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ABSTRACT In this paper, an intelligent adaptive jerk control (IAJC)with dynamic compensation gain for the
permanent magnet linear synchronous motor (PMLSM) servo system was proposed to improve robustness
and tracking performance against nonlinear and time-varying uncertainties. First, the dynamic model of the
PMLSM servo system was investigated. Subsequently, the model-based feedforward control was designed
for parametric uncertainties. Then, an adaptive jerk control (AJC) was adopted to restrain external load
disturbance, nonlinear friction and unmodeled dynamics of the servo system. The adaptive feedback gain
of jerk was updated by an exponential function. However, the uncertainties of the PMLSM servo system
were unavailable in advance, it was difficult to design the adaptive feedback gain in practice. Thus, in the
following part, the IAJC was further developed in which a dynamic compensation gain was designed using
a double-loop recurrent feature selection fuzzy neural network (RFSFNN) to compensate for approximation
deviation and suppress the chattering phenomenon. The learning algorithms of the double-loop RFSFNN
were derived and the stability of the closed-loop system was proved by the Lyapunov approach. Finally,
the experimental results demonstrate that the proposed IAC scheme can achieve robust precise tracking
performance.

INDEX TERMS Intelligent adaptive jerk control, permanent magnet linear synchronous motor, fuzzy neural
network, chattering, robustness.

I. INTRODUCTION
The direct-drive systems have been adopted in many
high-performance applications, examples like industrial
robots, XY driving devices, CNC machine tools, and
two-dimensional micro/nano manufacturing, by virtue of
its directly transfer electrical power to mechanical force
[1]–[3]. Among these applications, the permanent magnet
linear synchronous motor (PMLSM) can achieve higher effi-
ciency, lower thermal losses, better positioning accuracy,
and quicker response because the mechanical reduction and
transmission parts do not need. Moreover, the nonlinear
control performance of the PMLSM servo system can be
improved by the vector control theory. Thus, the PMLSM
becomes a viable alternative to replace the rotary actuator.
However, with the lack of transmission parts, external load
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disturbance, nonlinear friction, parametric uncertainties, and
unmodeled dynamics in the PMLSM servo system gradually
become the main obstacles in the design of the control sys-
tem [4]. Additionally, the high-performance application of
the PMLSM is confined by the nonlinear and time-varying
control characteristics. Therefore, it is imperative to adopt
a scheme to meet the requirements in the PMLSM servo
system.

In the past decade, plenty of compensation methods and
observation methods for the linear motor were presented
in the literatures. In [5] and [6], the LuGre model and
the DNLRX model were presented to cope with the fric-
tion force, respectively. In addition, an adaptive observer
attenuated periodic disturbances for each repetitive period
in [7]. Moreover, dual-relay feedback approaches were
obtained to compensate for the friction force model in [8]
and [9]. An online tuning adaptive speed and position con-
trollers were developed to achieve the performance in control
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applications in [10]. However, it is only true when the pre-
cise dynamic models of the PMLSM were obtained in these
developments.

Typically, sliding mode control (SMC) is a powerful tool
which provides enough robustness in different applications
mitigates the effect of certain disturbances and system uncer-
tainties when the trajectory reaches and switches on the slid-
ing surface [11], [12]. But the control method often leads to
chattering phenomenon caused by the signum function and
large switching control gain, which excites high-frequency
mode. In addition, the chattering phenomenon makes the
control efforts switch back and forth, which may waste
energy and damage the servo system. To overcome this
problem, researchers look beyond the traditional SMC for
some advanced versions. In [13], [14], saturation function,
instead of signum function, was in the part of switching
laws. Complementary sliding mode control (CSMC) was
provided with favorable tracking accuracy in [15], [16].
Moreover, a discrete SMC combined with an incremental
PID control was designed for high-speed micro manipulation
in [17]. The fractional-order strategy was employed in the
SMC system to improve the control performances in [18].
However, the above methods cannot change the structure of
SMC, which is a discontinuous control in essence. Therefore,
it is important to develop a continuous control scheme that
balances the relationship between robustness and chattering.

