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ABSTRACT Generally, structural uncertainty of the robot dynamics system refers to model error caused
by parameter identification, unstructured uncertainty is the unmodeled dynamic characteristic. No matter
how elaborate modeling methods are used, there always be uncertainty. Therefore, this article applies deep
learning for the first time to aid robot dynamic parameter identification of 6 degrees of freedom robot
manipulator for compensation of uncertain factors. Firstly, the relatively accurate prediction of torque is
obtained by the physical dynamic model using the parameters identification method (errors are less than
10% of the maximum torques). Secondly, we propose a novel deep neural network based approach called
Uncertainty Compensation Model (UCM) to compensate the torque error introduced by the uncertainty.
The UCM mainly composed by proposed Input Control Module (ICM) and Error Learning Models (ELMs)
based on Long-Short-Term Memory and attention mechanism. The proposed ICM, which effectively avoids
the unnecessary interference, is used to control valid input for ELMs. The ELMs, consisted by ELM units,
concern extracting salient features from sequence data to predict the joint error. Also, this article summarizes
the effects of valid input, timestep and attention mechanism on the performance of the UCM. Finally,
the verification of parameter identification and torques compensation is carried out by a Universal Robot
5 manipulator. Compared with the prediction torques of physical dynamic model, the proposed UCM has a
good ability to capture the friction characteristics and compensate for the error of local maximum torques,
which effectively solves the deficiency of the physical dynamics model and improves prediction accuracy
(errors are less than 6% of the maximum torques).

INDEX TERMS Deep learning, inverse dynamics, LSTM, parameter identification, robot, torques compen-
sation.

I. INTRODUCTION
The precise torque prediction of robot is a prerequisite
for precise control of the industrial robot. High-speed and
high-precision motion schemes place higher requirements
on control methods. Meanwhile, accurate identification of
the robot’s dynamic parameters is the key to establishing
a rigid-body dynamic model of the robot and the basis for
achieving high-precision control. Generally, the uncertain
factors of robot dynamics system are divided into structural
and non-structural uncertainties. The errors of identifica-
tion parameter introduce structural uncertainty. Many fac-
tors, such as joint nonlinear damping, friction model design
methods, and noise, are non-structural uncertainty, and to
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express uncertain factors through physical modeling meth-
ods is challenging. Therefore, for general industrial robots,
it is important to develop a reasonable and applicable torque
prediction methods.

Many manufacturers do not provide or partially pro-
vide robot dynamics parameters [1], [2], also, since factor
of manufacturing errors, uneven material distribution and
so on, the dynamic parameters of industrial robots of the
same model may differ. However, due to the complexity of
most robots, it is impractical to measure physical param-
eters directly [3]. Experiments are still the most effective
way to obtain dynamic parameters. Gautier [4] proposed
a dynamic parameter identification method based on the
energy equation and obtained an identification model with-
out joint angular acceleration, which avoids the introduc-
tion of high-frequency noise. The Newton-Euler method,
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which establishes a dynamic equation from the perspective
of force equilibrium, is widely cited [5], and its iterative
properties are conducive to computer implementation. The
dynamic characteristics of the robot are linearly related to
its dynamic parameters laying a theoretical foundation for the
dynamic parameter identification of serial robots.

Generally, non-structural uncertainty is the main factor
that causes inaccurate identification parameters. Zhang et al.
considered the joint stiffness into the dynamic model and
improved the accuracy of identification [6]. The noise dis-
turbs joint angles and currents, and the optimization of the
excitation trajectory can reduce the impact of measurement
noise on identification accuracy. Atkeson et al. proposed a
fifth-order polynomial trajectory as the excitation trajectory
in [7]. The trajectory design method based on the Fourier
series can improve the signal-noise ratio [8], [9]. The com-
mon method for constructing a finite Fourier series trajectory
is based on the minimum condition number of the coefficient
matrix of the linearized dynamic equation [10].

For parameter estimation methods, the least squares
method [11], weighted least squares method [12], and
maximum likelihood estimation method [9] are popular
approaches.Machine learning has the nonlinear fitting ability,
which is used to solve the problem of robot parameter iden-
tification. Wang et al. established a shallow neural network
to identify the dynamic parameters of the reconfigurable
robot [13]. In terms of identification strategy, The one-step
identification method easily overwhelms joint parameters
with small torque coefficients due to joint coupling. The
step-by-step identification method can optimize the iden-
tification process and effectively improve identification
accuracy [12].

Machine learning is a typical research hotspot in the
field of artificial intelligence and pattern recognition.
Polydoros et al. proposed a machine learning algorithm for
online modeling of robot inverse dynamics and implemented
the algorithm for torque calculation on real robots [14]. The
artificial neural network model is one of machine learning,
it learns statistical laws from a large number of training
samples to predict unknown laws. Duc et al. used a neural
network to design a neural network controller that conforms
to the robot dynamic characteristics [15]. Deep learning
exploits the property that many natural signals are composi-
tional hierarchies, where higher-level features are obtained by
composing lower-level ones. Compared with shallow neural
networks, deep learning has better feature learning capabili-
ties and an essential characterization of the data. The training
of deep learning requires a large amount of data, and the
accuracy of the identification depends mostly on the quality
of the data [16]. Recently, some deep learning methods, such
as deep neural networks and recurrent neural networks, have
been applied in the field of robotics. Binyan et al. proposed
the use of deep neural networks to calculate robot dynamics
and performed physical simulations [17].

