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ABSTRACT Multifocal steady-state visual evoked potentials (mfSSVEPs) have been successfully applied
to assess visual field loss in glaucoma. However, the potential of mfSSVEPs for command control has not
been fully explored yet. It is significant to detect single-trial mfSSVEPs and establish a brain-computer
interface (BCI) system. This study designed a stimulating paradigm that contains 32 targets, with each target
composed of five fan-shaped flickers in a circle. The five flickers were modulated by five frequencies and
formed a five-bit binary encoding system through controlling the ON/OFF state of each flicker. Twelve
subjects participated in an offline and an online experiments. Inter-task-related component analysis (iTRCA)
combined with a probabilistic model was proposed for target recognition. Notably, the training data needed
for calibration corresponded to only six out of the 32 targets. It was found that the increasing number of
flickers showed a negative impact on the mfSSVEP signal. The accuracy reached 80.9%± 11.7% on average
with a peak of 95.3% by iTRCA, which was significantly higher than that by a traditional method. The results
indicate that the proposed stimulation and algorithm are effective for encoding and decoding BCI commands.
Therefore, the mfSSVEP-based BCI enables the augmentation of the BCI instruction set without any burden
of collecting extra training data.

INDEX TERMS Brain-computer interface (BCI), steady-state visual evoked potential (SSVEP), multifocal
SSVEP (mfSSVEP), inter-task-related component analysis (iTRCA).

I. INTRODUCTION
A brain-computer interface (BCI) could measure the brain
signal of users and communicate with the external devices,
which can help people with motor disabilities to improve
the life quality [1], [2]. Some special appliance operators
such as astronauts whose movements were restricted by
the environment could also benefit from the BCIs [3], [4].
Electroencephalogram (EEG) which owns the advantage of
convenience, low cost, and high temporal resolution is the
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most welcomed brain signal for BCIs. Event-related poten-
tials (ERPs) [5], [6], steady-state visual evoked potentials
(SSVEPs) [7] and sensory motor rhythms (SMRs) [8], [9]
are exemplary EEG features for BCI development. Among
these features, the SSVEPs induced by repetitive stimulus
at frequency above 6 Hz [10] were widely used in reactive
BCIs to construct a large instruction set. As a rhythmic signal
that contains the spectral components at the fundamental
and harmonic stimulating frequencies, the SSVEPs possess
excellent stability and high signal-to-noise ratios (SNRs),
thus becoming one of the most efficient EEG features to
conduct cognitive research [11], [12] or realize a high-speed
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BCI system [13]. As is well known, the frequency band
corresponding to high-SNR SSVEPs is narrow, thus becom-
ing a challenge to increase the number of targets. Although
several studies have proposed paradigmswith high-frequency
SSVEPs [14], [15], the performance could not reach the
same level of low-frequency SSVEP-BCIs as the signals were
weak and submerged in the background EEGs. It is worth
continually exploring the potential of the golden frequency
band of SSVEPs.

Recently, Nakanishi et al. induced multifocal SSVEPs
(mfSSVEPs) with a newly developed portable platform
nGoggle, in which multiple visual targets flickering at dif-
ferent frequencies [16], [17]. The mfSSVEP technique stim-
ulated many areas of the retina simultaneously so that
multiple kinds of responses could be detected from the EEGs.
Although multifocal visual evoked potentials (mfVEPs) have
been successfully applied to discriminate glaucomatous from
healthy eyes by researchers [18], [19], the nGoggle combined
the advantages of SSVEPs and showed a better performance
in glaucoma detection. Nevertheless, this feature has not been
used for BCI controls to our knowledge. If we treat the fre-
quencies of mfSSVEPs as binary digits, i.e. given n flickers,
once we decode the ON/OFF state of each flicker from the
mfSSVEPs, the n flickers could encode 2n targets. In this
manner, mfSSVEPs will become an approach to expand the
instruction set of SSVEP-based BCIs with much fewer fre-
quencies than classical paradigms. In our previous study [20],
a 16-target mfSSVEP-based paradigm with four frequencies
encoded in a binary manner was tested and performed well.
However, the targets were displayed at the center rather than
in different positions of the screen so that it cannot construct
a spelling system as classical SSVEPs-based systems.

In view of this, this study employed five frequencies to
realize 32 targets tiled at the full screen. In order to generate
the oscillation of the five frequencies stably, the flickers were
arranged as fan shapes so that each flicker could be displayed
in the central visual field [21]. A tailored offline stimulat-
ing experiment was designed to obtain the information of
each frequency flashing at different locations of the screen.
Apart from the stimulation, it is critical to find an effective
method to extract the mfSSVEPs corresponding to each fre-
quency. However, we found that the mfSSVEPs evoked by
multiple flickers showed very different patterns compared
with SSVEPs evoked by a single flicker. Different from the
superposition of all trials in the application of glaucoma
detection, the effective single-trial recognition of mfSSVEPs
should be realized in a BCI controlling system. Therefore,
it needs a tailored spatial filtering method for single-trial
mfSSVEP extraction. Although a variety of algorithms have
been successfully applied to SSVEP detection, e.g. canonical
correlation analysis (CCA) [22] and its various modifica-
tions [23], minimum energy combination (MEC) [24], task-
related component analysis (TRCA) [25] and so on, theywere
designed to extract SSVEPs under the stimulating of a single
frequency, and the performance would degrade when being

used to extract mfSSVEPs under simultaneous stimulating of
multiple frequencies according to our preliminary tests.

Taking above issues into account, this study developed a
novel inter-task-related component analysis (iTRCA) algo-
rithm by incorporating the interclass correlation between
EEGs evoked by a single flicker and all flickers into the opti-
mizing process of the spatial filter. Besides, the intraclass cor-
relation of a single flicker, the interclass correlation between
relevant and irrelevant flickers were also transformed as
covariance matrices to facilitate the optimization. In this way,
the extracted inter-task-related components considered both
the EEGs evoked by a single flicker and EEGs evoked bymul-
tiple flickers, thus improving the recognition performance.
In the following parts, this paper introduced the experimental
design, evaluated the performance of iTRCA, compared it
with the conventional TRCA-based method, and analyzed the
effect of the number of flickers on the mfSSVEPs.

II. METHODS
A. PARTICIPANTS
Twelve healthy volunteers (seven females) aged 21 to
27 years old participated in this study. All participants have
normal or corrected normal eyesight. The Ethical Committee
of Tianjin Hospital approved the experimental procedures
used in this study (code: 2019YLS100). Written consent was
obtained from each subject after giving a detailed explanation
of the experiment.

