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ABSTRACT Research in Software Defined Networks (SDN) has gained momentum in recent years. SDNs
are getting mature, however, there are still many research challenges that need to be considered before SDN
become ubiquitous. The adaptation of the technology brings immediate focus to its security aspects. The
centralized nature of the SDN makes it prone to many denial of service attacks, especially if the policy
parameters of SDN are known to adversaries. In this work, we present techniques to perform fingerprinting
of SDN including policy parameters such as hard and idle/soft timeouts, OpenFlow match-fields used by
the SDN controller, controller reaction at table full event and information about the topology of the targeted
network. An adversary can launch a carefully planned attack, especially on the SDN data plane, if these
policy parameters are easily discoverable for a SDN domain. Assuming access to the SDN domain’s host
and customized packet generation from the compromised host, we propose efficient techniques to discover
these aforementioned policy parameters. The results of the proposed fingerprinting techniques are verified
by using Mininet.

INDEX TERMS Data plane, network security, OpenFlow, SDN.

I. INTRODUCTION
Software Defined Networks (SDNs) are getting significant
research attention in the networking domain due to the pro-
grammability of the networks. In a typical SDN environment,
the control plane is decoupled from the forwarding plane.
This feature enables the network administrators to apply
policy parameters to the control plane and to program the
network features at the forwarding plane. OpenFlow [1], [2]
has become a de-facto standard for communication between
the control and forwarding planes, with newer versions sup-
porting more options to manage the SDN intelligently [3].
SDNs are getting mature, however, there are many research
challenges to be addressed before SDN becomes ubiquitous.
One of the key challenges that seek immediate attention is
SDN security vulnerabilities. Introduction of SDN has in fact
increased the attack vectors, authors in [4] found that SDN
has 114 medium and high severity level vulnerabilities. There
exist multiple attacks targeting both the data plane and control
plane of the SDN [5]. Shaghaghi et.al, in [6] discuss attacks
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on the data plane, whereas, attacks on the control plane are
covered in survey papers [7], [8].1

In this paper, we focus on a specific data plane attack
referred to as Flow Table Entry Attack (FTEA). FTEA
exploits the limited capacity of forwarding tables in the SDN
enabled switches. Once the Flow Entry Table (FET) gets full,
the newly arriving flows are either dropped or a prior flow is
removed from the FET to make space for the new request.
However, removal of an existing entry from FET induces
latency and extra workload on the controller. This triggers
a chain of message passing between the controller and the
switch which in turn controls the flow capacity. Therefore,
FTEA consumes the SDN controller’s resources by con-
stantly engaging it to install attacker initiated bogus entries
in the FET [11]. The network faces denial of service (DoS)
attack which prevents it from handling the legitimate flow
installation requests. Clearly, FET size is a key parameter
index in such attacks and have a huge impact on the perfor-
mance of the network [11].

1We additionally refer the readers to [9] and [10] that explore fingerprint-
ing SDN controllers and applications respectively.
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There are three main configurable SDN policy parameters,
namely flow timeout value, match field and flow replacement
policy that affect how quickly the capacity of the FET can
be exhausted. An effective attack can be executed by an
attacker if the current values of these parameters are known
and exploited accordingly.
• Flow timeout values determine for how long the flow
entries stay in the FET. The attacker tries to overwhelm
the table by inserting a large number of bogus flows. The
timeout values, on the other hand, triggers the removal
of the installed flows.

• Match fields are used for by a switch to ascertain if a
new flow can be matched to an existing flow in FET.
Otherwise, it has to be referred to the controller for
decision making. The number of entries in FET depends
on the employed match fields. For example, if the policy
to install flows is based on the source and destination IP
addresses only, then all TCP flows between two nodes
only require two entries in the FET for forward and
backward directions. However, if the policy permits the
use of source and destination ports as the match fields,
it may result in 2 ∗ M ∗ N entries (M and N denotes
the sender and receiver port numbers with theoretical
maximum values of 65535, due to 16 bit port number
fields in the TCP header).

• Flow replacement policy comes into play when the
controller installs a new flow on a switch with a full
FET. The switch replies with a table full message to
the controller that can simply drop the new flow or
otherwise installs it by removing an earlier flow table
entry. The attack using the knowledge of the current
flow replacement policy is of particular importance [12]
as it results in a drastic degradation of the network’s
performance.

Beside these configurable parameters, SDN topology dis-
covery also reveals important information about round trip
times between end hosts which enables the attacker to choose
its preferred hosts for maximum attack efficiency. For this
work, we assume that we have access to one of the hosts
within the SDN domain and that we can generate cus-
tom packets from the networking stack of the compromised
host(Figure. 1). Our methodology does not require any sup-
port from other networking elements in the SDN fabric such
as switches and the controller. Our main contribution in this
paper is the efficient discovery of the aforementioned policy
parameters and SDN topology mechanism that can be used to
exacerbate the effect of FTEA in SDN. Specifically:

1) We present a detailed analysis of fingerprinting tech-
niques used to discover the configurable policy param-
eters in an SDN based environment.

2) We adopt an empirical latency based approach to dis-
cover the current timeouts set by the controller and
narrow down match fields configured in the controller
by proposing a series of algorithms.

3) We propose an analysis technique to learn the flow
replacement policy and network topology of the target

FIGURE 1. Fingerprinting scenario.

SDN network. It is worth mentioning that we exploit
resources available at end host(s) without any changes
in the SDN fabric.