The recurrent neural network is a kind of deep learning
especially suitable for learning time series data. Time series

prediction can be summarized as the process of extracting
useful information from historical records and determining
future values [18]. The Long-Short-Term Memory (LSTM)
model uses LSTM cells as hidden layers to avoid gradient
disappearance and gradient explosion and solves the problem
that the recurrent neural network cannot handle long-distance
dependencies [19], [20]. Liu et al. established the mapping
between robot joint motion and torque through LSTM tech-
nology to predict the torque based on robot joint motion
and achieved good results [21]. Chaki et al. used simple
recurrent neural networks and LSTM to learn robot dynamics
models and compared them with other regression algorithms,
demonstrating the superiority of LSTM models [22].

Although the deep learning method for torque prediction
effectively improves the torque tracking accuracy, the deep
learning network structure and parameters cannot reflect the
actual physical meaning of the robot system. Meanwhile,
the method of directly establishing a model using neural
networks to achieve high-precision dynamic torque calcula-
tions has not been well solved in the entire reachable state
space of the robot. In robot workspaces that not be trained in
deep learning, torque prediction using only deep learningmay
cause large deviations, leading to fallacious torque prediction.
Moreover, the dynamics with identification parameters only
cannot consider uncertain factors and it is difficult to pre-
dict the torque extremely accurately. However, the physical
dynamics model can avoid the shortcoming of the wrong pre-
dicted torque produced by the neural network in the untrained
workspace.

Focusing on the problem discussed above, the main goal of
this work is to develop a robust method combining dynamic
parameter identification and deep learning model for com-
pensation of uncertainty. Firstly, parameter identification
concerns building a relatively accurate physical dynamics
model, which means the torque error of each joint is less than
10% of the maximum torque and guarantees no large torque
deviation during torque prediction. Secondly, the strong non-
linear fitting ability of deep learning provides the possibil-
ity to consider the uncertainty, which used to establish the
mapping between robot motions and the torque error, thus
the compensated prediction torque approximate the real value
more precise, which mean the compensated torque errors
are less than 6% of the maximum torques. More specifi-
cally, the main contributions of this work are summarized as
follows:
_ We carried out a dynamic parameter identification

experiment on the UR5 manipulator and published the
reference values of its dynamic parameters.

_ We proposed a novel deep neural architecture called
Uncertainty Compensation Model (UCM) to compen-
sate the torque error introduced by the uncertainty,
which has a good ability to capture the friction char-
acteristics and compensate the error of local max-
imum torques and effectively solves the deficiency
of the dynamic model based solely on identification
parameters.
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_ We analyzed the relationship between joints motion and
errors compensation, that is, the effect of valid input
data on the compensation model, and proposed an input
control method, called the Input Control Module (ICM).

_ We summarized the effects of valid input, timestep and
attentionmechanism on the performance of the proposed
UCM.

The rest of this article is organized as follows.
Section 2 introduces the methods of robot dynamic param-
eter identification. Section 3 describes the proposed uncer-
tainty compensation architecture based on deep learning.
Section 4 illustrates the experimental results of dynamic
parameter identification and evaluation of the proposed com-
pensation model and examines the proposed method by a
verification trajectory. Finally, Section 5 summarizes the
conclusions.

II. DYNAMIC MODEL AND IDENTIFICATION
A. DYNAMICS IDENTIFICATION MODEL
The primary purpose of robot dynamics is to achieve real-
time control, and accurate dynamic models and precise
dynamic parameters are the keys. The dynamics of robot can
be expressed by the Lagrange method or the Newton-Euler
method. The Newton-Euler method has high calculation effi-
ciency, and its expression is as follows:

τ = M (q) q̈+H (q, q̇)+ G (q)+ ξ (1)

where q, q̇, q̈ are the vectors of joint position, velocity, and
acceleration, respectively, n represents the degrees of free-
dom (DOF) of a robot. τ is the vector of joint torques,M (q) ∈
Rn×n is the inertia matrix, H (q, q̇) ∈ Rn is the vector of
centrifugal and Coriolis forces, G (q) ∈ Rn is the vector of
gravitational torque or force, ξ ∈ Rn is the offset torques
which denotes uncertain influence factors of dynamic.

Non-linear friction factors are the main factors affecting
the robot’s high-precision motion. The Coulomb viscous fric-
tion model is adopted to the robot dynamics identification
model to represent the effect of friction on robot dynamics:

ξ = fvq̇+ fcsign(q̇)+ ε(q, q̇, q̈) (2)

where fv, fc are viscosity and Coulomb friction coefficient,
respectively, ε(q, q̇, q̈) ∈ Rn represents factors unmodeled in
physical dynamic model.

The inertia parameters affect the robot’s motion per-
formance significantly when the robot is running at high
speed [12], the inertia parameter vector π i of link i can be
expressed as:

π i = (XX i,XY i,XZ i,YY i,YZ i,ZZ i,MXi,MYi,MZ i,

Mi, fvi, fci)T

where (XX i,XY i,XZ i,YY i,YZ i,ZZ i)
T is the inertia tensor of

the link i relative to the origin of the coordinate system i,
MXi,MYi,MZ i is the first-order moment of inertia of the link
i, and Mi is the mass of the link i.