Recently, a developed control scheme referred as robust
integral of the sign of the error (RISE), utilized the integral
of the signum term to the jerk of the control as opposed
to control signal used in sliding mode directly, was pro-
posed in [19]–[21]. RISE feedback control is originated
from super twisting sliding mode control. As long as the
matched additive disturbance is smooth enough with known
bounds of its time derivatives, the RISE feedback control can
achieve asymptotic tracking performance [22]–[25]. More
importantly, the resulting control effort is always keeping
continuous. In industrial applications, jerk reflects the change
in acceleration. In order to achieve high-speed machining,
it is required to increase the feed rate in the presence of
uncertainties. Recent studies have focused on developments
in the feedback gain of the jerk [26]–[28]. In [26], the feed-
back gain was chosen as a constant. The large-gain feedback
could improve the convergence rate, however, it also caused
the chattering phenomenon. In [27], an adaptive robust gain
was designed to handle the uncertainties, but the results
showed that the efficiencies were unfavorable due to the
single adaptive law. In [28], the feedback gain was estimated
by the multiple adaptive laws, but the approximation devi-
ation due to the system uncertainties remains unavoidably,
which the system cannot bear. In order to design a judicious
feedback gain, a compensator should be developed to handle
the approximation deviation.

A fuzzy neural network (FNN), which combined fuzzy
mechanism with neural network, has been successfully
employed as a universal compensator in intelligent control
technique. FNN can learn from the process with the capability

for identification and present high accuracy to deal with the
nonlinearities and uncertainties [29]–[31]. In [32], the struc-
tures of the recurrent fuzzy neural network (RFNN) retained
superior dynamic ability than simple type. However, the
issues of the huge computational burden of the RFNN system
have been highly concerned [33], [34]. Besides, it is well
known that all features that characterize a data point may
not usually be equally important when FNN approximates
any continuous function [35], [36]. Hence, to alleviate the
computational complexity, it is essential to select favorable
feature for the simplicity, identification, and efficiency of the
FNN.

The motivation of this paper is to design an intelligent
adaptive jerk control scheme (IAJC) for the PMLSM servo
system with robustness and high-precision accuracy. The
unknown parameters are estimated via the model-based feed-
forward and the unmodeled disturbances are compensated via
RISE feedback with the jerk adaptation, meanwhile ensuring
the continuity of the control effort. The main contributions of
this paper are listed as follows:

1) A novel exponential adaptive law is designed to
the adaptive feedback gain, which effectively reduce the
large-gain feedback and control chattering problem of the jerk
control. The convergence speed of the exponential adaptive
law satisfies the fast convergence requirement.

2) Since it is difficult to determine the approximated
error of the adaptive feedback gain in real applications.
In this paper, a dynamic compensation gain is improved via a
double-loop recurrent feature selection fuzzy neural network
(RFSFNN).

3) The recurrent feature selection neurons are added in the
membership layer and the double feedback loop structure is
developed for the neural network.

II. MODELING FOR PMLSM
A. DYNAMICS OF PMLSM
The mathematical modeling of the PMLSM, which is
described in the synchronously rotating reference frame,
can be found in [16] and [29]. The electromagnetic thrust
dynamic of the PMSLM is expressed as

Fe =
3
2
·
Pn
2
·
π

τ

[
ψf i∗q +

(
Ld − Lq

)
i∗d i
∗
q

]
(1)

where Fe is the electromagnetic thrust; Pn is the number of
pole pairs; τ is the pole pitch; ψf is the permanent magnet
flux linkage; Ld and Lq are the d-q axis stator inductances; i∗d
is the flux current command and i∗q is the thrust current com-
mand. Then, setting i∗d as zero for the field-oriented control,
the electromagnetic force can be simplified as follows [32]

Fe = Kf i∗q (2)

Kf =
3
2
· Pn ·

π

τ
· ψf (3)

where Kf is the thrust coefficient.
The dynamic equation of the mover motion with

disturbance can be expressed by
(M +1M) ẍ + (B+1B) ẋ = Fe − F (4)
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FIGURE 1. Block diagram of the proposed control scheme for PMLSM servo system.

where ẍ is the acceleration and ẋ is the velocity respectively.
M is the total mass of the mover and B is the viscous friction
coefficient.1M and1B are the uncertainties due to mechan-
ical parameters M and B. F is the disturbance including
external load disturbance, friction, unmodeled dynamics, etc.