B. STIMULUS DESIGN
Fig.1 illustrates the design of the stimulation. The partici-
pants were seated at a distance of 60 cm from a 27-inch
liquid-crystal display (LCD) monitor with a refresh rate
of 120 Hz. The frequency approximation approach proposed
by Wang et al. was used to generate stimulating flickers [26].
The visual stimulus (target) used to induce mfSSVEPs com-
prised five fan-shaped flickers with different frequencies
(11 Hz, 12 Hz, 13 Hz, 14 Hz, and 15 Hz). The five flickers
form a circle stimulation area that subtended 4◦ of visual
angle. As each flicker could be either in the ON or OFF
state, the five flickers could be encoded in a 5-bit binary
manner, thus generating 32 targets arranged as a 4× 8 matrix
(Fig.1(a)). Accordingly, the mfSSVEPs would be induced
with single, double, triple, quadruple, or quintuple basic spec-
tral components, as shown in Fig.1(c). The location of each
target was specially arranged to separate the targets with the
same number of flickers, which could improve the accuracy
according to the results of preliminary experiments. Note that
there was also a target with no flickers (the target at the
lower right corner). The stimulation was developed on the
MATLAB platform using the Psychtoolbox 3 [27]. Each trial
started with a rest period for 1 s, followed by a flash stage
for 4 s. A yellow ring would appear around the circle as a
cue (Fig.1(b)). During the experiment, the participants were
asked to shift their gaze to the target as soon as possible within
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FIGURE 1. The stimulus design of the mfSSVEP-based paradigm. (a) The subjects wore a 21-channel EEG cap and seated 60 cm from the
screen. The cue was presented to subjects as a yellow ring around the target. (b) Trial timing diagram of the experiment. (c) The targets
with different numbers of flickers were outlined with dashed lines in different colors (the dashed lines were not displayed in the screen)
and the number of targets corresponding to each number of flickers were marked above. The shapes and frequencies of the five flickers
were magnified below. (d) Schematic of the single flicker stimulus corresponding to flicker 4 in the offline experiments. (e) Schematic of
the quintuple flickers stimulus in the offline experiments.

the rest stage and focus on the dot displayed at the center of
the circle within the flash stage.

C. EXPERIMENTAL PROCEDURE
All subjects participated in both the offline and online exper-
iments. Twenty-four blocks were conducted in this study,
including 12 offline blocks and 12 online blocks. The offline
blocks were used to acquire EEGs evoked by single flicker
and quintuple (all) flickers for model calibration. Theoreti-
cally, the model of the five frequencies could be trained by the
data of the five targets with a single flicker. However, as each
of the five flickers could be either ON or OFF as mentioned
above, half of the 32 targets contain the ON state of each
flicker at any given moment. Fig.1(d) illustrates the stimulat-
ing procedure by taking flicker 4 as an example. The flicker
4 was in ON state (labeled in red) at the 16 targets marked
by dashed squares. Hence, the 16 targets were used to obtain
information of 16 different locations from the offline data and

construct a more effective model. When the 16 targets were
prompted to the subject, only the flicker itself would flash
(ON state) while the other four flickers were all turned off.
The stimulating procedure for other flickers were conducted
in the samemanner. In this way, there were 16× 5= 80 cases
used for single flicker stimulus evoking SSVEPs with a single
frequency. As for quintuple (all) flickers, the targets with
triple (10), quadruple (5), and quintuple (1) flickers were
adopted and in total 16 multi-flicker targets were used in
this study, as marked with dashed squares in Fig.1(e). When
these targets were cued, all flickers would flash to evoke
mfSSVEPs with five frequency components. In consequence,
there were 80 + 16 = 96 cases for both single and quintuple
flickers in the offline experiment. Each of the 96 cases was
presented twice, which led to 2 × 96 = 192 trials. The trials
were divided into 12 blocks with 16 trials stimulating in a
random sequence in each block. The subjects could take a
rest after finishing a block, and begin the next block when
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they got enough rest according to the self-feeling. After the
offline training, a classification model was built (illustrated
in section II-E) for the online tests.

In online experiments, each of the 32 targets was prompted
six times thus generating 6× 32= 192 trials. The trials were
also divided into 12 blocks. Note that each target flashed as
the pattern it is as shown in Fig.1(a) without transformation
like the offline experiments. The online classification result
of each trial would be reported by voice as feedback to the
subjects. The subjects could also have a rest between blocks
as in offline experiments. The offline and online experiments
took about 45 min in total considering the resting period.

D. EEG ACQUISITION AND PREPROCESSING
The EEG data were recorded with a Neuroscan SynAmps2
amplifier and a 64-Channel Quick-Cap, with Ag/AgCl elec-
trodes placed at standard positions of the international
10-20 system. All channels were referenced to the vertex
and grounded to the prefrontal lobe between FPz and Fz
during acquisition. The EEG data from twenty-one channels
around the occipital area (P7, P5, P3, P1, Pz, P2, P4, P6,
P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, CB1, O1, Oz,
O2 and CB2, see Fig.1(a)) were used for further analyses.
EEG signals were band-pass filtered at 0.1-200 Hz, notch
filtered at 50 Hz, sampled at 1000 Hz, and stored on the disk.
In pre-processing, the data were band-pass filtered to 3-90 Hz
with a 4th-order Chebyshev Type I infinite impulse response
(IIR) filter and down-sampled at 250 Hz. The EEG epochs
were extracted in [0.1 s, 0.1 +t s] according to the onset of
flashing stage, with the latency delay in the visual system
defined as 0.1 s. In online experiments, t = 4 s, while in
analysis after experiments (section III-A), t was set as 0.25 s
to 4 s with an interval of 0.25 s.

E. EEG DATA ANALYSIS
1) ITRCA-BASED SPATIAL FILTER
To recognize the 32 targets with the model constructed from
the offline data, this study proposed a novel spatial filter-
ing algorithm that was termed iTRCA. For an EEG epoch
X = (x1, x2, · · · , xNc )

T
∈ RNc×Nt , where Nc indicates the

number of channels and Nt is the number of sampling points,
the spatially filtering process is to get a linear sum of all the
recorded channels:

y = wTX =
Nc∑
k=1

wkxTk ∈ R1×Nt . (1)

Here, w = (w1,w2, · · · ,wNc )
T is the spatial filter vector. It is

known that the TRCA aims to maximize the reproducibility
from trial to trial. However, if the spatial filters are generated
from epochs of a single flicker by TRCA, the output of spatial
filters may not fit the epochs of multiple flickers and result in
performance degradation. The spatial filter needs to consider
both the single and multiple flickers. Obviously, if the spatial
filter could satisfy the two extreme cases: EEGs evoked by

a single flicker and all flickers, it will be suitable for other
conditions as well.