Khalil proposed a method to determine the minimum iner-
tial parameter set of a tree-structured robot in [23]. Since
the link dynamic parameters are redundant to determine
the manipulator dynamic model uniquely, the observation
matrix of inverse dynamic identification model is not often a
full-rank matrix. The minimum inertia parameters set can be
obtained by reducing and eliminating the linear correlation
terms in the observation matrix [12]. The inverse dynamic
identification model is [24]:

τ = 8(q, q̇, q̈)β + ε(q, q̇, q̈) (3)

where 8(q, q̇, q̈) ∈ Rn×m is the observation matrix, m, n are
the number of parameters in the minimum inertia parameter
set and the totality of link, respectively, and β ∈ Rm×1 is the
minimum inertia parameter set.

It is necessary to utilize the excitation trajectory to excite
the robot system continuously. After sampling and processing
the robot position, velocity, and acceleration data (q̂, ˆ̇q, ˆ̈q) at a
specific frequency, these measured data is used to obtain the
linear over-determined equation:

τM = 8M (q̂, ˆ̇q, ˆ̈q)β + ε(q̂, ˆ̇q, ˆ̈q) (4)

where

8M =


8(q (t1) , q̇ (t1) , q̈ (t1))n×m
8(q (t2) , q̇ (t2) , q̈ (t2))n×m

...

8 (q (tN ) , q̇ (tN ) , q̈ (tN ))n×m

 ∈ RNn×m (5)

is the observation matrix and τM ∈ RNn×1 is the measured
torque, ε(q̂, ˆ̇q, ˆ̈q) ∈ RNn×1 is the measured error, N is
the number of sampling points over one period of periodic
trajectory.

B. PARAMETER IDENTIFICATION METHOD OF LEAST
SQUARES
We use the least squares identification method to solve over-
determined equations [5]:

β̂ = min
∥∥∥τM −8M β̂

∥∥∥ = (8T
M8M

)−1
8T
MτM (6)

where β̂ is the predicted base parameter vector, which rep-
resents the identifiable parameters of robot dynamics. The
solution β̂ is validated with the classical base parameter esti-
mationmethod [25]. σ 2

ε is the unbiased estimation of standard
deviation of ε:

σ 2
ε =

1
Nn− m

∥∥∥τM −8M β̂

∥∥∥2 (7)

The covariance matrix of the estimated parameters can be
written as:

C
β̂
= E

[(
β − β̂

) (
β − β̂

)T]
= σ 2

ε (8
T
M8M )

−1
(8)

The standard deviation of the jth parameter is included in the
diagonal element of C

β̂
:

σ
β̂j
=

√
C
β̂
(j, j) (9)
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The relative standard deviation can be expressed as:

σ
β̂jr
% = 100

σ
β̂j∣∣∣β̂j∣∣∣ (10)

C. EXCITATION TRAJECTORY AND SIGNAL PROCESSING
An ideal excitation trajectory can fully excite the dynamic
parameters to improve the identification accuracy. The exci-
tation trajectory of the finite Fourier series is extensively
used [9]:

qi (t)=qi,0+
∑z

k=1

(
ai,k sin

(
kwf t

)
+bi,k cos

(
kwf t

))
(11)

where wf is the fundamental frequency and qi,0 is the offset
of the joint position of excitation trajectories of each joint
qi (t) . The parameters ai,k and bi,k (k = 1, 2, . . . , z) are
the amplitudes of the cosine and sine functions and can
be optimized through minimizing condition number of the
regression matrix 8M .

General industrial robots do not equip torque sensors. The
measured torque is generally obtained indirectly through the
motor current. The relationship between torque and current
is:

τi = KiRiii (12)

where Ki is the motor torque constant, Ri is the transmission
ratio between the motor and the link, ii is the motor current.
Generally, the signals acquired from the robot controller

are the position and speed measurements while the robot
is tracking the planned excitation trajectory. Averaging the
data can increase the signal-to-noise ratio of the data [12],
the average position q̄ can be expressed by:

q̄ (k) =
1
S

∑S

s=1
qs (k) (13)

where S is the totality of cycles of the trajectory, qs(k) is
the k th sampling point of an exciting trajectory, q̄(k) is the
position after averaging. The processing of improving the
signal-noise ratio of speed and current is the same as the pro-
cessing of position data.

We used a zero-phase lowpass Butterworth filter to process
the averaged position and velocity (q̄, ¯̇q), and the acceleration
is obtained by the central difference method. The current
measurement is filtered by the Robust LOcal polynomial
regrESSion (RLOESS) smoother. RLOESS is a regression
method that uses a moving average filter and performs resid-
ual analysis to remove outliers before smoothing.

III. DEEP LEARNING BASED COMPENSATION METHOD
A. LONG SHORT-TERM MEMORY
Time series refers to a series of observations recorded in
chronological order. It is random data formed by one or more
variables at different times, reflecting the development and
change of the phenomenon. LSTM cells control the transmis-
sion of historical information through gate functions, which
has certain time series processing and prediction capabilities.

FIGURE 1. The architecture of the LSTM cell.

