failed symbol in
the same way as the proof of a).

Therefore, Theorem 2 holds.
From Theorem 2, we can see that we need to judge all the

value of xj, except for j = f (f ≥ 0) or j =< f (p + 1)/2 >p
(f > 0), since its corresponding anti-diagonal parity set
would not bring extra symbols compared with the simplified
form.
Example 8: To illustrate, when p = 7 and f = 1, the recov-

ery sequence x0x1x2x3x4x5x6 = 0110100 is read-optimal,

since
6∑
i=0

xi = 3, when j = f = 1 or j =< f (p+ 1)/2 >p= 4,

xj = 1, and when x2 = 1, x<j−1>p = x1 = 1.

C. READ-OPTIMAL RECOVERY ALGORITHM
We propose an algorithm calledDisk Read Optimal Recovery
(DROR), which first calls SearchOptimalSeq to determine a
read-optimal recovery sequence X∗, and then invokes Recov-
WithOptimalSeq to caculate the failed symbols with X∗.
The main problem we face is how to determine a

read-optimal recovery sequence. A straightforward approach
is to enumerate all recovery sequences that match 1) of
Theorem 2 and traverse them until find one sequence sat-
isfying 2) of Theorem 2. However, there are

(p
t

)
possible

sequences, where t = (p + 1)/2 or t = (p − 1)/2, so its
time complexity is exponential.

In order to find read-optimal recovery sequences quickly,
we put forward an efficient approach, called SearchOpti-
malSeq. We first define a set Suboptimal , which includes a por-
tion of the whole read-optimal sequences and each sequence{
x0x1 · · · xp−1

}
satisfies the following conditions (Nf is the

failed node):

1)
p−1∑
i=0

xi = (p− 1)/2, xf = 1

2) For any j, 0 ≤ j ≤ p− 1, j 6= f ,

a) When f = 0, if xj = 1, xp−1−<j−f>p must be
zero;

b) When f > 0, x<f (p+1)/2>p = 1, for any j 6=<

f (p + 1)/2 >p, if xj = 1, xp−1−<j−f>p must be
zero.

The detail of SearchOptimalSeq is as follows: the main
idea of SearchOptimalSeq is to determine the value of every
element xj ∈ X to make sure X belongs to Suboptimal . Let IX
represent the set of j whose corresponding value xj is not yet
determined, L1 be the set of jwhose corresponding value xj =
1, and L0 be the set of j whose corresponding value xj = 0.
IX is initialized to {0, 1, · · · , p− 1}, and L1 = L0 = null.
We initialize X with p zeros (Step2). When j = f (f ≥ 0)

Algorithm 1 SearchOptimalSeq
Require: p: parameter of Liberation Codes

f : index of failed node
Ensure: X : recovery sequence
1: Initialize IX = {0, 1, · · · , p− 1}, L0 = L1 = null
2: Initialize X with p zeros
3: IX = IX − {f }, L1 = L1+ {f }
4: if f > 0 then
5: j = (f ∗ (p+ 1)/2)%p, IX = IX − {j}, L1 = L1+ {j}
6: end if
7: Shuffle the order of elements in IX
8: while L1.length < (p− 1)/2 do
9: j = IX [0], y = p− 1− (j− f)%p

10: if y == j or y is in L1 then
11: IX = IX − {j}, L0 = L0+ {j}
12: else
13: IX = IX − {j, y}, L1 = L1+ {j}, L0 = L0+ {y}
14: end if
15: end while
16: for i = 0 to L1.length do
17: X [L1[i]] = 1
18: end for
19: return X

or j =< f (p + 1)/2 >p (f > 0), we add j to L1 (Step3-6).
To avoid obtaining the same result each run when given p and
f , we shuffle the order of elements in IX (Step7). We repeat
Step9-Step14 until |L1| == (p−1)/2. During each iteration,
j = IX [0], and y = p−1−(j−f)%p; if Xj can be set 1, we add
j to L1 and y to L0, otherwise, we add j to L0. If j == y or
y ∈ L1, xj = 1 is infeasible, since xy = 0 is impossible. After
completing all iterations, we set the corresponding xj = 1 of
X according to L1 (Step16-18).
Example 9:We illustrate Algorithm 1 via an example. Con-