Based on the above idea, for the i-th frequency (i =
1, 2, . . . ,Nf , Nf = 5 in this study), the objective of the
iTRCA spatial filter i is to maximize the correlation between
epochs evoked by a single flicker i and epochs evoked by
all (quintuple) flickers. The problem can be solved by inter-
trial and inter-task covariance maximization. The h-th trial of
EEG epoch and the estimated inter-task-related component
for a single flicker i can be described as X (S)

i(h1)
and y(S)i(h1)

,

h1 = 1, 2, . . . ,N (S)
i , while the h-th trial of EEG epoch and the

estimated inter-task-related components for all flickers can be
described as X (A)

(h2)
and y(A)i(h2)

, h2 = 1, 2, . . . ,N (A). Then all
possible combinations of trials between the two conditions
are summed as

Ci =
1

N (S)
i N (A)

N (S)
i∑

h1=1

N (A)∑
h2=1

cov
(
y(S)i(h1)

, y(A)i(h2)

)

=
1

N (S)
i N (A)

N (S)
i∑

h1=1

N (A)∑
h2=1

y(S)i(h1)
y(A)Ti(h2)

=
1

N (S)
i N (A)

N (S)
i∑

h1=1

N (A)∑
h2=1

[
wTi X

(S)
i(h1)

] [
wTi X

(A)
(h2)

]T

= wTi

 1

N (S)
i

N (S)
i∑

h1=1

X (S)
i(h1)


 1
N (A)

N (A)∑
h2=1

X (A)
(h2)

T

wi

= wTi X̄
(S)
i X̄

(A)T
wi → max, (2)

where

X̄
(S)
i =

1

N (S)
i

N (S)
i∑

h1=1

X (S)
i(h1)

X̄
(A)
=

1
N (A)

N (A)∑
h2=1

X (A)
(h2)

(3)

represent the averages across trials. To get a symmetric
matrix, define

S(SA)i = X̄
(S)
i X̄

(A)T
+ X̄

(A)
X̄
(S)T
i . (4)

In order to bound the solution, the variance of the two
conditions y(S)i(h) and y

(A)
i(h) are constrained as

Var (y) = wTi Qiwi = wTi
(
Q(S)
i + Q

(A)
)
wi = 1. (5)

where

Q(S)
i =

1

N (S)
i

N (S)
i∑

h=1

X (S)
i(h)X

(S) T
i(h) Q(A)

=
1

N (A)

N (A)
i∑

h=1

X (A)
(h)X

(A) T
(h) .

(6)

In this way, the iTRCA can be formulated as an eigenvalue
problem as

ŵi = argmax
w

wTi S
(SA)
i wi

wTi Qiwi
. (7)
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FIGURE 2. Diagrams of the modeling procedure for the i-th frequency: (A) The spatial filter generated by iTRCA, (B) the generation of template signals
(left) and the calculation of correlation coefficients (right) based on the generated spatial filter, and (C) the probability distribution estimated for ON/OFF
state decision.

Besides the maximization of inter-task correlation between
single flicker and all flickers, some other constrains are sup-
posed to be taken into account which may contribute to a
better extraction of mfSSVEPs:

i. The maximization of inner-task correlation for a single
flicker i (i.e. the matrix S in TRCA)

S(SS)ii =
1

N (S)
i

(
N (S)
i −1

) N (S)
i∑

h1=1,h2=1
h1 6=h2

X (S)
i(h1)

X (S)T
i(h2)
=

1

N (S)
i

(
N (S)
i −1

)

×

 N (S)
i∑

h1=1,h2=1

X (S)
i(h1)

X (S)T
i(h2)
−

N (S)
i∑

h1=1,h2=1
h1=h2

X (S)
i(h1)

X (S)T
i(h2)


=

1

N (S)
i − 1

[
N (S)
i · X̄

(S)
i X̄

(S) T
i − Q(S)

i

]
(8)

ii. Theminimization of inter-task correlation between a single
flicker j (j 6= i) (unrelated frequencies for frequency i) and a
single flicker i

−S(SS)ij = −

[
X̄
(S) T
i X̄

(S)
j + X̄

(S) T
j X̄

(S)
i

]
. (9)

iii. The minimization of inter-task correlation between a sin-
gle flicker j (j 6= i) and all flickers

−S(SA)j = −

[
X̄
(S)
j X̄

(A) T
+ X̄

(A)
X̄
(S) T
j

]
. (10)

Then the matrix S(SA)i can be optimized as Si

Si=S
(SA)
i −

1
Nf − 1

Nf∑
j=1,j6=i

S(SA)j +S
(SS)
ii −

1
Nf − 1

Nf∑
j=1,j6=i

S(SS)ij ,

(11)

and the matrix Qi can be modified accordingly as

Qi =
1
4

2Q(S)
i + Q

(A)
i +

1
Nf − 1

Nf∑
j=1,j6=i

Q(S)
j

 . (12)

In this way, the spatial filter ŵi can be derived from (7) as the
eigenvectors of Q−1i Si by solving the eigenvalue decomposi-
tion problem. In this paper, the performance of iTRCA and
classical TRCA methods was compared below.

2) MODELING PROCEDURE
Fig.2 illustrates the procedure of model construction with the
offline data for the i-thfrequency. The data from 21 channels
were fed into a filter bank to decompose the EEGs into sub-
band waves to extract information embedded in the harmonic
components. The lower and upper cut-off frequencies of the
m-th sub-band were set to (1+m× 9)Hz and 88 Hz, respec-
tively (m = 1, 2). This study used the zero-phase Chebyshev
Type I infinite impulse response (IIR) filters. As presented
in Fig.2(a), iTRCA spatial filters W (m)

i (i = 1, 2, . . . ,Nf )
were firstly constructed for the m-th sub-band using the
offline data.

The left panel of Fig.2(b) shows the generation of template
signal for mfSSVEP recognition. Firstly, the data of the single
flicker and all flickers were both considered so that the tem-
plate involves information from both the single and multiple
flickers. Hence, the averages across trials of the two groups
X̄
(m)(A)

and X̄
(m)(S)
i were multiplied by W (m)

i and summed
with a weight λ (0.85 in this study) to get the templates χ̄ (m)

ii .
Besides the χ̄ (m)

ii that represents the positive correlation, if the
data of other frequencies X̄

(m)(S)
j (j = 1, 2, . . . ,Nf , j 6= i)

were spatially filtered byW (m)
i , the generated templates χ̄ (m)

ij
would present a negative correlation with the i-thfrequency.
It makes sense to consider the negative correlation templates
that may help to improve the separability between different
frequencies.

The right panel of Fig.2(b) displays the calculating proce-
dure of correlation coefficients as the output of Decoder[i].
For the testing EEG epoch X (Test)(m), the Pearson correlation
coefficients with positive templates χ̄ (m)

ii and negative tem-
plates χ̄ (m)

ij were calculated as r (m)ii and r (m)ij after the spatially
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FIGURE 3. Flowchart of online recognition for the i-th frequency.

filtering procedure. The final coefficients were defined as
the difference values of the positive and negative correlation
coefficients:

r (m)i = r (m)ii −
1

Nf − 1

Nf∑
j=1, j6=i

r (m)ij . (13)

The output coefficients ri were calculated by a weighted
mean of the coefficients corresponding to all sub-bands.
In order to decode the ON/OFF state of each flicker so as
to obtain the final result, the probability density functions
(pdfs) of each flicker’s ON/OFF states were derived from
the offline data. Fig.2(c) depicts the generating procedure
of the pdfs. If the data evoked by all flickers were fed into
the Decoder[i], we would obtain correlation coefficients r (A)i .
The pdfs P (r|on, i) for the ON state were then generated
by Gaussian kernel density estimation using r (A)i . If the data
evoked by the j-th (j = 1, 2, . . .Nf , j 6= i) single flicker
were fed into the Decoder[i], we would obtain correlation
coefficients r (S)ij . The pdfs P (r|off , i) for the OFF state were

then generated using r (S)ij . The correlation coefficients used
for generating probability distribution were calculated using
the offline data with a 16-fold cross-validation method.