The LSTM unit is a particular network structure with three
‘‘gate’’ structures, including ‘‘forget gate,’’ ‘‘input gate,’’ and
‘‘output gate.’’ LSTM cells selectively transmit information
through the ‘‘gate’’ structure to achieve the purpose of con-
trolling information. Figure 1 shows the schematic diagram,
and the following formula expresses the rule of LSTM:

ft = σ (Wf · xt + Uf · ht−1 + bf ) (14)

it = σ (Wi·x t + Ui · ht−1 + bi) (15)

ot = σ (Wo · xt + Uo·ht−1 + bo) (16)

Ct = ft � Ct−1 + it � σ (Wcxt + Ucht−1 + bc) (17)

ht = ot � tanh(ct ) (18)

where ft , it , ot is the output of the forget gate, input gate, and
output gate at the time xt , respectively; Wf , Wi, Wo, Wc is
weight matrix; Uf , Ui, Uo, Uc is the weight matrix of ht−1;
bf , bi, bo, bc is a bias vector, h is the output of the cell unit, C
is used to preserve long-term cell state, called the unit state.
� is the dot product of two vectors. σ (x) and tanh (x) are
the sigmoid activation function and the hyperbolic tangent
activation function, respectively:

σ (x) =
1

1+ ex
(19)

tanh (x) =
ex − e−x

ex + e−x
(20)

The time sequence of robot inverse dynamics shows that
it is more appropriate for learning with LSTM than shallow
network structures to model the correlation of time series
data to predict the joint torque performance [21]. Meanwhile,
theoretically, the longer the timestep size of LSTM, the more
information is mined. However, when the timestep exceeds
a certain length, long-range memory loss and gradient disap-
pearance still occur. This article solves the gradient dispersion
problem by selecting the optimal timestep to extract subse-
quence features more effectively and retain longer effective
memory information.

B. ATTENTION MECHANISMS
The Encoder-Decoder model is popular, which usually
encodes the input sequence into a fixed-length vector rep-
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resentation. For short-length input sequences, the model
can learn a reasonable vector representation, but when the
input sequence is very long, learning a reasonable vector
representation is difficult. The realization of the attention
mechanism is to retain the intermediate output results of the
LSTM encoder on the input sequence, and then train a model
to selectively learn these inputs, and associate the output
sequence with the results of the selective learning when the
model is output. The number of operations required to relate
signals from two arbitrary input or output positions grows in
the distance between positions, This makes it more difficult
to learn dependencies between distant positions. Attention
mechanisms allow modeling of dependency without regard
to their distance in the input or output sequences [26].

A traditional LSTM is applied as the decoder. The hidden
states of the decoder denote s, the hidden state st generated
by the t th decoder cell is computed by:

st = LSTM(wt , st−1,Vt ) (21)

wherewt is the input vector, st−1 is the hidden state generated
by the last decoder cell. Vt is a weighted sum of hidden states
{h1, h2, . . . , hN }:

Vt =
∑N

u=1
αuhu (22)

where αu is the weight of the hidden layer state of historical
input to the current input, which is expressed by:

αu =
exp (eu)∑N
i=1 exp (ei)

(23)

where the attention function eu is computed as:

eu = wTa tanh(Wsst−1 +Whhu + ba) (24)

where wa, Ws, Wh and ba are the parameters to be learned in
the attention layer.

The selection of the input sequence is the focus of atten-
tion when using the LSTM method for prediction. Without
considering the degree of influence of the input sequence on
the prediction result, this inevitably reduces the accuracy of
the prediction. The Attention mechanism is introduced based
on the LSTM model to focus on data sequences that have a
key impact on the prediction results. Applying the attention
mechanism to the proposed UCM effectively highlight the
data that has a key impact on the prediction accuracy, thereby
improving the prediction accuracy.

C. PROPOSED INPUT CONTROL MODULE
By deriving the robot dynamics expression, we found that
due to the coupling of the dynamics of the tandem manip-
ulator, the identification model of joint i includes not only
the dynamic parameters π i of joint i, but also the dynamic
parameters π i+1, . . . ,πn of joints i + 1, . . . , n. Therefore,
typical characteristics of tandem robot dynamics are (1) the
dynamic parameters of the joint i away from the pedestal
influence the torque of joint 1, . . . , i − 1, but do not affect
the motion of its front joint; (2) the joint i near the pedestal

has an effect on the motion of joint i + 1, . . . , n, but its
dynamic parameters have no effect on the torque of the joint
behind it. From the above conclusion, we infer that in terms
of joint uncertainty compensation, the motion characteristics
(position, speed and acceleration) of the joint i+1, . . . , n are
strongly related to the uncertainty compensation of the joint i,
however, the motion characteristics of joint i are weakly
related or irrelevant to the uncertainty compensation of the
joint motion of joint i+ 1, . . . , n.

Focusing on the above analysis, we have devised a novel
Input Control Module (ICM), which is located before the
proposed Error Learning Model (ELM) to control the valid
input to participate in model training, that is, the motion
characteristics of joint i, i+ 1, . . . , n join in model learning,
when the training target is joint i. Figure 2 shows the proposed
uncertainty compensation architecture, which contains the
principle of ICM. More specifically, when predicting the
torque error of the joint 6, the input motion characteristics are
the position, velocity, and acceleration of the joint 6. When
predicting the torque error of the joint 5, the input motion
characteristics are the position, velocity, and acceleration of
joints 5 and 6, and so on. The selection of effective input data
by ICM avoids the unnecessary interference of themodel, and
improves the ability of model’s uncertainty compensation.

In the following section, we compared the prediction effect
of the torque error when predicting the joint i by inputting
the motion information of (1) only the joint i, (2) full input
(18 in total for 6-DOFmanipulator) and (3) the proposed ICM
method, to verify the effectiveness of the proposed method.