4) We discuss the impact of data plane attacks utilizing
information of these configurable parameters and SDN
topology information. Specifically, we study the impact
of FTEA on the data plane and explore the SDN policy
parameters that affect the intensity of such attacks.
This research work presents concerns for network
administrators to properly configure the SDN such that
adversary/attacker find it hard to predict these policy
parameters.

This article has been organized as follows. Section II
details the literature analysis and the limitations of existing
works in the domain of fingerprinting SDN. Section III dis-
cusses the background information necessary to understand
the methodologies adopted in this article. Section IV explains
the methodology of proposed fingerprinting modules. The
results and analysis are discussed in the Section V. Section VI
summarizes the research work.

II. RELATED WORK
There are several research works that focus on the fingerprint-
ing techniques used for the identification of SDN controllers
[13]. Our focus is on fingerprinting policy parameters rather
than just identifying the type of the controller. Identifica-
tion of an SDN controller based on timeout is inherently an
error-prone process. As we know that, default hard timeout
(Thard , expiry time after which the entry is expunged from
FET) of POX controller is 30 sec while of RYU controller
is 0 sec so, identification of a particular controller based on
Thard becomes dubious if the administrator specifies the POX
Thard to 0 sec.

Methods to discover timeout values based on latency mea-
surement for SDN have been discussed by Zeitlin [14]. This
research work assumes that entries in FET are not removed
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by Thard when finding the value of the soft/idle timeout(Tidle,
expiry time if entry is not refreshed) that seems unrealistic.
Both Thard and Tidle values exist for the flow entries that
may result in a discovery of wrong timeout values. Similarly,
Azzouni et al. [9] work on fingerprinting controllers under
their default parameters ignoring the combined existence of
Thard and Tidle values.

Kandoi and Antikainen [15] present the analysis and
impact of Tidle only in the Distributed DoS (DDoS) attacks.
However, they neither include how to find timeouts nor do
they cover all the combinations of timeouts. Their analysis
is incomplete for the case when FET is full assuming only
timeouts expiry method.

Zhou et al. [16] estimate the numbers of entries in FET
assuming the table is empty to begin with whereas, in a
production network there are already thousands of entries
installed for on-going communication. It is highly likely that
these entries are never removed because of Tidle, if Thard is
not being set. Zhang et al. [17] identify the default match
fields of SDN controllers whereas the match fields vary from
policy to policy within the same controller. Moreover, they
use the UDP packets for experiments and ignore the time
synchronization errors in analyzing the results. In contrast,
our study considers all timeout combinations. Moreover, our
work is the first to identify the impact of the mitigating policy
for handling the overflow of FETs on the DDoS attack inten-
sity.We have also fingerprinted the basic firewall omitting the
blocked values of match fields which considerably increases
the robustness of FTEA attacks.

III. BACKGROUND INFORMATION
SDN packet forwarding mechanism is different from the
traditional forwarding in legacy networks. The separation of
the control and the data planes enables the controller to play
a vital role in admitting flows and making packet forwarding
decisions. When a packet is first transmitted in the SDN,
a switch looking at the flow for the first time does not know
how to forward the packet triggering a ‘‘Table miss’’ event.
The switch forwards it to the controller by encapsulating it
in OpenFlow ‘‘Packet-In’’ message. Pre-defined controller’s
policy then decides the forwarding path and generates an
appropriate flow rule message (a Packet-Out or Flow-Mod
message), which contains the action to be performed for that
flow at the switch. The switch installs this flow rule for future
reference.

When the next packet arrives that matches the flow rules
already installed at the switch, it is forwarded directly through
the data plane without referring it to the SDN controller.
It is pertinent to note that the processing of a packet through
the data plane alone is much faster than referring it to the
controller as it avoids the message passing delay between
switch and controller, and the processing delay involved at
the controller. The observed round trip time (RTT) for flow
installation is thus very high when there is no matching flow
rule at a switch and switch has to ask the controller for a
decision regarding that flow. Moreover, this difference in

RTT increases significantly if there is more than one switch
installed between the communicating end hosts, whereby
each switch repeats the process of sending the unknown flow
to the controller.

For the rest of this study, we denote the RTT when the flow
is being installed for the first time along a path as RTTFE
and RTTavg as the RTT when the flow is already installed.
Figure. 2 highlights the difference between RTTFE and
RTTavg along with details of all involved steps. Intuitively,
RTTFE > RTTavg and the difference between the two values
increases when multiple switches are involved along a partic-
ular path. Table 1 lists the nomenclatures used in this article.
Typically, each flow rule installed at a switch contains match
fields, forwarding actions and automatic expiry mechanism.
Each entry is associated with timers to delete the entry from
the switch FET. Considering the memory constraint of a
switch, the expiry mechanism removes entries that become
stale or has been installed for a long time. The timers used
for flowmanagement are known as idle/soft timeout and hard
timeout, which is explained below.

FIGURE 2. Flow installation latency and data plane latency.

TABLE 1. Nomenclature.

Idle timeout – The idle timer triggers the removal of the
entry when inter-packet time value becomes equal to set idle
timeout (Tidle) value. In other words, entry is removed if the
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TABLE 2. Flow Entry Timeouts.

entry’s soft timeout is not refreshed by the arrival of a new
packet belonging to the flow.