sider a storage system with Liberation code of p = 11, and
the node Nf = N1 is failure. Initially, IX = {0, 1, · · · , 10},
L0 = L1 = null. We delete f = 1 and f ∗ (p+1)/2 = 6 from
IX , and add them to L1. Thus, IX = {0, 2, 3, 4, 5, 7, 8, 9, 10}
and L1 = {1, 6}. Assume IX = {0, 9, 8, 4, 2, 10, 5, 3, 7} is
shuffled. We then traverse each element in IX until |L1| =
(p − 1)/2 = 5. Having |L1| = 2 < 5, we begin the
1-th iteration; after this iteration, IX = IX − {0} and L0 =
L0 + {0} since j = y = 0. With |L1| = 2 < 5, and IX =
{9, 8, 4, 2, 10, 5, 3, 7}, we continue the 2-th iteration; j = 9,
y = 2, j 6= y and y /∈ L1, so, L1 = L1+ {9}, L0 = L0+ {2},
and IX = IX −{9, 2}. After the 3-th and 4-th iterations, L1 =
L1+{8}+ {4}, L0 = L0+{3}+ {7}, and IX = IX −{8, 3}−
{4, 7}. We stop the iteration since |L1 = {1, 6, 9, 8, 4} | = 5,
and then caculate X = {0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0}. Note
that, Algorithm 1 can always find a read-optimal sequence
since if y = p− 1− < j− f>p, then p− 1− < y− f>p = j.
Having a read-optimal recovery sequence is not enough,

furthermore, we need to carefully design the order in which
the failed symbols are recovered.

VOLUME 8, 2020 137639

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

Algorithm 2 RecovWithOptimalSeq
Require: p: parameter of Liberation codes

f : index of failed node
X : recovery sequence

Ensure: null
1: Initialize L0 = null, L1 = null
2: for i = 0 to p do
3: if X [i] == 0 then
4: L0 = L0 + {i}
5: else
6: L1 = L1 + {i}
7: end if
8: end for
9: for j = 0 to L0.length do

10: i = L0[j], recover di,f by XOR-summing all symbols
in Hi −

{
di,f
}

11: end for
12: for j = 0 to L1.length do
13: i = L1[j], recover di,f by XOR-summing all symbols

in A((i−f)%p) −
{
di,f
}

14: end for

Example 10: We illustrate the idea by using the Liber-
ation code of Fig. 3 as an example (assume Nf = N1).
Suppose the read-optimal recovery sequence X calculated by
Algorithm 1 is 01010. Thus, we use H0,A0,H2,A2,H4 to
recover d0,1, d1,1, d2,1, d3,1, d4,1, respectively. The problem
is that A2 chosen for the recovery of d3,1 includes the symbol
d2,1, which is a missing symbol. So d2,1 has to be recovered
before d3,1.
We propose an algorithm called RecovWithOptimalSeq,

which first recovers the failed symbols with the order from
small to large using the horizontal parity sets and then uses
the anti-diagonal parity sets to recover the rest failed symbols
with the same order. It is easy to prove that this recovery order
can recover all failure symbols successfully.

The detail of RecovWithOptimalSeq is as follows: given a
recovery sequenceX , let L0 and L1 represent the set of jwhose
corresponding value xj = 0 and xj = 1, respectively. We first
calculate L0 and L1 (Step2-6), and then compute the value of
failure symbols whose indexes belong to L0 (Step9-11), and
then recover the remaining missing symbols whose indexes
belong to L1 (Step12-14).

Algorithm 3 Disk Read Optimal Recovery (DROR)
Require: p: parameter of Liberation Codes

f : index of failed node
1: X∗ = SearchOptimalSeq (p, f)
2: RecovWithOptimalSeq (p, f ,X∗)

Exapmle 11: We illustrate Algorithm 2 via an example
using the same paramete configuration as Example 10. First,
we obtain L0 = {0, 2, 4}, and L1 = {1, 3} according
to X = 01010. And then we recover the symbols ∈ L0

as follows: d0,1 = d0,0 ⊕ d0,2 ⊕ d0,3 ⊕ d0,4 ⊕ d0,5,
d2,1 = d2,0⊕d2,2⊕d2,3⊕d2,4⊕d2,5, and d4,1 = d4,0⊕d4,2⊕
d4,3 ⊕ d4,4 ⊕ d4,5. Finally, we recover the symbols ∈ L1 in
the following way, d1,1 = d0,0⊕d2,2⊕d3,3⊕d4,4⊕d5,5, and
d3,1 = d2,0 ⊕ d2,1 ⊕ d4,2 ⊕ d0,3 ⊕ d1,4 ⊕ d2,6. The number
of symbols read is 19, which is consistent with the optimal
value prposed in Theorem 1.
Algorithm Analysis: For DROR, the computational cost