D. PROPOSED UNCERTAINTY COMPENSATION MODEL
Based on the problem caused by the uncertain factors of
robot dynamics system, this article aims at proposing an
uncertainty compensation architecture to predict the torque
error caused by uncertainty, which is the torque tracking
deviation reflected in high-quality control. The proposed
UCM is composed by four components: motion characteristic
input layer, ICM layer, ELMs layer and output layer. The
specific description of ICM is in Section III.C. The ELMs,
consisted by the ELM unit, are the error-learning models
based on LSTM and attention mechanism, which concern
building an effective mapping of the motion features (output
of ICM) and joint torque deviation. The input of ELM unit
is determined by ICM, and it has only one output, which is
the predicted error value of the target joint. The outputs of
the six ELMs correspond to the predicted error values of the
six joints of the manipulator. Figure 2 shows the proposed
uncertainty compensation architecture and Figure 3 depicts
the detailed network architecture of the ELM unit model.
The ELM unit model is divided into three layers: encoder
layer, re-encoder with attention mechanism layer, and out-
put layer. Specifically, we import the data from ICM into
the LSTM to extract the characteristics of the interactive
relationship between each timestep, and the output of all
timesteps constitutes a new sequence representation related
to the original data. Compared with the original data, the new
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FIGURE 2. The proposed uncertainty compensation architecture.

FIGURE 3. The detailed network architecture of the ELM unit model.

representation contains richer time-related data features. The
next step is the processing of the re-encoder layer based on the
attention mechanism. The output obtained from the encoder
layer is used to obtain a new sequence representation with
attention weight through an inner product function operation.
The attention mechanism makes the model pay attention to
the input that has a greater impact on the result prediction.
After obtaining a new sequence representation with attention
weight, it is merged with the input from the encoder layer and

input into the LSTM to further extract attention-based data
features. Finally, the outcome of the re-encoder layer is the
output layer, which is a fully connected layer, and the final
prediction result is obtained.

The experimentally measured data, which are the joint
motion characteristics (position, speed and acceleration of six
joint) and torque errors (measured torque minus predicted
torque calculated by dynamic physical model) at a given
timestep, is divided into a training set and a test set. The
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FIGURE 4. The UR5 robot and its link coordinate system.

TABLE 1. The D-H parameters of UR5.

Back-propagation Through Time algorithm is used to validate
the torque error compensation capability of the proposed deep
neural network architecture.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL PLATFORM
UR5 is a human-robot collaborative robot with six rotating
joints; Figure 4 shows its real structure and the link coor-
dinate system. We define the position variable of joint i
is θi. Table 1 gives the specifications of the links and the
D-H coordinate system. The range of every joint rotation
angle of UR5 is [−360, 360] (unit: deg), and every joint
acceleration range is [0, 180] (unit: deg/s2). The UR5 is
very popular in robot research, but the manufacturer has not
publicly provided researchers with a complete and reliable
dynamic model and its specific parameters. Unfortunately,
the established dynamic model and identified parameters
values of UR5 have not been found in the existing study, it is
not straightforward to learn the research results.

B. SYMBOLIZATION OF BASIC PARAMETERS
The dynamic parameters of an industrial robot can be clas-
sified into three groups: unidentifiable, identifiable parame-
ters in linear combinations, and fully identifiable. Since the
dynamics parameters are redundant to determine the manip-
ulator dynamic model uniquely, it is impossible to estimate
all the dynamic parameters value of a robot [27]. Besides,
when the observation matrix is not often a full-rank matrix,

the solution of the least squares method is not unique. The
minimum inertia parameter is the only identifiable parame-
ter, and the use of basic inertia parameters in the Newton-
Euler dynamics algorithm can effectively reduce calculations.
UR5 has 72 parameters in total, and 48 identifiable parame-
ters are obtained by eliminating the unidentifiable parameters
and reorganizing them. Table 2 lists the minimum parame-
ter set of the UR5, where the ‘‘—’’ are the unidentifiable
parameters, and Table 3 gives the symbolic expressions of
restructured parameters.

C. DATA COLLECTION AND PROCESSING
According to the classification of the robot’s link weight,
the three links with large self-weight are called the first
three links, and the three links with small self-weight are
called the last three links. The step-by-step identification
method can effectively improve the identification accuracy
of the last three links [28]. Assume the sampling frequency
of the joint state is ws and the fundamental frequency of the
trajectories is wf , the collected samples over one period is
ws/wf . In both identification experiments, we operated the
manipulator to execute eight times according to the refer-
ence trajectory and collect the data synchronously. We chose
the fundamental frequency wf of the step-by-step excitation
trajectory as 2/65 Hz and 1/30 Hz, respectively. In addition,
we collected the joint position, velocity, and current infor-
mation at a sampling frequency ws of 100 Hz and obtained
3,250 samples and 3,000 samples respectively. According
to (13), the time-domain average processing is performed on
the collected data to improve the accuracy of the sampled
data.

The measurements of position q̂ and velocity ˆ̇q were pro-
cessed with forward and reverse IIR Butterworth filters, using
10 Hz cut-off low-pass frequency. The joint acceleration ˆ̈q
was calculated by using a central difference algorithm.

The motor current of each joint is multiplied with the
motor torque constant and gear ratio, and RLOESS analysis
processing using the smooth function of MATLAB to obtain
the torque of each joint of the UR5. In terms of physical
parameters: motor torque constant is Ki = 0.125Nm/A, i =
1, · · · , 3; Ki = 0.0922Nm/A, i = 4, · · · , 6; gear ratio:
Ri = 101, i = 1, · · · , 6.