Hard timeout – The hard timeout (Thard ) signals the
removal of entry even if packets of the flow are passing
the switch but the flow has been installed for a long time.
The SDN administrator configures the timeouts to any values
within the range 0 to 65535 sec with the Thard value always
greater than the Tidle [18]. A value of zero means that timeout
is infinity and entry is not deleted until the controller explic-
itly instructs the switch to do so. There are thus four possible
combinations of these timeouts as listed in Table 2.
The network administrator sets the timeout based on the

traffic density and the network load. Usually, the combination
‘A’ in Table 2 is rarely used because the manual deletion of
all flow entries by the controller is a resource-consuming task.
A network configured to use only Tidle can have an entry for
an infinite time provided the flow has periodic transmissions
within the Tidle period. Choosing a good combination of these
timeout values is thus imperative for configuring an efficient
SDN deployment. On the other hand, information regarding
these timeout values is also of immense value for an attacker
targeting to overwhelm FETs.

IV. METHODOLOGY
Having covered the background information in the previous
section, we are in a position to discuss our latency based
fingerprinting methodology to ascertain the timeout values,
flow matching rules used by the controller and controller
reaction policy when FET gets full.
Description of the attack:
An adversary generates a burst of unique flows to over-

flow the FET in minimum possible time. For this purpose,
the attacker forges packets that force the controller to install
separate entry for every packet. The window of opportunity
available to the attacker depends on how the timeouts are set
in the SDN policy. The easiest target is the case when both
these timeouts are not set (pair ID ‘A’ in Table 2). As there
would be no timeouts, the flow would remain installed and
the attacker quickly generates enough flows to fill the FET
without worrying that the flows would be automatically
removed. In case only Tidle is set, the host needs to send flow
installation requests at a high rate to install as much flow
as possible before the switch starts removing flows through
expiry of Tidle. The host refreshes FET entries by repeating
flows within Tidle to avoid the flow expiry. If Thard is set with
no Tidle, the entries expire at Thard only. If both Tidle and Thard
are employed in the policy, the attacker needs to keep track
of both time out values. The window of opportunity is limited

to Tidle requiring refreshed entries, while flows need to be
reinstalled after Thard .

We now detail algorithms to compute the Thard and Tidle
values that are used by the attacker.

A. COMPUTATION OF FIRST TIMEOUT AND ITS NATURE
We design an algorithm, employing Round Trip Time (RTT)
measurements with simple ICMP pings, to find the timeout
values being used in a particular SDN deployment. As dis-
cussed in Section III, RTT measurements indicate whether
a new flow initiation results in FET miss and the subse-
quent Switch-Controller-Switch communication results in
additional latency. Also, the initial pings confirm whether
the network is SDN enabled, based on the difference of RTT
of first and consequent packets of a flow because it takes a
considerable more time for the flow to get installed through
the controller (RTTFE > RTTavg). We start from finding
the first timeout and its nature (Algorithm 1) and ascertain
whether it is a hard or idle timeout. Depending on the nature
of the first timeout, we discover the other timeout value i.e., if
the first timeout is hard, we find whether Tidle has been set
or not.
We assume that a host A is under our control in the SDN

domain. The host A records the current system time as T0
and sends a ping to host B to install a new flow entry in
switches in the path towards B assuming that there exists no
prior flow entry for this communication. On receipt of the
ping reply, the RTT of this flow installation is measured as
RTTFE . Now, the host sends ‘n’ number of pings to calculate
the average RTT (RTTavg) and the standard deviation of RTT
(σRTT ). We define a threshold Tthresh based on RTT values
to distinguish between packets that traverse the data plane
and those that are referred to the controller for decision mak-
ing. We calculate Tthresh value by using Equation 1 (line 5,
Algorithm 1) and assume that any RTT value below Tthresh
is simply going through the data plane without incurring the
switch-controller-switch delay of initial flow installation.

Tthresh = RTTavg + 4 ∗ σRTT (1)

Next, we initialize Tsleep with 0 and Tstep with 100 ms and
start sending pings after every Tsleep while incrementing sleep
timer with step value if the RTTping is less than Tthresh,
for each iteration of ping. Note that the time difference
between two consecutive pings increases as the number of
pings increases. The sleep time at ith ping is calculated using
Equation 2. Whenever RTTping exceeds Tthresh, it shows the
expiry of the entry and installation of a new flow. We note the
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Algorithm 1 Find First Timeout and Its Nature
1: Note current system time as T0
2: Send the first ping to install the flow entry
3: Calculate RTT as RTTFE
4: Send n pings to calculate average RTT (RTTavg) and the

standard deviation σRTT
5: Calculate Tthresh = RTTavg + 4 ∗ σ
6: Set Tsleep = 0 and Tstep = 100ms
7: Tsleep = Tsleep + Tstep
8: Sleep for Tsleep
9: Send a ping and calculate the RTT (RTTping)
10: if (RTTping < Tthresh) then
11: Go to 7
12: else
13: Note the current system time as T1 and last sleep time

Tsleep
14: end if
15: Sleep for Tsleep
16: Send a ping and calculate the RTT (RTTping)
17: if (RTTping > Tthresh ) then
18: Idle timeout Tidle = Tsleep
19: else
20: Hard timeout Thard = T1 − T0
21: Note current system time as T2
22: while (T2 − T1) < (0.8 * Thard ) do
23: Note current system time as T2
24: Sleep for Tsleep
25: Send a ping
26: end while
27: while (RTTping < Tthresh ) do
28: Send a ping and calculate RTTping
29: Sleep for Tstep
30: end while
31: Hard timeout Thard = Current time −T1
32: end if

current Tsleep and system time T1.