3) ONLINE RECOGNITION PROCEDURE
Fig.3 shows the procedure of online recognition. For a testing
trial X (Test) in the online blocks, the preprocessed data were
decomposed by the filter bank and then fed into Decoder[i] to
compute correlation coefficients r (Test)i . Then the probability

of ON/OFF state: p
(
r (Test)i |on

)
and p

(
r (Test)i |off

)
could be

obtained through Probability distribution[i]. The posterior

probability p
(
on|r (Test)i

)
for the i-th frequency could be

obtained by the Bayesian inference [28], [29]:

p
(
on|r (Test)i

)
=

p(on)p
(
r (Test)i |on

)
p(on)p

(
r (Test)i |on

)
+p(off )p

(
r (Test)i |off

) ,
(14)

in which the p(on) and p(off ) were prior probabilities and
set as p(on) = p(off ) = 0.5. The result p

(
on|r (Test)i

)
was

then binarized to 1 or 0 to generate the final 5-bit binary
output according to the threshold p(Th)i . The thresholds were
optimized for every subject according to the distance between
pdfs P (r|off , i)and P (r|on, i) in this study. If the two curves
live far from each other, it would be easier to differentiate
the on or off state, and the thresholds were set lower. If the
two curves stay close to each other, the threshold should be
conservative and set to a higher value.

4) POWER SPECTRUM AND SNR OF MFSSVEPS
The power spectrums and SNRs of mfSSVEP components
were analyzed using the 4 s epochs from the online exper-
iment. Considering the amplitude spectrum y(f ) calculated
by the 500-point fast Fourier transform (FFT), the power
spectrumP(f ) was defined as y2(f ). The SNR in decibels (dB)
was defined as the ratio of y(f ) to the mean value of the four
neighboring frequencies considering the 500-point FFT [13]:

SNR (f )=20 log10
y (f )

1
4

2∑
k=1

[y (f −0.5×k)+y (f +0.5×k)]

.

(15)

For each flicker, the power spectrum and SNRwere estimated
by averaging across trials and subjects.

III. RESULTS
A. PERFORMANCE OF MFSSVEP-BASED BCI
The online data were further analyzed after the experiment.
Fig.4 and Table.1 show the performance analysis of the online
data with the model constructed from the offline data. For the
data length of 4 s which was used for online recognition in the
experiments, the mean accuracy of the iTRCA-based method
across all subjects was 80.9% ± 11.7% (max 95.3%), while
the classical TRCA-based method showed 70.4% ± 16.3%
(max 93.2%). In the offline analysis, the accuracies of the
iTRCA spatial filter were significantly higher than those of
the TRCA for most of the data lengths (Wilcoxon signed rank
test, p < 0.01), as shown in Fig.4. We also calculated the
putative information transfer rates (ITRs) with different data
length using the common method [23]:

ITR =
[
log2 N + P log2 P+ (1− P) log2

1− P
N − 1

]
×

60
T
,

(16)

where N = 32 is the number of commands, P is the accuracy
and T is the consuming time for each trial which includes the
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TABLE 1. The highest ITRs of all subjects in the offline analysis.

FIGURE 4. Comparison of recognition accuracies based on TRCA and
iTRCA spatial filters. Each line with light color represents one subject and
the line with deep color represents the average. The grey shading shows
the significance of difference between the accuracies of two spatial filters
(Wilcoxon signed rank test).

1-second interval between two successive trials. Table 1 listed
the highest ITR of each subject with the corresponding data
length and accuracy. The average of ITRs for iTRCA was
88.7 ± 45.0 bits/min, which is significantly higher than
that for TRCA (71.7 ± 32.9 bits/min, p = 4.88 × 10−4).
The improvement of ITRs was due to the higher accura-
cies or shorter data length (marked in boldface). Specifically,
the highest ITR reached 187.4 bits/min with 1 s data.

B. COMPARISON OF SNRS BETWEEN TRCA AND ITRCA
The top row of Fig.5 shows the average SNR spectrums of
the spatially filtered EEG data that were evoked by quin-
tuple flickers. In view of the harmonic effect of SSVEPs,
the harmonic components were also marked out. For related
frequencies of each flicker (e.g. 12 Hz and its harmonics
for Flicker 2), iTRCA obtained similar or higher SNRs than
those of TRCA (red vs blue triangles in the figure). Besides,
the unrelated frequencies for each flicker (e.g. 11, 13, 14,
15 Hz and their harmonics for Flicker 2) showed lower SNRs
for iTRCA than those for TRCA (red vs blue squares in the
figure).

To further evaluate the effect of two spatial filters on SNRs
quantitatively, the key frequencies in the SNR spectrums
(i.e. the triangles and squares) were averaged and shown
in the lower row of Fig.4. For the five flickers, the fig-
ure shows that the SNRs of unrelated frequencies filtered by
iTRCA were significantly lower than those by TRCA, while
the SNRs of related frequencies did not show significant
differences except for Flicker 3. In addition, compared to
related frequencies, unrelated frequencies presented signifi-
cantly lower SNRs for four flickers (11, 12, 13, 15 Hz) by
iTRCA, whereas only two flickers (12, 15 Hz) had signifi-
cantly lower SNRs by TRCA.

C. THE IMPACT OF THE NUMBER OF FLICKERS
Fig.6 shows the recognition accuracies for targets with
1-4 flickers, respectively. As the number of targets changes
with the number of flickers (see Fig.1(c)), the targets were
divided into two subgraphs to make a fair comparison, i.e. the
accuracies of the group with the same number of targets were
compared in the same subgraph. In Fig.6(a), the accuracies
of single-flicker targets had higher accuracies than those of
the quadruple flickers and the difference was statistically
significant when the data length was shorter than 2.7 s.
The accuracies of double-flicker targets were significantly
higher than those of triple-flicker targets at all lengths of
data (Fig.6(b)).