D. PARAMETERS ESTIMATION
Based on the experimental data and the identification model
of robot inverse dynamics, we performed parameter iden-
tification of the UR5. Increasing the number of sampling
points of the observation matrix of the inverse dynamics
identification equation can effectively improve the identifi-
cation accuracy. According to the description in Section II.B,
the least squares method is used for numerical identification
of dynamic parameters. β̂ is the identification value of the
basic inertia parameter; σ

β̂jr
% is the relative standard devia-

tion of the identified value, the smaller the value of the rel-
ative standard deviation, the more accurate the identification
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TABLE 2. Simplified base inertial parameters of UR5 robot, where the ‘‘—’’ are the unidentifiable parameters.

TABLE 3. Symbolic expressions of restructured parameters.

result. Table 4 lists parameter identification values and rela-
tive standard deviations.

Figure 5 shows the predicted torques of the physical model
and real torques and their errors. The black line is the mea-
sured torque, the red dotted line is the predicted torque of the
physical model, and the blue dotted line is the error. The root
mean square error (RMSE) of the measured torque τm and the
predicted torque τp of the identified trajectory is calculated
to verify the deviation of the predicted torque. The RMSE is
defined as follows:

RMSE =

√
1
K

∑K

k
(τm,k − τp,k )

2 (25)

where τm,k is the actual torque value of the k th point, τp,k
is the k th predicted torque point, K is the total number of
measurement data. According to the calculation of exper-
imental data, the RMSE of the identification trajectory of
joints 1, 2, 3 is 2.763 Nm, 2.843 Nm, 2.575 Nm, the RMSE

of the identification trajectory of joints 4, 5, 6 is 0.307 Nm,
0.408 Nm and 0.407 Nm, respectively.

E. PROPOSED UNCERTAINTY COMPENSATION MODEL
VERIFICATION
In this section, we focus on verifying the performance of the
proposed deep learning model architecture based on LSTM
and attention mechanism in robot uncertainties compensa-
tion. First, to demonstrate the proposed approach robustness,
we compare it with the shallow fully-connected neural net-
works model. Then, we show how the proposed model for
predict torque compensation can be enhanced by the influ-
ence of (1) valid input, (2) the timestep and (3) the attention
mechanism.

To capture rich non-linear relationships, a large number
of samples are needed as the data support for training deep
learning networks [29]. In an ideal case, the dataset contains
all possible motion conditions of the robot. However, due to
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FIGURE 5. The comparison of predicted and measured torques with the given identification trajectory.

the high-dimensional state space in which the robot motion,
it is often impossible to obtain such a rich data set. Shareef
et al. selected eleven parameterized sine trajectories in the
model space for independent joint learning of robot inverse
dynamics [30]. Peter et al. proposed training a large number
of different trajectories to increase the generalization ability
of the model [31].‘

According to the robot’s rotation angle and installation
restrictions, the selected robot workspace is a hemisphere
with an approximate radius of 850 mm above the installation
plane; Table 5 lists the range of joint motion. We chose
1,000 points in the selected robot workspace in a rhythmic,
discontinuous motion method to make it close to the actual
working conditions. The joint speed range is 2.0-3.0 rad/s,
the acceleration range is 2.2-3.0 rad/s2, the selection range of
joint speed and acceleration covers the high-speed operating
requirements of the robot. The distribution of training sam-
ples in the system state space and data processing methods
impact on the generalization ability of the network. Features
that cannot be learned must be eliminated, such as noise and
high-frequency vibrations; otherwise, the learning of basic
features will be disturbed, and accuracy will be reduced.
We collected the position, speed, and current information of
the robot at a frequency of 60 Hz. A total of 154440 valid
samples were obtained as the training data set after sign pro-
cess consistent with the identification procedure. According
to a ratio of 80%−20% [22], we divided the sample data into
a training set and a test set for deep learning cross-training.
Each sample of the training and test dataset contains 24 pieces

of information: eighteen input data (six joint positions, six
joint speeds, and six joint accelerations of manipulator), and
six output data (six torque errors of manipulator). When input
data participates in model training, the input data is selected
by the ICM. All input and output data are normalized to
perform proportional scaling to improve model accuracy and
convergence speed. The normalized formula is as follows:

xR =
xr − xmin
xmax − xmin

(26)

where xr is the true value of the data, xmin and xmax are
the minimum and maximum values in the data, xR is the
normalized value.

We compared the network with three fully-connected lay-
ers and three-layer network one of which is LSTM to verify
the superiority of LSTM in predicting dynamic time series
data. The ICM determines the number of input layer nodes,
and one output data, which is predict error of target joint,
determines the number of output layer node. We changed
the number of nodes of a single hidden layer to prove the
capability of the neural network and LSTM and its evaluation
index is the RMSE of target joint error. Figure 6 shows the
prediction ability of the fully-connected neural network and
LSTM of joint 1. As the number of nodes in the hidden layer
increases, the RMSE of the three fully-connected layers is
decreasing and the RMSE of three-layer network with LSTM
declined first and then stabilized. Overall, when using differ-
ent hidden node to predict the performance of fully-connected
network and LSTM, the torque compensation effect of the
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TABLE 4. The values of estimated base parameters of UR5.

former is always worse than the latter. Here, we only give the
comparison results of joint 1 and the performance of other
joints is similar, that is the performance of the LSTM is better
than the full-connected shallow neural network in predicting
time series data, we do not repeat the description.

TABLE 5. Rotation range of each joint in the selected robot workspace.

FIGURE 6. The prediction ability of the full-connected neural network and
LSTM of joint 1.