Ti = Tsl−ini + (i)× Tstep (2)

Remark 1: The timeout occurs however it is not visible
whether the flow expires due to hard or idle timeout? If
the flow is removed due to Tidle, it means that Tsleep is the
Tidle of the network since it is the idle time between last two
consecutive pings. Otherwise, the flow expiry can also be due
to Thard , the total elapsed time since T0.
To probe for a clear distinction, Host A sleeps for Tsleep and
then sends a ping again. If the RTTping exceeds the Tthresh,
it means that flow expiry is due to Tidle. On the other hand,
if the RTTping does not exceed the Tthresh, this shows the
removal of flow due to the Thard . Intuitively, we set Thard =
(T1 − T0).

Note that for Thard , the discovered value is not accurate
with the estimation error limited by the difference of the last
two consecutive pings (Tsleep). The Thard may have occurred
anywhere in the duration of the last Tsleep. We reduce the

error in estimation by pinging at a granular rate than Tsleep.
The host knows the value of Thard with error and that Tsleep is
not the Tidle as entry is not expunged after sleeping for Tsleep.
The host sends the pings gapped at Tsleep for 80% of Thard
(lines 22 - 25, Algorithm 1) and then starts sending pings
after every Tstep i.e., very small value as compared to Tsleep,
to reduce the estimation error. Pings are sent until an entry
expiry event occurs (line 27, Algorithm 1). The Thard is now
calculated (line 31) that is not dependent on the ratio between
sums of all pings and actual value deployed in the network.
Algorithm 1 thus returns the value of the first timeout and
ascertains its nature as well.

B. COMPUTATION OF Tidle GIVEN Thard
Algorithm 2 computes the value of Tidle given that timeout
value discovered in Algorithm 1 was Thard . If the value
discovered is Tidle, Algorithm 3 is used to compute the
Thard . Only one of these algorithms will follow Algorithm 1.
We first describe the working of Algorithm 2.

Algorithm 2 Find Idle Timeout Given Hard Timeout (Thard )
1: Sleep for Thard
2: Initialize T0 = Current system time and Tstep = 50ms
3: Use Tsleep and Tthresh from Algorithm 1
4: Send a ping to install the flow
5: Tsleep = Tsleep + Tstep
6: if Tsleep ≥ Thard then
7: Idle/soft timeout Tidle = 0
8: Terminate
9: end if
10: Sleep for Tsleep
11: Send a ping and calculate RTT (RTTping)
12: if (RTTping < Tthresh) then
13: Go to 5
14: else
15: T1 = Current system time
16: if (T1 − T0) ≥ Thard then
17: T0 = T1
18: Go to 5
19: else
20: Idle timeout Tidle = Tsleep
21: end if
22: end if

We use the value of Tstep as 50 ms and calculate RTTping
using sleep increments of Tstep to increase the time gap
between successive pings as in Algorithm 1. These RTTping
are compared with Tthresh to detect whether the flow has
expired or not. In case, the flow is not expunged, the process
repeats with an increased value of Tsleep. This is repeated
till the value of Tsleep exceeds the Thard whereby the Algo-
rithm terminates by declaring that no value of Tidle has been
set (lines 6-9, Algorithm 2). In case RTTping exceeds the
Tthresh indicating that the flow has expired, we note the cur-
rent system time as T1 and calculate the total elapsed time
(T1 − T0) since the flow was originally installed. If this total
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elapsed time is equal or more than the Thard , the flow expires
due to the Thard . This happens because we are incrementally
testing for the Tidle.

TElapsed = T0 +
n∑
i=1

(
Tsl−ini + (i)× Tstep) (3)

Example 1: Consider a SDNwith Thard 30 sec, Tidle 15 sec
and Tsleep 3 sec. In Algorithm 2, using Tstep of 50 msec,
the host sends a ping and waits for 3.05 sec before sending
another ping and waits for 3.10 sec. After sending the 2nd
ping (testing for Tidle of 3.10 sec), total elapsed time is
6.15 sec since T0. This relationship is expressed in the form
of Equation 3 where Tsl_ini represents the initial Tsleep. With
10 pings, the total time elapsed will be around 32.75 sec.
At the 11th ping Tsleep will be 3.55 sec that is still less than
Tidle value of 15 sec. However, a new flow is installed by this
ping as the previous entry is removed due to total elapsed
time being greater than Thard . In such a case, we change
the reference time of flow installation and proceed with the
last probed value of Tidle (lines 16-18, Algorithm 2). The
total number of rounds iterations (nrounds) can be found using
Equation 4. Finally, the algorithm terminates when the Tidle,
if set, is found.

nrounds =
TElapsed
Thard

=
T0+

∑n
i=1

(
Tsl−ini+(i)× Tstep)

Thard
(4)

C. COMPUTATION OF Thard GIVEN Tidle
We describe Algorithm 3 to find the Thard given we have dis-
covered Tidle fromAlgorithm 1. In Algorithm 3, host A sleeps
for Tsleep to remove any existing entry in the FET. We use
Tsleep value as 75% of Tidle to avoid the removal of entry
during probing due to Tidle. Host A sends ping and calculates
RTTping to check for new flow installation. After each ping,
current system time T1 is noted and total elapsed time (T1
− T0) is checked. Lines 9 - 11 in Algorithm 3 specifies the
threshold of the range (10 times the value of Tidle). If Thard is
foundwithin this range, total elapsed time (current time− T0)
takes the value of Thard , otherwise it declares the Thard equal
to 0. Similar to Algorithm1, we now fine tune the estimated
value of Thard (lines 17-27, Algorithm 3).