In order to compare the energy distribution corresponding
to different numbers of flickers, we calculated the power
spectrum of each electrode for each target through FFT.
The power of fundamental, second, and third harmonics of
each flicker (frequency) was then extracted and summed.
These data could be categorized into 5 (flicker numbers) ×
5 (frequencies) = 25 groups. For example, the target at the
2nd row, 8th column contains 3 flickers (Flicker 3, 4, and 5),
the frequencies of which were 13 Hz, 15Hz, and 11 Hz.
Therefore, the summed power of 13/26/39 Hz was catego-
rized into the group of triple flickers & 13 Hz, the summed
power of 15/30/45 Hz was categorized into the group of triple
flickers & 15 Hz, and the summed power of 11/22/33 Hz was
categorized into the group of triple flickers & 11 Hz. In this
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FIGURE 5. (Upper row) Average SNR spectrums of EEG data spatially filtered by TRCA and iTRCA under quintuple flickers stimulating across all trials
and subjects. The triangles represent the SNRs of the related frequencies of the current flicker, while the squares represent the unrelated
frequencies, i.e. the related frequencies of other flickers. (Lower row) The average of related and unrelated frequencies. The little circles with light
color represent all subjects and the large circles with deep color represent the average across all subjects. The numbers of ‘‘∗’’ indicate the
significance of difference (Wilcoxon signed rank test).

FIGURE 6. Recognition accuracies corresponding to targets with different
numbers of flickers: the five targets with a single flicker and the five
targets with quadruple flickers (left), as well as the ten targets with
double flickers and the ten targets with triple flickers (right). The grey
shading shows the significance of the differences (Wilcoxon signed rank
test).

way, we could obtain 25 groups of power data after processing
all the targets. The power data were averaged within each
group and then averaged for all subjects. Fig.7 shows the
distribution of the power at all electrodes. The topographies
qualitatively showed that the power spectrum of each fre-
quency declined with the number of flickers increased. After-
ward, the power of each electrode was compared between
multiple and single flickers using Wilcoxon signed rank test
and the significance was marked with a cross. The power was
strongest when there was only one flicker flashing (top row
in Fig.7). For double flickers, few electrodes showed signifi-
cant power decline compared with a single flicker. However,
more electrodes presented significantly weaker power when
three, four, or five flickers flashed at the same time. The
right-most column represents the total power of frequencies
between 0-50 Hz. The five topographies exhibited similar

strength and distribution, and no significance was found
between the power of a single flicker and multiple flickers.

IV. DISCUSSION
Researchers have been focusing on expanding the BCI
instruction number to broaden the applications of BCIs in
recent years. It is known that reactive BCIs are widely
adopted to generate a large instruction set. The coding strat-
egy of reactive BCIs can be grouped into five schemes [30]:
time division multiple access (TDMA), frequency division
multiple access (FDMA), code division multiple access
(CDMA), space division multiple access (SDMA), and
hybrid multiple access (HMA) according to the telecom-
munication technology. As typical FDMA systems, SSVEP-
based BCIs are widely used because of their high ITRs as
a consequence of unremitting efforts on the stimulation and
decoding algorithms. However, the limited frequency band of
high-SNR SSVEPs prevents the enlargement of their instruc-
tion set. A number of coding strategies have been proposed
to overcome the restriction of frequencies. For example,
Chen et al. introduced intermodulation frequencies to SSVEP
stimulation and realized nine targets with one main frequency
and nine additional modulation frequencies [31]. In recent
high speed SSVEP-BCI systems, a joint frequency-phase
modulation (JFPM) method greatly improved the separabil-
ity between targets thus achieving high performance [32].
Thanks to the JFPM stimulation, the SSVEP-based BCIs
have been continuously breaking the ITR records [33], [34]
and derived a variety of applications [35], [36]. Moreover,
hybrid coding that combines other EEG features such as
ERPs is also a promising approach to increase the com-
mand number, as plenty of researchers have demonstrated its
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FIGURE 7. The average spectral topographies across all subjects under different numbers of flickers. The topographies were observed
from the occipital direction for comprehensibility. Each row represents one group and each column represents one frequency, while
the right-most column represents the summation of power for frequencies < 50 Hz. The ‘‘+’’ indicates the electrode at which the
power was significantly lower than that of a single flicker in the uppermost row (Wilcoxon signed rank test, p < 0.01).

performance [37]–[40]. Different from the above strategies,
this study explored the potential of mfSSVEPs to encode
a 32-target BCI system with five frequencies. In order to
induce stronger mfSSVEPs, the shape of the stimulus and
the locations of the 32 targets were designed elaborately,
as shown in Fig.1(c). What’s more, the offline calibration
experiment was also optimized to make the raw EEG data
containing all possible locations of each flicker. The resultant
accuracies and SNRs showed that the mfSSVEPs contain-
ing five frequencies were reliably evoked by the stimuli.
It should be noted that the target at the bottom right corner
with none flicker is a special instruction that represents an
idle state. Hence the proposed BCI system could realize the
asynchronous function as well.

For SSVEP-BCIs, a crucial step in the decoding algorithm
is the spatial filtering procedure. Many spatial filters were
proposed in previous studies and produced excellent perfor-
mance in online tests, especially for TRCA [25]. It is known
that TRCA extracts the task-related components by summing
all covariances (correlations) of trial pairs inside one class and
performing the eigenvalue decomposition. Nevertheless, the

mfSSVEPs were evoked by more than one frequency, which
complicate the EEG pattern. The classical TRCA spatial filter
is optimized by the EEGs evoked by only one frequency, thus
causing the mismatching between the model and the EEGs
evoked by different numbers of flickers in consequence. It is
necessary to design a novel spatial filter that can address both
the single and multiple flickers. Hence, this study proposed
a novel iTRCA spatial filter. Different from TRCA, four
factors were taken into account as four covariance matrices
in iTRCA: maximizing the interclass correlation between the
EEGs of current flicker and all flickers (S(SA)i ), minimizing
the interclass correlation between the EEGs of other flickers
and all flickers (−S(SA)j ), maximizing the intraclass correla-

tion within the EEGs of current flicker (S(SS)ii ), minimizing
the interclass correlation between the EEGs of current flicker
and other flickers (−S(SS)ij ). The SNRs in Fig.5 and the accu-
racies in Fig.4 proved that the generated iTRCA spatial filter
for each flicker suppressed the irrelevant signals evoked by
other flickers more effectively than the TRCA spatial filter.
The methodology of iTRCA will also help extract common
information in multitasking researches.
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As newly applied EEG features, the characters of
mfSSVEPs have not been fully understood yet. This study
analyzed the variation of mfSSVEPs with the numbers of
flickers. The accuracies in Fig.6 demonstrate that the number
of flickers had a negative influence on the performance of
mfSSVEP-based BCI. Fig.7 provides a qualitative analysis of
this effect from the perspective of the power spectrum. The
results suggested that the total energy supplied to the brain
tends to be constant and allocated according to needs. A pre-
vious study proposed that the number of neurons that can be
activated was inversely proportional to the average discharge
rate of active neurons [41]. This mechanism ensures the
energy consumption of the brain remains at a relatively low
level. If more competitive stimuli are flashing simultaneously,
the entire energy needs to be allocated to more frequencies so
that each frequency will acquire less power. In future work,
it is of vital importance to master the characters of mfSSVEPs
in depth, and develop a more robust decoding algorithm to
benefit the instruction expanding. Besides, Fig.6 also shows
that the lateral visual stimuli used in this study caused the
contralateral power distribution of mfSSVEPs. This is in
accordance with the retinotopic mapping theory mentioned
in previous studies [42], [43].