of RecovWithOptimalSeq mainly depends on about p2 XOR
operations, which is equal to that of the conventional
approach. Therefore, the extra computational cost of DROR
comes from SearchOptimalSeq(), whose complexity is O(p)
if the complexity of judging whether y is in L1 or not (Step10)
is the least O(1). Therefore, the complexity of SearchOpti-
malSeq() is far less than that of the Hill-climbing Recovery
(O(p3)) [33] and Enumeration Recovery (O(2p)) [11].

V. PERFORMANCE EVALUATION
A. ERASURE CODES IN CEPH
We implement the proposed recovery algorithm onCeph [29],
an open source and widely used distributed storage system
in industry and academia. Reliable, autonomic distributed
object store (RADOS) [35], Ceph’s cornerstone, consists of
two types of daemons: monitors (MONs) and object storage
daemons (OSDs). MONs are primarily in charge of main-
taining the cluster map, and OSDs are responsible for storing
objects on local filesystems. Generally, a single OSD is used
to manage a single hard disk drive (HDD) or SSD.

Ceph stores data as objects within storage pools, each of
which has independent access control and redundancy policy.
The objects within each pool are collected into placement
groups (PGs). A PG contains n OSDs, where n is the number
of replicas or the length of the erasure code associated with
the pool. The primary OSD (p-OSD) must be elected among
the OSDs within the corresponding PG. When an object is
stored into a pool, Ceph first calculates which PG the object
must belong to and which OSDs need to be assigned to
the PG using the controlled replication under scalable hash-
ing (CRUSH) algorithm. Then, Ceph uploads the object to its
p-OSD. Finally, p-OSD forwards the object to all other OSDs
in a replicated pool or encodes the object, sending chunks to
the corresponding OSDs within the same PG in an erasure
coded pool.

Ceph supports all types of erasure coding techniques via a
pluggable interface, which include RS codes, RAID-6 array
codes, LRCs, Clay Codes [36] and so on. The process of
encoding objects in Ceph is on-line. That is, when one object
is placed into an erasure-coded pool, it is encoded by p-OSD.
To reduce the amount of buffer memory required, first, one
large object is partitioned into smaller units called stripes.
Each stripe is then divided into k data chunks and obtainsm =
n-k parity chunks using (n, k,w) erasure codes. The stripe
size S (in bytes) in Ceph refers to the size of k data chunks
and can be specified in the configuration file. Furthermore,
One chunk is composed of w symbols, the size of which is
the multiple of 8192 bytes.

137640 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

FIGURE 7. The encoding process in Ceph. The object is divided into two
stripes, and the symbols within each of the stripes are encoded.

Note that, the p-OSD needs to zero pad each stripe as
necessary to guarantee that the stripe size S can be divisible
by 8192× k×w when encoding, since the stripe size is equal
to be k × w × symbol_size. When setting a stripe size, zero
padding is one significant factor that we need to consider.

Fig. 7 shows an example of the encoding process of one
erasure code in Ceph. In this example, Ceph contains two data
nodes and two parity nodes (k = m = 2). The original object
is divided into two stripes, each of which is composed of two
chunks labeled as chunk0 and chunk1 respectively. Chunk0
is further divided into two symbols X00, X01 in Stripe0 and
Y00, Y01 in Stripe1.

B. DROR IMPLEMENTATION
We used the Jerasure Erasure Code plugin [34], which pro-
vides an implementation of Liberation Codes based on the
Jeasure to implement the proposed recovery approach. In
the current Ceph implementation, it only uses the P node to
recover a single data node failure, just like the conventional
recovery approach. More specifically, when repairing a data
chunk, it uses the function minimum_to_decode() to obtain
the IDs of k helper chunks,makes use of the function decode()
to acquire the original data stripe, and only regenerates the
failure chunk using the function encode().
Under above mode, we can not recover a failure data chunk

by downloading other chunks at the granularity of symbol,
which goes against the realization of our recovery approach.
We introduce a new concept, namely, optimal-recovery-
condition, which is the condition that the erasure-coded pool
adopts the Liberation coding technique which satisfies k = w
and only one failure data node needs to be recovered.