D. FLOW MATCHING RULES
In this module, we detect elements of firewall policy imple-
mented by the controller. The controller allows/blocks instal-
lation of a flow based on certain match fields. Forwarding
mechanism in SDN’s switches is based on these match fields.
Every new packet arriving is matched for certain fields in
already existing flow rules. If matched, then the respective
action specified in the flow rule is applied otherwise, the flow
miss event occurs at the switch and the packet is forwarded
to the controller. The increase in match fields means more
entries are required for uniquely matching the installed cri-
teria. We find out the flow match fields rules that are not
blocked for installation by the controller. In other words,
we find the fields, whose manipulation yields new entries at

Algorithm 3 Find the Hard Timeout Given the Idle Timeout
(Tidle)
1: Sleep for Tidle
2: T0 = Current system time
3: Use Tthresh from Algorithm 1
4: Tsleep = 0.75 * Tidle
5: Sleep for Tsleep
6: Send a ping and calculate RTTping
7: if (RTTping < Tthresh) then
8: T1 = Current system time
9: if (T1 − T0) ≥ (10 ∗ Tidle) then

10: Hard timeout Thard = 0
11: Terminate
12: else
13: Go to 5
14: end if
15: else
16: Hard timeout Thard = Current system time −T0
17: Note current system time as T2
18: while (T2 − T1) < (0.8 * Thard ) do
19: Note current system time as T2
20: Sleep for Tsleep
21: Send a ping
22: end while
23: while (RTTping < Tthresh ) do
24: Send a ping and calculate RTTping
25: Sleep for Tstep
26: end while
27: Hard timeout Thard = Current time −T2
28: end if

the FETs. This information is important when an adversary
consumes the maximum resources of the SDN by installing
as many flows as possible for producing a DoS scenario. The
compromised host first fingerprints the SDN to determine
the allowed/blocked match fields to populate a database of
information about the implemented firewall policy. For effi-
ciency reasons, the blocked match fields are not used while
launching an attack.

Allowed match fields are discovered by comparing RTT
of each new packet with a unique value of a particular match
field and RTTthresh. If that particular match field is allowed,
two different packets with different match fields are classified
as belonging to two different flows based on changed RTTs
due to flow installation. On the other hand, if the flow is
blocked by the controller, a timeout occurs. Note that limited
information can be gathered for blocked flows when there is
only one compromised host in the network (Figure. 1). In this
case, it is hard to determine if a particular flow is blocked
by the controller policy or by the receiving host firewall.
The situation improves when we have access to two hosts
under control whereby it is assured that receiving host has
not blocked any port or any flow at its firewall. Consequently,
it is inferred that whatsoever is being dropped is due to the
controller firewall policy.
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FIGURE 3. Flow chart for match fields fingerprinting.

The actual process of fingerprinting the match fields is
quite straight forward. The host picks a match field and forges
a packet using a random legal value of the match field. The
host now waits and checks whether a new flow has been
installed for this forged packet or not (using RTTthresh). If the
packet is dropped for a value of the match field, the algorithm
marks this value as not allowed. This is followed by choosing
another legal value for the same match field (keeping all
other fields as unmodified). For example, at the transport
layer, we probe for different TCP port numbers (Flow chart
in Fig. 3).

RTT measurements for each matched field depends upon
that particular header field communication behaviour. For
example, RTT for ICMP Ping is calculated on the reception
of the reply sent by the host (Echo Reply). Similarly, in case
of TCP, if the targeted host is listening on a particular port
being probed then SYN + ACK is received in the response
of a SYN packet, while RST + ACK is received otherwise.
However, no response is received if a particular port TCP is
blocked either by the host firewall or by the network policy.
Note that nested matching is also possible. The TCP flag field
is a common example for such a scenario where TCP flag
field is treated as a separate match field along with TCP port
numbers.

OpenFlow [2] has become a de facto standard south-bound
API for communication between the controller and the
switches. In Openflow 1.0, there were only 12 match fields
available. However, the list of supported match fields has
grown to 44 in the latest available version Openflow 1.5. The
provision of existing 44 match fields in OpenFlow 1.5 pro-
vides a lot of flexibility for network applications, however,
these also impose a threat to a SDN deployment. For example,
generally speaking, if a maximum number of 44 match fields
are being used, one might need least effort to overflow the
switch FETs by launching an attack with various protocols
and their unique header values (ports, addresses etc.).

There are match fields that are supported in all versions
of OpenFlow e.g. TCP ports, Ethernet and IP addresses,
to name a few. However, support of few newer match fields
is enabled in specific versions. For instance, MPLS was not
part of OpenFlow 1.0 specifications but has been incorporated

since version 1.1. We looked at the possibility of predict-
ing the OpenFlow version based on supported match fields.
We observed that this prediction is dependent on the match
fields that are employed/enabled in the SDN deployment. The
issue is that any later version can be down-graded to work
in an earlier version mode by switching off the support of
new features making the prediction in-accurate. For example,
MPLSBoS (Bottom of Stack)was introduced as aMatch field
in OpenFlow 1.3 and is also supported by all later versions.
So a network supporting MPLS BoS can be identified as
using OpenFlow 1.3 or any later version. But on the other
hand, if a network has deployed OpenFlow 1.5 and but have
only enabled basic match fields that were introduced in Open-
Flow 1.0 (working in OpenFlow mode 1.0), the prediction
based on match fields can only identify it as version 1.0.