V. CONCLUSION
This study verified the feasibility of utilizing mfSSVEPs to
encode a multi-target BCI system. An mfSSVEP-based BCI
speller with five binary-coded flickers was developed and a
novel iTRCA spatial filter was designed to extract the related
components of each flicker. The online results demonstrated
the effectiveness of the proposed paradigm and the algo-
rithm. With continual optimization, the proposed paradigm is
promising to realize a larger number of commands with fewer
frequencies and less calibration time.

ACKNOWLEDGMENT
The authors sincerely thank all the participants for their vol-
untary participation and thank the reviewers as well as editors
for their precious suggestions and comments.

REFERENCES

[1] J. Wolpaw and E. W. Wolpaw, Brain-Computer Interfaces: Principles and
Practice. Oxford, U.K.: Oxford Univ. Press, 2012.

[2] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz,
‘‘Cortical control of a prosthetic arm for self-feeding,’’ Nature, vol. 453,
no. 7198, p. 1098, 2008.

[3] C. de Negueruela, M. Broschart, C. Menon, and J. del R. Millán,
‘‘Brain–computer interfaces for space applications,’’ Pers. Ubiquitous
Comput., vol. 15, no. 5, pp. 527–537, Jun. 2011, doi: 10.1007/s00779-010-
0322-8.

[4] S. Chen, J. Jiang, J. Tang, X. Jiao, H. Qi, Y. Cao, C. Wang, and D. Ming,
‘‘An experimental study on usability of brain-computer interaction tech-
nology in human spaceflight,’’ inAugmented Cognition. Enhancing Cogni-
tion and Behavior in Complex Human Environments. Cham, Switzerland:
Springer, 2017, pp. 301–312.

[5] M. Xu, X. Xiao, Y. Wang, H. Qi, T.-P. Jung, and D. Ming, ‘‘A brain–
computer interface based on miniature-event-related potentials induced by
very small lateral visual stimuli,’’ IEEE Trans. Biomed. Eng., vol. 65, no. 5,
pp. 1166–1175, May 2018, doi: 10.1109/TBME.2018.2799661.

[6] X. Xiao, M. Xu, J. Jin, Y. Wang, T.-P. Jung, and D. Ming, ‘‘Discrim-
inative canonical pattern matching for single-trial classification of ERP
components,’’ IEEE Trans. Biomed. Eng., vol. 67, no. 8, pp. 2266–2275,
Aug. 2020, doi: 10.1109/TBME.2019.2958641.

[7] M. Nakanishi, Y. Wang, Y. T. Wang, Y. Mitsukura, and T. P. Jung,
‘‘A high-speed brain speller using steady-state visual evoked poten-
tials,’’ (in English), Int. J. Neural Syst., vol. 24, no. 6, Sep. 2014,
Art. no. 1450019, doi: 10.1142/S0129065714500191.

[8] L. Xu,M. Xu, Y. Ke, X. An, S. Liu, and D.Ming, ‘‘Cross-dataset variability
problem in EEG decoding with deep learning,’’ Frontiers Hum. Neurosci.,
vol. 14, p. 103, Apr. 2020, doi: 10.3389/fnhum.2020.00103.

[9] K. Wang, M. Xu, Y. Wang, S. Zhang, L. Chen, and D. Ming, ‘‘Enhance
decoding of pre-movement EEG patterns for brain–computer interfaces,’’
J. Neural Eng., vol. 17, no. 1, Jan. 2020, Art. no. 016033, doi: 10.1088/
1741-2552/ab598f.

[10] F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, ‘‘Steady-state
visually evoked potentials: Focus on essential paradigms and future per-
spectives,’’ Prog. Neurobiol., vol. 90, no. 4, pp. 418–438, Apr. 2010,
doi: 10.1016/j.pneurobio.2009.11.005.

[11] K. A. Ellis, R. B. Silberstein, and P. J. Nathan, ‘‘Exploring the tempo-
ral dynamics of the spatial working memory n-back task using steady
state visual evoked potentials (SSVEP),’’ NeuroImage, vol. 31, no. 4,
pp. 1741–1751, Jul. 2006.

[12] M. Xu, Y. Jia, H. Qi, Y. Hu, F. He, X. Zhao, P. Zhou, L. Zhang, B. Wan,
W. Gao, and D. Ming, ‘‘Use of a steady-state baseline to address evoked
vs. Oscillation models of visual evoked potential origin,’’ NeuroImage,
vol. 134, pp. 204–212, Jul. 2016.

[13] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, ‘‘Filter bank canon-
ical correlation analysis for implementing a high-speed SSVEP-based
brain–computer interface,’’ J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046008.

[14] X. Chen, B. Zhao, Y. Wang, and X. Gao, ‘‘Combination of high-frequency
SSVEP-based BCI and computer vision for controlling a robotic arm,’’
J. Neural Eng., vol. 16, no. 2, Apr. 2019, Art. no. 026012, doi: 10.1088/
1741-2552/aaf594.

[15] A. Chabuda, P. Durka, and J. Zygierewicz, ‘‘High frequency SSVEP-BCI
with hardware stimuli control and phase-synchronized comb filter,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 2, pp. 344–352, Feb. 2018,
doi: 10.1109/TNSRE.2017.2734164.

[16] J. K. Zao, Y.-Y. Chien, F.-C. Lin, Y.-T. Wang, M. Nakanishi,
F. A. Medeiros, T.-P. Jung, and Y.-P. Huang, ‘‘37-4: Invited paper: Intel-
ligent virtual-reality head-mounted displays with brain monitoring and
visual function assessment,’’ in Proc. SID Symp. Dig. Tech. Papers, 2018,
vol. 49, no. 1, pp. 475–478.

[17] M. Nakanishi, Y.-T. Wang, T.-P. Jung, J. K. Zao, Y.-Y. Chien,
A. Diniz-Filho, F. B. Daga, Y.-P. Lin, Y. Wang, and F. A. Medeiros,
‘‘Detecting glaucoma with a portable brain-computer interface for objec-
tive assessment of visual function loss,’’ JAMA Ophthalmol., vol. 135,
no. 6, p. 550, Jun. 2017.

[18] F. Sabeti, A. C. James, C. F. Carle, R. W. Essex, A. Bell, and T. Maddess,
‘‘Comparing multifocal pupillographic objective perimetry (mfPOP) and
multifocal visual evoked potentials (mfVEP) in retinal diseases,’’ Sci. Rep.,
vol. 7, no. 1, p. 45847, Apr. 2017, doi: 10.1038/srep45847.

[19] D. C. Hood, P. Thienprasiddhi, V. C. Greenstein, B. J. Winn, N. Ohri,
J. M. Liebmann, and R. Ritch, ‘‘Detecting early to mild glaucomatous
damage: A comparison of the multifocal VEP and automated perimetry,’’
Investigative Ophthalmol. Vis. Sci., vol. 45, no. 2, pp. 492–498, 2004,
doi: 10.1167/iovs.03-0602.