To support our recovery approach, we provide three extra
functions and modify some existing structures as follows.

-is_repair_liberationcodes_optimal(): This boolean func-
tion allows the choice between an optimal repair algorithm for
Liberation codes and the default decode algorithm. It returns
true, in case the the optimal-recovery-condition is satisfied,
and vice versa.

-minimum_to_repair_librationcodes(): It invokes the pro-
posed algorithm DROR() to determine the optimal recovery
sequence ReSeq and transforms ReSeq into ChunkSolution,

which includes a list of helper chunk indices, in addition, each
of them has corresponding symbol IDs.

-repair_liberationcodes(): Given the failure chunk ID
and ChunkSolution, returned by minimum_to_repair_ libra-
tioncodes(), it reconstructs a failure chunk.

In order to read a symbol, a fraction of chunk, we feed
some repair parameters to existing structures, including
read_request_t, ReadOp, and ECSubRead. We also design a
novel read function read_for_liberationcodes()with Filestore
of Ceph to allow symbols read.

C. SETUP AND OVERVIEW
1) EXPERIMENTAL SETUP
We integrated the DROR approach in Ceph Luminous 12.0.2.
To evaluate the proposed recovery algorithm, we conduct
the experiments on Amazon EC2 instances of the t3a.large
(8GB RAM, 2 CPU cores) configuration. We compare the
performance of proposed recovery approach with that of the
default recovery approach in Ceph, which is called conven-
tional approach in the following. The Ceph storage cluster
contains 17 nodes. One server runs one MON deamon, while
each of the remaining 16 nodes runs one OSD deamon. Each
instance is attached one HDD-type volume used for the OS,
one SSD-type volume of size 200GB specialized for the OSD
storage, and one SSD-type volume of size 12GB for the Ceph
journal. Thus the total cluster capacity is 3.1 TB.

2) OVERVIEW
The failure domain is set as a node or an OSD as well since
there is one OSD for each node. The workload is chosen
a fixed size of 64MB. We first write 1024 objects of size
64MB each to a single PG using a specified Liberation-coded
scheme. Then, we make produce one node failure by setting
the state of the OSD as out. Once an OSD is out, the Ceph
system will perform data recovery operations. For Ceph,
we have to build a new erasure-coded pool if we change one or
more parameters of erasure codes, e.g., stripe-size S, and the
number of data nodes k . Moreover, the assignment of OSDs to
PGs are performed in a dynamic fashion. Therefore, we eval-
uate the average disk read, network traffic and recovery time
bymaking different single data node failures and the recovery
process of one data node failure is performed 3 times. We use
nmon and NMONVisualizer tools to collect and analyze data
respectively.

3) CODES EVALUATED
In fact, the number of nodes n for erasure codes need to be
no more than 20 [3], [4], so k ≤ 18 for Liberation codes
(k+2, k,w). Besides, the Liberation codes we consider is k =
w. We have conducted experimental evaluation for Liberation
codes C1(7,5,5), C2(9,7,7), C3(13,11,11), and C4(15,13,13),
which all satisfy above conditions. The evaluation of codes
C1 − C4 is carried out in Ceph for single node failures with
fixed symbol size and code C3 is evaluated with different
symbol sizes.

VOLUME 8, 2020 137641

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

D. RESULTS
1) PERFORMANCE WITH DIFFERENT SYMBOL SIZES
We measure the disk read, network traffic and recovery time
of one data node failure for Liberation codes with different
symbol sizes for code C3.

The object size after zeropadded Opadded is equal to

Opadded = stripe_size× stripe_num

= symbol_size×k×w×
⌈

object_size_ori
symbol_size× k × w

⌉
= symbol_size× p2 ×

⌈
object_size_ori
symbol_size× p2

⌉
,

where p = k = w and the original object size is
object_size_ori bytes. The symbol size shoule be the multiple
of 8KB in Ceph, and we want to generate as little as possible
zero padding. So the maximum symbol size Smax can be
calculated by setting the stripe size greater than or equal to
the original object size with the least zero padding, which is
given as follows:

Smax =
⌈
object_size_ori
8192× k × w

⌉
× 8192

=

⌈
object_size_ori

8192p2

⌉
× 8192. (7)