E. CONTROLLER REACTION POLICY
FOR TABLE FULL EVENT
SDN enabled switches has very limited memory to store
entries in FETs. Usually, these switches are equipped with
both hardware flow tables maintained in either Binary or
Ternary content-addressable memory (BCAM or TCAM)
and software flow tables maintained in SDRAM of the
switch. As a rule of thumb, hardware flow tables work at
almost line speed but can support only a few hundreds of flow
rules. If thematching rule is located in the software flow table,
the forwarding performance is degraded by up to two orders
of magnitude [19]. Furthermore, if the FETs are full, the per-
formance degrades further due to extra interactions required
between the switch and the controller to delete/add flows
from the table to accommodate newly arrived requests [11].

In this section, we elaborate our proposed technique to find
the controller reaction policy when a flow arrives at a switch
while its FET is full to the capacity. There are two common
mitigating strategies for dealing with overflowing tables at
switches. The default controller applications do not react to
table full error messages, as they rely upon auto removal
of flow entries through the timeout mechanism. The switch
sends a Packet-In informing the controller about the arrival
of a flow, controller replies with Flow-Mod instructing the
switch to install the flow. At this stage, the switch replies
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FIGURE 4. Mitigating table full scenario.

with Table-Full OpenFlow message to inform the controller
that there is no space left in the FET. The controller does
not respond to this error message and eventually, this flow is
considered as dropped (Figure. 4a). This controller behaviour
is evident when the attacker starts receiving consistent packet
drops within the limits of idle/hard timeouts.

Number of dropped packets (Dp) can be estimated by an
end host using Equation 5, where we represent the packet
forging rate as (rp−g) and total number of entries supported
in a FET by nFE . Similarly, an end host can use Equation 6
to estimate the size of FET, but it can be of any bottle neck
switch between the two corresponding end hosts.

Dp =
(
Thard −

nFE
rp−g

)
× rp−g (5)

nFE =
(
Thard −

Dp
rp−g

)
× rp−g (6)

Another mitigating strategy in which the controller
instructs the switch to remove specific flow(s) whenever it
receives the table full error message and install the new
requested flow (Figure. 4b). The selection of flows to be

removed can be based on port statistics or on match fields or
perhaps the oldest installed flow is removed. Note that in this
strategy, there will be an increased load on the controller as
well as increased RTT due to additional messages exchanged
between the switch and the controller. On a table full event,
switch sends the error message Table-Full to the controller
who now sends the flow deletion message and then finally
sends the Flow-Mod rule to install the new flow resulting in
at least two extra messages (labelled as 5 and 6 in Figure. 4b).
This increased round trip time RTTreinstall is significantly
higher than normal flow installation time RTTFE .
The table full state can thus be inferred from consistent

packet drops (first strategy) or when the RTT of subsequent
packets increases to RTTreinstall in the 2nd strategy. The
attacker can estimate the number of unique flows can be
installed in the FET till the FET is inferred as full. However,
the exact number of flows that can be accommodated at
switches are unpredictable because in a production network
there would be many existing flow entries for supporting
various ongoing communications. Nevertheless, the attacker
would know specifically when its goal of exhausting the
capacity of a switch’s FET has been achieved. The only effort
required from this point onwards would be to sustain the flow
of specific packets to keep the SDN fabric in its current state
of exhaustion.

F. TOPOLOGY DISCOVERY
The information about the network topology of the SDN
is very useful for an attacker enabling the launch of more
effective attacks on the network. On one hand, the attacker
would prefer to target a correspondent host that involves
multiple switches so that controller will have to install flows
at multiple hops. On the other hand, a correspondent node
attached with the same switch as the attacker would be
ideal for quick launch and feedback of the attack. Detailed
information about the network topology would thus enable
the attacker to cherry-pick the target nodes to effectively
overwhelm the FETs of a target switch.

We employ the same difference in RTT technique to learn
about the network topology in this module. As explained
earlier, there is a significant difference in RTT, when a flow
already exists (RTTavg) as compared to when a controller
installs a new flow entry (RTTFE ). This difference increases
further for a path involving multiple switches. For this mod-
ule, we have assumed the well known fat-tree topology
(Figure 5), a special use-case of SDN deployment in data
centres as it provides many redundant links [20]. It consists
of three layers, named as edge layer, aggregation layer and
the core layer. Edge switches are also known as ToR (Top
of Rack) switches. It allows the full bisection bandwidth
(whereby a host gets the full bandwidth of its interface while
communicating with another host) within all hosts of the
same rack. Interconnected ToR switches using aggregation
layer switches only i.e, without involving core layer forms a
pod, as highlighted in dotted squares in Figure. 5
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FIGURE 5. Fat tree topology.

The topology discovery mechanism is based on the obser-
vation that communication between any two hosts in fat-tree
topology involves either one, three or five switches. An in-
rack communication involves one switch only while in-pod
communication involves three switches and inter pod com-
munication involves five switches at the maximum. If an
adversary knows the IP addresses of hosts inside the net-
work (using a network scanning application), it can ping
these hosts and observe their respective RTTs. These hosts
can be sorted into in-rack, in-pod and inter pod groups as
their respective RTTs will have an increasing trend as the
packets are traversing one, three and five switches respec-
tively. Especially, when a new flow is being installed on each
switch, the RTTFE would be a candidate parameter for this
decision making. We have not considered RTTreinstall (table
full scenario) because, to observe the value of RTTreinstall ,
we have to first launch a successful attack on the network.
We comment that there is no point in discovery/re-affirmation
of the network topology at this post-attack stage.