We used 5-fold cross-validation to verify the proposed
deep learning architecture for uncertainty compensation. The
method divides the sample data into five parts, turns four
of them into training data, and takes the remaining one as
test data. The average of the five predicted results of the test
set is used as a performance indicator of model prediction
accuracy to achieve the purpose of making full use of the data
and making the experimental results objective. We changed
the valid input, timestep and network structure to examine
the performance of the proposed network, and the RMSE
of the torque prediction of the test set is used as a criterion
for evaluating the training network ability. The number of
LSTM nodes in the encoder layer and the re-encoder layer
are both 128, Solver Adam [32] was used to optimize the
loss function, the learning rate was 0.05, and the dropout [33]
value was 0.5. We chose the hyper-parameters with which the
model performed best. We train the network by changing the
number of valid input (e.g., input after ICM, three input for
each joint, and eighteen input for each joint) and the timestep
(e.g., 2,3,5 and 10) to get the greater parameters by comparing
the training results of different variable. Figure 7 shows the
predicted results of six joints of the test set, which reflects
the impact of changes of valid input and timestep on the
performance of the proposed UCM.

In the five-fold cross-validation, the torque errors of the
selected test set without torque compensation are 3.112 Nm,
2.958 Nm, 2.633 Nm, 0.417 Nm, 0.457 Nm and 0.444 Nm,
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FIGURE 7. The impact of changes of valid input and timestep on the performance of the proposed UCM.

respectively for six joint, which is the highest bar in Figure 8.
Relatively, after compensated by the optimal model, which
contains an attention mechanism, the timestep is 3, and the
input data is processed by ICM, the torque errors of the
six joints are 1.463 Nm, 1.671 Nm, 1.253 Nm, 0.293 Nm,
0.286 Nm and 0.265 Nm, respectively, which are shown
in Table 6. The experiments verified: (1) Compared with
training result of input after processing of ICM, the RMSE
of each joint with eighteen input gradually increases from
joint 1 to joint 6. Also, compared with input after ICM,
the RMSE of each joint with three input gradually decreases
from joint 1 to joint 6. The training results of the input data
after ICMhave the best performance. The above phenomenon
shows that as the joints 1, 2, . . . , 6 gradually away from
the pedestal of tandem manipulator, the effective input for
compensation model training gradually decreases. For the
first joint close to the pedestal, the performance is best when
the input is 18 and the input is from the ICM (the above two
inputs actually are the same), and the worst is when the input
is 3. However, for the sixth joint away from the pedestal,
the performance is best when the input is 3 and the input
is from ICM (in fact, the two input are the same), and the
performance is the worst when the input is 18. The result
of the above comparison is an effective verification of the
proposed ICM theory. (2) Participating in model training with
multiple timesteps obtain rich data features from different

timestep data. However, when the timestep exceeds a certain
length, long-distance memory loss will occur. We set the
timestep size to 2, 3, 5, and 10 for model training to examine
the effect of timestep on the proposed model performance.
The experimental results show that the training effect is better
when the time step is 3, which shows that the compensation
model with a timestep of 3 has a stronger ability to capture the
information features of the sequence, and when the timestep
is too long, information loss occur. (3) The proposed UCM
to aid the manipulator’s torque error compensation has good
results, which effectively reduces the deviation between the
predicted torque and the real torque, and the specific error
features that the model can capture will be verified in the next
section.

Besides, there are differences in the importance of fea-
tures in short subsequences of long sequences, and important
salient features often contain more information. If the LSTM
is given the ability to pay attention to important features,
it can better achieve the effective extraction of short-term
models and the optimization of input information. We chose
the network structure with the best performance to verify the
superiority of the attentionmechanism by comparing the deep
network with or without attention mechanism. Experimental
results are given in Table 6, which indicates that the model
with attention mechanism has a better ability to capture data
features and improve prediction effect.
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FIGURE 8. The comparison of the measured torques, predicted torques by physical model called predicted torque 1 and compensated torques of physical
model called predicted torque 2 with the verified trajectory.

TABLE 6. Uncompensated RMSE and whether the optimal model with
attention mechanism compensated RMSE of the test set. (units: Nm).

In conclusion, experiments show, LSTM-based deep learn-
ing architecture performs better than shallow neural networks
in predicting accuracy, proving the time series characteristics
of dynamics are more suitable for prediction with LSTM. The
predicted accuracy is distinct when the selected training set
and test set are different, which shows that it is necessary
to increase the objectivity of predicted results through cross-
training. Also, the selection of effective input data avoids the

model unnecessary interference and improves the accuracy of
model prediction. Then, a reasonable timestep can improve
the ability to capture data features and avoid remote memory
loss. Moreover, the attention mechanism achieves an efficient
allocation of data resources, highlights important features in
the data, and enhances the model’s capabilities.

F. TRAJECTORY VERIFICATION OF THE PROPOSED
UNCERTAINTY COMPENSATION METHOD
We designed a new trajectory different from the identifica-
tion trajectory [12] to verify the results of robot dynamic
parameter identification and the effect of the proposed UCM.
The verification trajectory ran at high-speed state with a
speed range of 2.0-3.0 rad/s, the working time is 42.5 s,
and the sampling frequency is 100 Hz. Figure 8 compares
the measured torques, predicted torques by physical model
called predicted torque 1 in figure and compensated torques
of physical model called predicted torque 2 in figure with the
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FIGURE 9. The comparison of measured errors between predicted torques calculated by physical dynamic model and measured torques and predicted
errors after the UCM of verified trajectory.

verified trajectory. The black, blue, red lines are the above
torque representation respectively and the green line denotes
error of between measured torque and predicted torque 2,
meanwhile, parts (A.) and (B.) of each joint are enlarged area
of the torque comparison graph.We verified the identification
result by the relative error percentage of the verification
trajectory, which is defined as:

εr =

∥∥τm − τp∥∥
‖τm‖

× 100% (27)

where τm is the actual torque, τp represents the predicted
torque of the physical dynamic model.