We want to produce the same zero padding for all symbol
sizes, therefore symbol sizes S1, S2, S3, and S4 are set 8KB,
32KB, 136KB, and 544KB respectively. Object sizes are all
equal to 65824KB for all symbol sizes we evaluated, which
will bring a negligible data padding of 0.04%.

a: DISK READ
Disk read here means the amount of data read from the disks
of the helper nodes when recovering a failed node. Recovery
is performed by the p-OSD, which is also a helper node.
Theoretically the disk read Rdror for DROR is (3p2 + 1)T/4
and the disk read Rori for original method is p2T , where
T = symbol_size× stripe_num× object_num = Opadded ×
object_num/p2. Since Opadded are identical, disk read in
theory is equivalent for symbol sizes S1-S4 for both methods.

The amount of disk read rests on the symbol-size for
SSD-type volumes, in which reads are at a granularity of
4KB. The symbol sizes in Ceph are all the multiple of 8KB,
which is aligned to the granularity of SSD reads. So it does not
cause any additional disk read under different symbol-sizes
for both recovery approaches as shown in Fig. 8. In addi-
tion, we observe a saving of 24.8% in disk read for DROR
in comparison with conventional method under all symbol
sizes S1 − S4.

b: NETWORK TRAFFIC
Network traffic here refers to the data transferred across the
network during single node recovery. The network traffic
during recovery includes both the amount of data transferred
from helper nodes to the primer OSD and the amount of
recovered chunk transferred from the primary OSD to the

FIGURE 8. Disk read of DROR and Conventional approaches with
different symbol sizes when k = w = 11.

replacement OSD. For original method, net traffic Nori is
equal to disk read, Nori = Rori = p2T . For DROR, the
data transferred of helper nodes is equal to the data read
from disks during recovery except for the primer OSD, which
transfers p symbols and reads less than p symbols in each
stripe. Besides, network traffic of the primer OSD is about
(p + 1)/4 symbols more than disk read within one stripe.
Specifically, for DROR, network traffic Ndror is

Ndror =

Rdror +

p+ 1
4

T , < p>4 = 3

Rdror +
⌊
p+ 1
4

⌋
T or Rdror +

⌈
p+ 1
4

⌉
T ,

< p>4 = 1.

Network traffic here Ndror = Rdror + (p + 1)T/4 =
(3p2 + p + 2)T/4 for DROR, since p = 11. For both
recovery approaches, theoretical network traffic is equivalent
for symbol sizes S1 − S4 with same T . While in practice
network traffic decreases slightly as the symbol size increases
for both methods as shown in Fig. 9. We observe that network
traffic in fact is averagely increased by 13.4% and 12.3%
than that in theory for conventional approach and DROR
respectively. As can be seen, we obtain an average reduction
of 23.0% in network traffic for DROR compared with con-
ventional approach, which is consistent with the theoretical
value of 22.4%.

c: RECOVERY TIME
Recovery time is measured by acquiring the times of initial
and end repair activities of the primer OSD when recovering
all 1024 objects. Fig. 10 shows the average recovery time of
per object for both recovery methods under different symbol
sizes. We observe that the recovery time for both approaches
decreases with the increase of symbol size. That is mainly
because the number of disk I/O requests and the network
traffic decrease as the symbol size increases. As can be seen,
the recovery performance of DROR is superior to that of
conventional approach for all symbol sizes. When the symbol
size is maximum, for DROR, we observe an performance
increasement of 22.1% in comparison with the conventional
method.

137642 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

FIGURE 9. Network traffic of DROR and Conventional approaches with
different symbol sizes when k = w = 11.

FIGURE 10. Recovery time of per object for DROR and Conventional
approaches with different symbol sizes when k = w = 11.

In the following experiments, the symbol sizes are fixed
to be the largest ones for different number of data nodes,
in which the optimal recovery performance is obtained for
both recovery approaches.