V. PERFORMANCE EVALUATIONS
These experiments are performed on a system with the spec-
ification given in Table 3. Mininet [21] was utilized to run an
emulated networkwhere each node of the network is provided
as a virtual machine with individual Linux kernel enabling
configurable link parameters such as bandwidth. RYU [22]
was used as a SDN controller. Our proposed algorithms have
been implemented in Python. Scapy [23] API is used to write
python scripts for packet forging (for determining flow rules
and flow table size) purpose. We tested on the commonly
used match fields such as IP addresses, Protocol types, MAC
addresses, transport layer protocols (TCP & UDP), Transport
layer port numbers, TCP flags, ICMP, ICMP types and ToS.
Python scripts return the RTT to analyze the flow installation
time, which has been cross checked by a packet analyzer,
Wireshark.We use the topology shown in Figure 1 for discov-
ering the timeouts, flow match rules and controller policy for
table full events, while fat-tree topology (fig.5) was employed
for classification of different hosts.

A. GRANULARITY OF STEP SIZE
In Algorithm 1 (Section IV) selection of step size, Tstep,
affects the performance of the proposed fingerprinting

TABLE 3. System Specification.

FIGURE 6. Granularity of step size in Algorithm 1.

mechanism. Intuitively, the step size is inversely propor-
tional to the overall running cost of these algorithms and
directly proportional to the estimation error in timeouts.
However, the error is also dependent on the actual values
being deployed in the network especially in the case of Thard .
To illustrate this point, let’s suppose a network is using Tidle
as 10 sec and Thard 30 sec with Algorithm 1 implemented
until line 20. If we use step size as 100 msec in Algorithm 1,
within 25 increments the total elapsed time will be 32.5 sec
and the last sleep time will be 2.5 sec. Now the flow entry
will be expunged by the controller due to Thard and host
will detect an error of approximately 2.5 sec. Comparing
this with the case when we choose step size of 125 msec,
within 22 increments the total elapsed time will be 31.625 sec
and the last sleep time will be 2.75 sec resulting in an error
of approximately 1.625 sec. Figure 6 show this relationship
between step size and the error in estimation where the error
is fluctuating depending on the values of Thard and Tstep.
We thus have to introduce additional processing (lines 21-31
in Algorithm 1) to reduce this estimation error resulting in the
error shown in Figure 6 where even the step size of 250 ms is
producing error within 1 sec.

Once the value of Thard is discovered through Algorithm 1,
this value is used again in Algorithm 2 to find the Tidle. The
fingerprinting mechanism also induces error in the estimation
of Tidle as shown in figure 7 where the estimation error for
Tidle values using Tstep of 100 msec is about 200 msec (2%)
that increases to 750 msec for step size of 250 msec (7.5%).
On the other hand, step size has a significant impact on the
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FIGURE 7. Granularity of step size in Algorithm 2 for Tidle.

number of loops i.e., the occurrence of Thard before discover-
ing the Tidle. Note that number of loops when multiplied with
Thard donates the overall simulation time. The reduction in
the number of loops becomes almost flat beyond a step size
of 200ms (Figure 7b).We choose the value of 100ms for Tstep
for rest of our experiments as this value gives a low error in
estimation for both Thard and Tidle with reasonable execution
time based on the number of involved loops.

B. TIMEOUT ESTIMATIONS
We run a set of experiments to ascertain the error in esti-
mation for different combinations of the time out values
given in Table 2. Values reported in these experiments are the
average of five simulations runs with the step size of 100ms.
Figure 8a shows the difference between actual (we used
values ranging between 20ms to 80ms) and estimated timeout
values (using Algorithm 1) for the case when only Thard is
set by the administrator. It highlights different timeout values
and their respective estimated values along with the %age
difference. Algorithm 1 show low estimation error when
discovering the Thard values with the error getting amortized
with higher values of Thard . Figure 8b shows the error in

FIGURE 8. Timeouts discovery using Algorithm 1.

the estimation of Tidle when this timeout value is discovered
by Algorithm 1 (Combination C in Table 2, Thard is set as
0). The experiment was conducted with Tidle values ranging
between 10 sec to 40 sec. The results show the maximum
average estimation error of about 3.4% for the case when Tidle
is being estimated by Algorithm 1 for the actual timeout value
of 10 sec.

The combination D listed in Table 2, where both Thard and
Tidle values are being used in a deployment can be discov-
ered using Algorithm 1 followed by either Algorithm 2 or
Algorithm 3. The actual sequence of algorithms depends on
the ratio between the two timeout values and the Tstep. For
example, let’s consider a scenario where the Tidle is set as
6 sec and Thard is set as 40 sec and the step size is 100 ms.
In this case, a flow entry will be expunged within 28 sec
because total elapsed time would be 40.6 sec, resulting in
the discovery of the Thard value first. A1 will be followed
by Algorithm 2 for the discovery of Tidle. Whereas, if we
change the step size to 750ms than after 8 pings, the flow
entry will be expunged because of Tidle and at that instance
total elapsed time would be 27 sec. So, Algorithm 1 will be
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followed by Algorithm 3 for the discovery of Thard , if that
value exists. Given the normal ranges for the step size, idle
and hard timeouts, it is thus more likely that Thard will be
discovered first by Algorithm 1 rather than the Tidle.
We have considered both combinations of these algo-

rithms and have plotted the estimation error percentage in
Figures 9a and 9b. When Algorithm 1 is followed by Algo-
rithm 2, the value of Thard was set as 60 sec and the Tidle
values were changed between 10 to 40 sec. For the case when
Algorithm 1 is followed by the Algorithm 3, the value of Tidle
was 6 sec and in this case only, Tstep was set at 750mswhereas
in all remaining experiments Tstep was set at 100ms. For these
set of experiments, the maximum average estimation error
was 2.8% for the case when actual Tidle is 10 sec, Thard is
60 sec with a step size of 100ms, resulting in the combination
Algorithm 1 followed by Algorithm 2 (Figure 9b).