Table 7 summarizes the relative error percentage of the
identification trajectory torque and the verification trajectory
torque. As shown, both solutions present values of relative
error identified for identification trajectory are less than 8%,
and the relative error of the verified trajectory is 8.84%,which
proves the good identification parameter value [34]. Mean-
while, the relative error percentage of the verified trajectory

TABLE 7. Percentage of relative errors of predicted torques for
identification and validation trajectories.

after compensation is only 4.75%, which is significantly
lower than 8.84% of the trajectory without error compensa-
tion, which proves that the proposed uncertainty compensa-
tion method has a good performance.

Under the premise of accurate modeling of dynamics,
there always be errors due to the uncertainties that include
unmodeled factors and the inaccuracy of the identification
parameters. There are twomain reasons of the torque tracking
error of the physical model: (1) Friction is a particularly
complex non-linear phenomenon, and accurate modeling for
its characteristics has always been a problem in high-quality
motion control, which cause the peak of error due to wave-
form distortion when the joint velocity passes through zero,
for example, this phenomenon is shown in [5], [12]. The
design of the friction compensation algorithm is of great sig-
nificance to improve the robot’s motion performance; (2) The
tracking error of local maximum torque occurs when the joint
acceleration crosses zero. Due to the large change of the joint
inertia and the strong coupling at high speed, the uncertainty
error is obvious, and the error of local maximum torque is
particularly significant.

The proposed UCM has a good ability to capture the phys-
ical effect of the error peak caused by friction, specifically,
the image of in the verified trajectory has an area where the
friction compensation phenomena is magnified and shown in
part (A.) of each joint of Figure 8. The blue line in part (A.)
represent the inadequate modeling of friction in the physical
dynamics model, which is the inherent defect of physical
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TABLE 8. The RMSE of the only physical model and after torque compensation. (units: Nm).

model and leads to inevitable sudden torque changeswhen the
joint changes direction. Meanwhile, the effect of local maxi-
mum torque error caused by the strong coupling in high-speed
motion when the joint’s acceleration crosses zero is shown
in (B.) of each joint of Figure 8. The other compensation parts
of friction and error of local maximum torque in the figure are
similar to the effect of the enlargement. And, Figure 9 shows
the measured error and predicted error, where the predicted
errors calculated by the proposed UCM are shown using the
red line, the blue line represent the measured errors between
predicted torques calculated by the physical dynamic model
and measured torques. It can be seen that the proposed UCM
model has a good performance in compensating friction
and local maximum torque errors. In detail, when the joint
changes direction, the torque mutation after compensation
(red line in part (A.)) becomes small or disappears, which
makes predicted torque after compensation closer to the mea-
sured torque (black line in part (A.)). Moreover, the proposed
method makes the compensated predicted torque (red line in
part (B.)) close to the real torque (black line in part (B.)) at
the local maximum torque. However, comparing with the first
three joints, some degradation occurs owing to smaller torque
and error values, since inertial parameters are relatively small
and the insignificant change in error value makes the error
feature more difficult to capture than the first three links with
large weight. The specific evaluation is reflected in Table 8,
which represents the RMSE of each joint and the percentage
of error torque in the maximum torque of the verification
trajectory. It can be inferred that for the first three joints the
RMSE after compensation are below 2 Nm, they account for
about 3% of the maximum torque, which has an outstand-
ing torque tracking effect than the 7% before compensation.
For the last three joints, the RMSE after compensation are
below 0.3 Nm, which size about 5% of the maximum torque
and perform better than 9% before compensation. Overall,
the compensation effect is obvious and the above results ver-
ified the effectiveness of the proposed method in considering
uncertainties and improved the accuracy of torque prediction.

V. CONCLUSION
In order to obtain accurately predicted torque, this article
applies deep learning for the first time to aid robot dynamic
parameter identification of 6 degrees of freedom robot manip-
ulator for compensation of uncertain factors, which is the
source of robot torque tracking error. We introduced a robust

and generic uncertainty compensation model that relies on
proposed Input Control Module (ICM), Error Learning Mod-
els (ELMs) based on Long-Short-TermMemory and attention
mechanism, which is able to perform well on solving the
main problem of robot torque error, specifically, that is the
difficulty of capturing the friction characteristics and com-
pensating the error of local maximum torques. The proposed
ICM can select valid input and reduce the unnecessary inter-
ference for ELMs. And, the ELMs, consisted by ELM units,
concern establishing the mapping of the motion feature and
joint torque deviation to compensate the joint error. More-
over, we summarized the effects of valid input, the timestep
and attention mechanism on the performance of the proposed
compensation model. We launched an experiment on the
UR5 manipulator and published the reference values of its
identifiable dynamic parameters. Meanwhile, we carried out
a comprehensive evaluation of the verification trajectories of
six joints, which prove the reliability of identified parame-
ters and the validity of above proposed models. Overall, our
experimental results have shown the robustness and effective-
ness of the proposed method for uncertainty compensation.
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