2) PERFORMANCE WITH DIFFERENT NUMBER OF DATA
NODES
We conduct experiments with different number of data
nodes 5, 7, 11, and 13, which are corresponding to Liberation
Codes C1, C2, C3 and C4 respectively. The symbol sizes are
set to be maximum for all Liberation codes evaluated and can
be calculated by Equation 7.

a: DISK READ
In theory, for conventional method, the amount of data read
is positive related to the object size after zero padded, so disk
read of C4 is a little more than other three codes C1 − C3.
However this is not so for DROR, in which C1 reads the
most among C1 − C4. Anyhow, disk read of codes C1 − C4
are nearly the same for both methods. In practice, for both
recovery methods, the amount of data read is identical to
that in theory, which can be seen from Fig. 11. For DROR,
we observe reductions of 24.0%, 24.4%, 24.9%, and 24.9%
in disk read for codes C1, C2, C3 and C4 respectively in
comparison with the corresponding codes of the conventional
approach.

FIGURE 11. Disk read for DROR and Conventional approaches with
different number of nodes.

FIGURE 12. Network traffic for DROR and Conventional approaches with
different number of nodes.

b: NETWORK TRAFFIC
The theoretical network traffic of codes C1 − C4 is almost
the same for both recovery methods, as shown in Fig. 12.
As a matter of fact, for conventional method network traf-
fic is increased along with an increasing number of data
nodes, and network traffic is reduced slightly for DROR.
We observe that the actual network traffic is increased by
10.8% on average compared with the theoretical value for
conventional method, while increased by 9.4% for DROR.
As can be seen, for DROR, we obtain reductions of 20.0%,
21.5%, 23.4% and 25.1% in network traffic for codes C1,
C2, C3 and C4 compared with the corresponding codes of
the conventional approach. The reductions are 20.0%, 20.4%,
22.4%, and 23.0% for codes C1 − C4 respectively in theory.
The reductions we obtain are close to or better than the
theoretical value. This is mainly because DROR has lower
ratio of the actual network traffic to the theoretical value for
codes C2 − C4 compared with conventional method.

c: RECOVERY TIME
In Fig. 13, we show the average recovery time of per object
for both recovery methods under different codes C1 − C4.
We observe that the recovery time for both approaches
increases as the number of nodes goes up. This is mainly
because the recovery processes of both recovery schemesmay

VOLUME 8, 2020 137643

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

FIGURE 13. Recovery time of per object for DROR and Conventional
approaches with different number of nodes.

cost more time in waiting and synchronizing as the number
of nodes increases. As shown in Fig. 13, the recovery perfor-
mance of DROR outperforms that of conventional approach
for all codes C1−C4. This is mainly due to reduction in disk
I/O and network traffic during repair. Furthermore, DROR
provides improvements of 20.4%, 21.2%, 22.1%, and 23.6%
for codes C1, C2, C3 and C4 respectively, and the improve-
ment increases along with the increase of the number of data
nodes.

VI. CONCLUSION
We study the problem of minimizing the number of symbols
read from surviving nodes when repairing an erased data node
in Liberation coded storage systems.We first derive the lower
bound of disk read to reconstruct a single node failure for Lib-
eration codes using a relaxation technique. Then we elaborate
the conditions that a read-optimal recovery sequence need
to satisfy. Finally, we propose an optimal recovery approach
DROR based on a subset of optimal recovery conditions,
which can recover single node failures reading the minimum
number of symbols. We implement DROR on a Ceph cluster
deployed on Amazon EC2. Experimental results show that
DROR can reduce recovery time by up to 23.6% compared to
the conventional recovery approach.

REFERENCES
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, ‘‘The Google file system,’’ in

Proc. 19th ACM Symp. Operating Syst. Princ. (SOSP), 2003, pp. 29–43.
[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘‘Dynamo:
Amazon’s highly available key-value store,’’ in Proc. ACM SOSP, 2007,
pp. 205–220.

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B, Calder, P. Gopalan, J. Li,
and S. Yekhanin, ‘‘Erasure coding in windows azure storage,’’ in Proc.
USENIX ATC, 2012, pp. 15–26.

[4] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, M. Asteris,
D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur,
‘‘XORing elephants: Novel erasure codes for big data,’’ in Proc. VLDB,
2013, pp. 1–12.

[5] Facebook Developers. Facebook’s Erasure Coded Hadoop Distributed
File System (HDFS-RAID). Accessed: Nov. 16, 2017. [Online]. Available:
https://github.com/facebookarchive/hadoop-20

[6] H. Zhang, M. Dong, and H. Chen, ‘‘Efficient and available in-memory
KV-store with hybrid erasure coding and replication,’’ in Proc. USENIX
FAST, 2016, pp. 167–180.