FIGURE 9. Timeouts discovery using combinations of Algorithms.

C. CONTROLLER’s REACTION AT TABLE FULL EVENT
We discussed two mitigating policies for controller’s reaction
against table full scenarios (see Section IV-E). In the default
case, where the controller is not taking any action and letting

the new request timeout resulting in packet drops, packets
are not allowed to traverse any further in the network. Other
switches in the path towards the destination thus remain
unaffected. Figure 10 shows a scenario where the table full
events result in 100% packet drops until the Thard (set at
60 sec) starts removing earlier installed flow entries. For
this experiment, we set the switch buffer to accommodate
1024 flows and set the packet generation rate at the host as
45 packets per second resulting in the installation of 90 flows
per second. It can be observed that the FET becomes full
after only 11.3 sec of simulation time. Consequently, 100%
packets were dropped due to table full until Thard started
expunging old flows i.e., after 60 sec since the installation of
first flow in FET. First packet drop interval lasted for almost
48.7 sec (Tdrop) and 2211 packets were dropped. After that
new flows are admitted again for approximately 11.5 sec
i.e., until the table was again full. Packet drops started again
due to full flow table at 71.5 sec. This repeated fashion of
packet drops and new flow installations due to Thard resulted
in about 80% of total packets being dropped.

FIGURE 10. Packet drop in default reaction of the controller to table full
event.

The second available mitigation policy is the flow replace-
ment/swap policy where the controller directs the switch
to remove an earlier installed flow and replace it with the
new request. In this case, the controller’s resources will be
under additional stress although there will be no packet drops.
It affects the performance of the whole network as the RTT of
flow installation messages will increase, due to extra commu-
nications involved in flow removal and new flow installation,
especially if it involves multiple switches between the two
end hosts.

The normal RTT (RTTavg), flow installation RTT (RTTFE )
and flow replacement RTT (RTTreinstall) is shown in
Figure. 11a, 11b and 11c for one, three and five switches
respectively. For three and five switches, the meanRTTreinstall
value is approximately 1.75 times the mean RTTFE . More-
over, in these graphs RTTFE and RTTavg also reflects the
match fields testing i.e., when a new flow entry is being
installed for each forged packet with new header field value
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FIGURE 11. Measurements of different RTTs for different hosts.

and packet with same value when transmitted directly on the
data plane. Each category in each of these plots has been
tested for 100 packets. Flow replacement policy thus affects
the performance of the network, by increasing the RTT.

D. TOPOLOGY DISCOVERY
For the topology discovery module, we employ a fat-tree
topology (Figure 5) that was implemented in the Mininet
and different flows were initiated from a single host to all

FIGURE 12. RTTs comparison for different hosts.

other hosts in the SDN deployment to monitor different types
of RTTs i.e., RTTFE , RTTavg and RTTreinstall . We observed
that differences in RTTavg, when the flow is only utiliz-
ing the data plane, is not a good measure to differentiate
between different neighbours located across the data cen-
tre (Figure 11). On the other hand, RTTFE and RTTreinstall
proved to be reliable metrics to identify the location of the
correspondent hosts. For example, sending packets to a host
located in the same pod results in about 4 times the RTTFE
(average 44 ms) as compared to when the packet is going
through the same rack (average 10.7 ms, going through the
same ToR switch) as shown in Figure 11a. This increased
to 72.6 ms (Figure 11c) when the communication involved
inter-pod communication (traversing a core switch) that is
about 6.7 times the RTTFE for communication with the
same rack neighbour. We also plot the variation in RTTFE
in Figure 12a and RTTreinstall in Figure 12b to illustrate the
differences when flow traverses 1, 3 or 5 switches in the data
center. The results are even better with RTTreinstall being used
as the metric showing clear differentiation for RTT observed
for intra-rack (1 switch), intra-pod (3 switches) and inter-pod
(5 switches) communications. However, to observe the values
of RTTreinstall , we have to first launch an attack to exhaust the
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FET capacity. Topology discovery by launching an attack, at a
belated stage, loses its purpose to help launch an efficient and
targeted attack at the network. These results demonstrate that
it is possible to identify the locations of the hosts, without
launching a FET exhaustion attack, based solely on their
initial flow installation time (RTTFE ).

VI. CONCLUSION & FUTURE WORK
Wehave presented efficient techniques to fingerprint the SDN
allowing the discovery of its implemented policy parameters.
These parameters are of immense importance for an attacker
who can exploit the characteristics of the network to launch
an effective attack to force denial of service conditions. This
research work also provides insight into the modalities of
selecting different policy parameters and its effect on the
resilience of SDN in light of a denial of service attack on
its data plane. In future work, we plan to explore the use
of dynamic policy parameters rather than static parameters.
A network should change its timeout values according to the
traffic load and existing space in the FET. Similarly, if the
FET is full, the controller should reduce the number of match
fields so that more incoming packets match with a single
flow entry. This dynamicity is currently not supported in
OpenFlow and is worth further research.
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