[20] J. Tang, M. Xu, Z. Liu, J. Meng, S. Chen, and D. Ming, ‘‘A multifocal
SSVEPs-based brain-computer interface with less calibration time∗,’’ in
Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019,
pp. 5975–5978, doi: 10.1109/EMBC.2019.8857450.

[21] E. L. Schwartz, ‘‘Spatial mapping in the primate sensory projection: Ana-
lytic structure and relevance to perception,’’ Biol. Cybern., vol. 25, no. 4,
pp. 181–194, Dec. 1977, doi: 10.1007/BF01885636.

[22] Z. Lin, C. Zhang, W. Wu, and X. Gao, ‘‘Frequency recognition based
on canonical correlation analysis for SSVEP-based BCIs,’’ IEEE Trans.
Biomed. Eng., vol. 53, no. 12, pp. 2610–2614, Dec. 2006.

[23] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, and S. Gao,
‘‘High-speed spelling with a noninvasive brain-computer interface,’’
Proc. Nat. Acad. Sci. USA, vol. 112, no. 44, pp. E6058–E6067,
2015.

138548 VOLUME 8, 2020

http://dx.doi.org/10.1007/s00779-010-0322-8
http://dx.doi.org/10.1007/s00779-010-0322-8
http://dx.doi.org/10.1109/TBME.2018.2799661
http://dx.doi.org/10.1109/TBME.2019.2958641
http://dx.doi.org/10.1142/S0129065714500191
http://dx.doi.org/10.3389/fnhum.2020.00103
http://dx.doi.org/10.1088/1741-2552/ab598f
http://dx.doi.org/10.1088/1741-2552/ab598f
http://dx.doi.org/10.1016/j.pneurobio.2009.11.005
http://dx.doi.org/10.1088/1741-2552/aaf594
http://dx.doi.org/10.1088/1741-2552/aaf594
http://dx.doi.org/10.1109/TNSRE.2017.2734164
http://dx.doi.org/10.1038/srep45847
http://dx.doi.org/10.1167/iovs.03-0602
http://dx.doi.org/10.1109/EMBC.2019.8857450
http://dx.doi.org/10.1007/BF01885636


J. Tang et al.: BCI Based on mfSSVEPs Detected by iTRCA

[24] O. Friman, I. Volosyak, and A. Graser, ‘‘Multiple channel detection
of steady-state visual evoked potentials for brain-computer interfaces,’’
IEEE Trans. Biomed. Eng., vol. 54, no. 4, pp. 742–750, Apr. 2007,
doi: 10.1109/TBME.2006.889160.

[25] M. Nakanishi, Y. Wang, X. Chen, Y.-T. Wang, X. Gao, and T.-P. Jung,
‘‘Enhancing detection of SSVEPs for a high-speed brain speller using task-
related component analysis,’’ IEEE Trans. Biomed. Eng., vol. 65, no. 1,
pp. 104–112, Jan. 2018.

[26] Y. Wang, Y. T. Wang, and T. P. Jung, ‘‘Visual stimulus design for high-
rate SSVEP BCI,’’ Electron. Lett., vol. 46, no. 15, pp. 1057–1058, 2010,
doi: 10.1049/el.2010.0923.

[27] D. H. Brainard, ‘‘The psychophysics toolbox,’’ Spatial Vis., vol. 10, no. 4,
pp. 433–436, 1997.

[28] H. Zhang, C. Guan, and C. Wang, ‘‘Asynchronous P300-based brain-
computer interfaces: A computational approach with statistical mod-
els,’’ IEEE Trans. Biomed. Eng., vol. 55, no. 6, pp. 1754–1763,
Jun. 2008.

[29] B. O. Mainsah, L. M. Collins, K. A. Colwell, E. W. Sellers, D. B. Ryan,
K. Caves, and C. S. Throckmorton, ‘‘Increasing BCI communication
rates with dynamic stopping towards more practical use: An ALS study,’’
J. Neural Eng., vol. 12, no. 1, Feb. 2015, Art. no. 016013.

[30] S. Gao, Y. Wang, X. Gao, and B. Hong, ‘‘Visual and auditory brain–
computer interfaces,’’ IEEE Trans. Bio-Med. Eng., vol. 61, no. 5,
pp. 1436–1447, May 2014, doi: 10.1109/TBME.2014.2300164.

[31] X. Chen, Z. Chen, S. Gao, and X. Gao, ‘‘Brain–computer interface based
on intermodulation frequency,’’ J. Neural Eng., vol. 10, no. 6, Dec. 2013,
Art. no. 066009.

[32] X. Chen, Y. Wang, M. Nakanishi, T.-P. Jung, and X. Gao, ‘‘Hybrid fre-
quency and phase coding for a high-speed SSVEP-based BCI speller,’’
in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2014,
pp. 3993–3996, doi: 10.1109/EMBC.2014.6944499.

[33] K. Lin, S. Gao, and X. Gao, ‘‘Boosting the information transfer rate of
an SSVEP-BCI system using maximal-phase-locking value and minimal-
distance spatial filter banks,’’ Tsinghua Sci. Technol., vol. 24, no. 3,
pp. 262–270, Jun. 2019, doi: 10.26599/TST.2018.9010010.

[34] J. Jiang, E. Yin, C. Wang, M. Xu, and D. Ming, ‘‘Incorporation of dynamic
stopping strategy into the high-speed SSVEP-based BCIs,’’ J. Neural Eng.,
vol. 15, no. 4, Aug. 2018, Art. no. 046025.

[35] Y.-T. Wang, M. Nakanishi, S. L. Kappel, P. Kidmose, D. P. Mandic,
Y. Wang, C.-K. Cheng, and T.-P. Jung, ‘‘Developing an online steady-
state visual evoked potential-based brain-computer interface system using
EarEEG,’’ in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Aug. 2015, pp. 2271–2274.

[36] Y. Ke, P. Liu, X. An, X. Song, and D. Ming, ‘‘An online SSVEP-BCI sys-
tem in an optical see-through augmented reality environment,’’ J. Neural
Eng., vol. 17, no. 1, Feb. 2020, Art. no. 016066, doi: 10.1088/1741-2552/
ab4dc6.

[37] M. Xu, H. Qi, B. Wan, T. Yin, Z. Liu, and D. Ming, ‘‘A hybrid BCI speller
paradigm combining P300 potential and the SSVEP blocking feature,’’
J. Neural Eng., vol. 10, no. 2, Apr. 2013, Art. no. 026001, doi: 10.1088/
1741-2560/10/2/026001.

[38] E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, and D. Hu, ‘‘A speedy
hybrid BCI spelling approach combining P300 and SSVEP,’’ IEEE Trans.
Biomed. Eng., vol. 61, no. 2, pp. 473–483, Feb. 2014, doi: 10.1109/
TBME.2013.2281976.

[39] M. Xu, L. Chen, L. Zhang, H. Qi, L. Ma, J. Tang, B. Wan, and D. Ming,
‘‘A visual parallel-BCI speller based on the time–frequency coding strat-
egy,’’ J. Neural Eng., vol. 11, no. 2, Apr. 2014, Art. no. 026014.