[7] M. Abebe, K. Daudjee, B. Glasbergen, and Y. Tian, ‘‘EC-store: Bridging
the gap between storage and latency in distributed erasure coded systems,’’
in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018,
pp. 255–266.

[8] I. S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[9] B. Schroeder and G. Gibson, ‘‘Disk failures in the real world: What does
an MTTF of 1,000,000 mean to you?’’ in Proc. USENIX FAST, 2007,
pp. 1–16.

[10] L. Xiang, Y. Xu, J. C. S. Lui, Q. Chang, Y. Pan, and R. Li, ‘‘A hybrid
approach to failed disk recovery using RAID-6 codes: Algorithms and
performance evaluation,’’ ACM Trans. Storage, vol. 7, no. 3, pp. 1–34,
Oct. 2011.

[11] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, ‘‘Rethinking
erasure codes for cloud file systems: Minimizing I/O for recovery and
degraded reads,’’ in Proc. USENIX FAST, 2012, pp. 1–14.

[12] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V. A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, ‘‘Availability in globally distributed file sys-
tem,’’ in Proc. USENIX OSDI, 2010, pp. 61–74.

[13] E. Pinheiro, W.-D. Weber, and L. A. Barroso, ‘‘Failure trends in a large
disk drive population,’’ in Proc. USENIX FAST, 2007, pp. 17–29.

[14] M. Blaum, J. Brady, J. Bruck, and J. Menon, ‘‘EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,’’ IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[15] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, ‘‘Row-diagonal parity for double disk failure correction,’’ in
Proc. USENIX FAST, 2004, pp. 1–14.

[16] M. Blaum and R. M. Roth, ‘‘On lowest density MDS codes,’’ IEEE Trans.
Inf. Theory, vol. 45, no. 1, pp. 46–59, Jan. 1999.

[17] J. S. Plank, ‘‘The RAID-6 liberation codes,’’ in Proc. USENIX FAST, 2008,
pp. 1–14.

[18] J. S. Plank, ‘‘A new minimum density RAID-6 code with a word size
of eight,’’ in Proc. 7th IEEE Int. Symp. Netw. Comput. Appl., Jul. 2008,
pp. 85–92.

[19] J. Bloemer et al., ‘‘An XOR-based erasure-resilient coding scheme,’’ Int.
Comput. Sci. Inst., Univ. California, Berkeley, Berkeley, CA, USA, Tech.
Rep. TR-95-048, Aug. 1995.

[20] L. Xu and J. Bruck, ‘‘X-code: MDS array codes with optimal encoding,’’
IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276, 1st Quart., 1999.

[21] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, ‘‘Low-density MDS
codes and factors of complete graphs,’’ IEEE Trans. Inf. Theory, vol. 45,
no. 6, pp. 1817–1826, Sep. 1999.

[22] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, ‘‘H-code: A hybrid MDS
array code to optimize partial stripe writes in RAID-6,’’ in Proc. IEEE Int.
Parallel Distrib. Process. Symp., May 2011, pp. 782–793.

[23] C. Jin, H. Jiang, D. Feng, and L. Tian, ‘‘P-code: A new RAID-6 code with
optimal properties,’’ in Proc. 23rd Int. Conf. Conf. Supercomput. (ICS),
2009, pp. 360–369.

[24] Z. Shen and J. Shu, ‘‘HV code: An all-around MDS code to improve effi-
ciency and reliability of RAID-6 systems,’’ in Proc. 44th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2014, pp. 550–561.

[25] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, ‘‘DiskReduce: RAID for
data-intensive scalable computing,’’ in Proc. 4th Annu. Workshop Petas-
cale Data Storage (PDSW), 2009, pp. 6–10.

[26] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma,
R. Murthy, and H. Liu, ‘‘Data warehousing and analytics infrastruc-
ture at facebook,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), 2010,
pp. 1013–1020.

[27] K. Hwang, H. Jin, and R. Ho, ‘‘RAID-x: A new distributed disk array
for I/O-centric cluster computing,’’ in Proc. 9th Int. Symp. High-Perform.
Distrib. Comput., 2000, pp. 279–286.

[28] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence, ‘‘FAB:
Building distributed enterprise disk arrays from commodity components,’’
SIGARCH Comput. Archit. News, vol. 32, no. 5, pp. 48–58, Oct. 2004.

[29] S. A.Weil, S. A. Brandt, E. L.Miller, D. D. Long, and C.Maltzahn, ‘‘Ceph:
A scalable, high-performance distributed file system,’’ in Proc. USENIX
OSDI, 2006, pp. 307–320.

[30] L. Pamies-Juarez, F. Blagojevic, and R. Mateescu, ‘‘Opening the chrysalis:
On the real repair performance of MSR codes,’’ in Proc. FAST, 2016,
pp. 81–94.

[31] Z. Wang, A. G. Dimakis, and J. Bruck, ‘‘Rebuilding for array codes in dis-
tributed storage systems,’’ in Proc. IEEEGlobecomWorkshops, Dec. 2010,
pp. 1905–1909.

137644 VOLUME 8, 2020

N. Liang et al.: Optimal Recovery Approach for Liberation Codes in Distributed Storage Systems

[32] S. Xu, R. Li, P. P. C. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. C. S. Lui, ‘‘Single
disk failure recovery for X-Code-Based parallel storage systems,’’ IEEE
Trans. Comput., vol. 63, no. 4, pp. 995–1007, Apr. 2014.

[33] Y. Zhu, P. P. C. Lee, Y. Hu, L. Xiang, and Y. Xu, ‘‘On the speedup of
single-disk failure recovery in XOR-coded storage systems: Theory and
practice,’’ in Proc. IEEE 28th Symp. Mass Storage Syst. Technol. (MSST),
Apr. 2012, pp. 1–12.

[34] (2017). Jerasure Erasure Code Plugin. Accessed: Sep. 24, 2017. [Online].
Available: http://docs.ceph.com/docs/hammer/rados/ operations/erasure-
code-jerasure/

[35] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, ‘‘RADOS:
A scalable, reliable storage service for petabyte-scale storage clusters,’’
in Proc. 2nd Int. Workshop Petascale Data Storage Held Conjunct With
Supercomput. (PDSW), 2007, pp. 35–44.

[36] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan,
P. V. Kumar, A. Barg, M. Ye, S. Narayanamurthy, and S. Hussain, ‘‘Clay
codes: Moulding MDS codes to yield an MSR code,’’ in Proc. USENIX
FAST, Oakland, CA, USA, 2018, pp. 139–153.

NINGJING LIANG received theM.S. degree from
the School of Computer Science and Technol-
ogy, Xidian University, Shaanxi, China, in 2015.
She is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
Xi’an Jiaotong University, Shaanxi. Her research
interests include erasure codes, distributed storage
systems, and cloud computing.

XINGJUN ZHANG (Associate Member, IEEE)
received the Ph.D. degree in computer architecture
from Xi’an Jiaotong University, China, in 2003.
From January 2004 to December 2005, he was a
Postdoctoral Fellow with the Computer School,
BeihangUniversity, China. From February 2006 to
January 2009, he was a Research Fellow with
the Department of Electronic Engineering, Aston
University, U.K. He is currently a Full Professor
and the Dean of the School of Computer Science

and Technology, Xi’an Jiaotong University. His research interests include
high-performance computing, big data storage systems, and machine learn-
ing acceleration.

HAILONG YANG (Member, IEEE) received the
Ph.D. degree from the School of Computer
Science and Engineering, Beihang University,
in 2014. He is currently an Assistant Professor
with the School of Computer Science and Engi-
neering, Beihang University. He has also been
involved in several scientific projects, such as per-
formance analysis for big data systems and per-
formance optimization for large scale applications.
His research interests include cloud computing,
big data, and HPC.

XIAOSHE DONG received the B.Eng. degree in
computer hardware from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 1985, and the M.S. and Ph.D.
degrees in computer architecture from Keio Uni-
versity, Tokyo, Japan, in 1996 and 1999, respec-
tively. He was a Lecturer, from 1987 to 1994,
and an Associate Professor, from 1999 to 2003,
with the Department of Computer Science and
Engineering, Xi’an Jiaotong University, where
he has been a Full Professor, since 2003. His

research interests include high-performance computer architecture and grid
computing.

CHANGJIANG ZHANG received the B.S. degree
from the School of Information Science and Tech-
nology, Northwestern University, Shaanxi, China,
in 2019. He is currently pursuing the M.Phil.
degree with the School of Computer Science and
Technology, Xi’an Jiaotong University, Shaanxi.
His research interests include cloud storage sys-
tems and network coding.

VOLUME 8, 2020 137645