[40] M. Xu, J. Han, Y. Wang, T.-P. Jung, and D. Ming, ‘‘Implementing over 100
command codes for a high-speed hybrid brain-computer interface using
concurrent P300 and SSVEP features,’’ IEEE Trans. Biomed. Eng., early
access, Mar. 3, 2020, doi: 10.1109/TBME.2020.2975614.

[41] P. Lennie, ‘‘The cost of cortical computation,’’Current Biol., vol. 13, no. 6,
pp. 493–497, Mar. 2003.

[42] J. Chen, D. Zhang, A. K. Engel, Q. Gong, and A. Maye, ‘‘Application of
a single-flicker online SSVEP BCI for spatial navigation,’’ PLoS ONE,
vol. 12, no. 5, May 2017, Art. no. e0178385.

[43] A. Maye, D. Zhang, and A. K. Engel, ‘‘Utilizing retinotopic mapping
for a multi-target SSVEP BCI with a single flicker frequency,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 7, pp. 1026–1036, Jul. 2017,
doi: 10.1109/TNSRE.2017.2666479.

JIABEI TANG received the B.S. degree in biomed-
ical engineering from Tianjin University, Tianjin,
China, in 2013, where he is currently pursuing
the Ph.D. degree. His research interests include
biomedical signal processing and brain–computer
interface systems based on steady-state visual
evoked potentials.

MINPENG XU (Member, IEEE) received the B.S.
and Ph.D. degrees in biomedical engineering from
Tianjin University, in 2010 and 2015, respectively.

From 2014 to 2015, he visited the Tzyy-Ping
Jung’s Laboratory, Institute for Neural Compu-
tation, University of California at San Diego
(UCSD), San Diego, CA, USA. He is currently
an Associate Professor with the Department of
Biomedical Engineering, Tianjin University. His
research interests include brain–computer inter-

face, neural signal processing, and neuromodulation techniques.

ZHENG LIU received the B.S. degree in
biotechnology from Northwest A&F University,
Yangling, China, in 2017, and the M.S. degree
in biomedical engineering from Tianjin Univer-
sity, Tianjin, China, in 2020. His research interest
includes application of deep learning in electroen-
cephalogram processing.

JINGJUAN QIAO received the B.S. degree in
measurement and control technology and instru-
mentation fromHenan University, Kaifeng, China,
in 2019. She is currently pursuing the master’s
degree in biomedical engineering with Tianjin
University. Her research interests include deep
learning and its application in brain–computer
interfaces.

SHUANG LIU received the B.S. degree in biomed-
ical engineering from Tianjin Medical University,
Tianjin, China, in 2012, and the M.S. and Ph.D.
degrees in biomedical engineering from Tianjin
University, Tianjin, in 2018.

She is currently an Assistant Professor with the
Academy of Medical Engineering and Transla-
tional Medicine, Tianjin University. Her research
interests include physiological mechanism of emo-
tion, emotion recognition and regulation, and
biomarker detection of the depression.

VOLUME 8, 2020 138549

http://dx.doi.org/10.1109/TBME.2006.889160
http://dx.doi.org/10.1049/el.2010.0923
http://dx.doi.org/10.1109/TBME.2014.2300164
http://dx.doi.org/10.1109/EMBC.2014.6944499
http://dx.doi.org/10.26599/TST.2018.9010010
http://dx.doi.org/10.1088/1741-2552/ab4dc6
http://dx.doi.org/10.1088/1741-2552/ab4dc6
http://dx.doi.org/10.1088/1741-2560/10/2/026001
http://dx.doi.org/10.1088/1741-2560/10/2/026001
http://dx.doi.org/10.1109/TBME.2013.2281976
http://dx.doi.org/10.1109/TBME.2013.2281976
http://dx.doi.org/10.1109/TBME.2020.2975614
http://dx.doi.org/10.1109/TNSRE.2017.2666479


J. Tang et al.: BCI Based on mfSSVEPs Detected by iTRCA

SHANGUANG CHEN received the B.S. degree
from Wuhan University, Wuhan, China, in 1982,
and the Ph.D. degree from the National University
of Defense Technology, Changsha, China, in 2001.
He is currently the Deputy Chief Designer with
the China’s Manned Space Program. His research
interests include human factor engineering and
aerospace medical engineering.

TZYY-PING JUNG (Fellow, IEEE) received
the B.S. degree in electronics engineering from
National Chiao Tung University, Hsinchu, Taiwan,
in 1984, and the M.S. and Ph.D. degrees in elec-
trical engineering from Ohio State University,
Columbus, OH, USA, in 1989 and 1993, respec-
tively. He is currently a Research Scientist and
the Co-Director of the Center for Advanced Neu-
rological Engineering, Institute of Engineering in
Medicine, University of California at San Diego

(UCSD), La Jolla, CA, USA, where he is also an Associate Director of
the Swartz Center for Computational Neuroscience, Institute for Neural
Computation, and an Adjunct Professor of bioengineering. He is also an
Adjunct Professor of computer science with National Chiao Tung Uni-
versity, and an Adjunct Professor of the School of Precision Instrument
and Opto-Electronic Engineering, Tianjin University, Tianjin, China. His
research interests include biomedical signal processing, cognitive neuro-
science, machine learning, electroencephalogram, functional neuroimaging,
and brain–computer interfaces and interactions.

DONG MING (Senior Member, IEEE) received
the B.S. and Ph.D. degrees in biomedical engi-
neering from Tianjin University, Tianjin, China,
in 1999 and 2004, respectively. From 2002 to
2003, he worked as a Research Associate with the
Department of Orthopaedics and Traumatology,
Li Ka Shing Faculty of Medicine, The University
of Hong Kong. From 2005 to 2006, he was a Visit-
ing Scholar with the Division of Mechanical Engi-
neering and Mechatronics, University of Dundee,

U.K. He joined the College of Precision Instruments and Optoelectronics
Engineering, Tianjin University (TJU), as a Faculty Member, in 2006, where
he has been promoted to a Full Professor of biomedical engineering, since
2011. He is currently the Head of the Neural Engineering and Rehabili-
tation Laboratory. His major research interests include neural engineering,
rehabilitation engineering, sports science, biomedical instrumentation, and
signal/image processing, especially in brain–computer interface, functional
electrical stimulation, and gait analysis. He has been an International Advi-
sory Board Member of the Foot, and the Editorial Committee Member of
Acta Laser Biology Sinica, and the International Journal of Biomedical
Engineering, China. He has managed over ten national and international
research projects, organized and hosted several international conferences,
as the SessionChair or TrackChair over the last ten years andwas theGeneral
Chair of the 2012 IEEE International Conference on Virtual Environments,
Human–Computer Interfaces and Measurement Systems (VECIMS 12).
He is the Chair of the IEEE-EMBS Tianjin Chapter.

138550 VOLUME 8, 2020