From (2) and (4), the mechanical dynamics of PMLSM can
be simplified as

θ1ẍ = u− θ2ẋ − d (5)

where θ1 = (M +1M)
/
Kf , θ2 = (B+1B)

/
Kf ,

d = F
/
Kf , and u = i∗q. θ1, θ2 and d are time-varying real

functions.

B. PROBLEM FORMULATION FOR PMLSM SERVO SYSTEM
Although some advantages are mentioned, the control task
with challenges is presented. Uncertainties such as nonlinear
friction model and parametric uncertainties are difficult to
be accurately established. Therefore, a robust control scheme
is required to cater to the uncertainties of this model. As a
traditional robust control, SMC, which is insensitive to the
parametric uncertainties, has been proven to satisfy perfor-
mance for the system. The control law of SMC contains a
signum function to indicate the switching process, so SMC
is a discontinuous control. If the initial condition of the
nonlinear system is near the original point, it will cause
high-frequency oscillation. The high frequency may excite
nonlinear dynamics introduced by the uncertainties, which
may consume energy and lead to instability. Hence, it is nec-
essary to design a control scheme to ensure the robustness of
the system and accuracy of feedback control in the presence
of model uncertainties, while avoiding the phenomenon of
chattering.

III. PROPOSED CONTROL SYSTEMS
To ensure minimal excitation of nonlinear dynamics, the con-
trol input signal should be smooth and continuous. Therefore,
it is important not only to focus on the control law u but also to
design the derivative of the control law, that is, the jerk signal.
However, due to the model uncertainties, fast response to the
tracking error may still require a high jerk control signal.

To satisfy stability and rapidity, a RISE feedback control
scheme is proposed on the basis of the intelligent adaptive
jerk and model-based feedforward. The block diagram of the
proposed control scheme for the PMLSM servo system is
shown in Fig. 1.

A. CONSTRUCTION OF CONTROL SYSTEM
Due to the existence of nonlinear dynamics, it is desirable
to find a control law that the mover position x can track
the reference command xd while minimizing the chattering
of control signals. To quantify the design of the following
controllers, the filtered error vector is defined as

z =
[
e1 e2 e3

]T (6)

e1 = xd − x

e2 = ė1 + k1e1
e3 = ė2 + k2e2 (7)

where xd is the reference command; e1, e2 and e3 are the
position tracking error, filtered velocity error and filtered
accelerate error respectively. k1, k2 ∈ R denote positive
constants control gains. The filtered error e3 is introduced to
facilitate the stability analysis and is not measurable in the
controller design since the expression in (7) depends on ẍ.
The open-loop tracking error system can be developed by

the right multiplying (7) by θ1 and utilizing the expressions
in (5) to obtain the following expression

θ1e3 = θ1 (ẍd − ẍ)+ θ1 (k1ė1 + k2e2)

= θ1ẍd − (u− θ2ẋ − d)+ θ1 (k1ė1 + k2e2)

= θ1ẍd − u+θ2ẋ+d+θ1 (k1ė1+k2e2)+θ2ẋd − θ2ẋd
= θ1ẍd + θ2ẋd + θ1 (k1ė1 + k2e2)− θ2ė1 + d − u

= Ydθ + S + d − u (8)

where Yd = [ẍd , ẋd ] refers to the reference command vector
and θ =

[
θ1 θ2

]T is the parameter vector. S is defined to be

S = θ1 (k1ė1 + k2e2)− θ2ė1 (9)

Different from the conventional robust control, the filtered
error will introduce into the availability of additional
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design freedom. Therefore, the two-degrees-of-freedom con-
trol structure is adopted. The control law is structured (8) as

u = u1 + u2 (10)

Here, u1 is the feedforward term to speed up the response and
cater for parametric uncertainty, expressed as

u1 = Ydθ̂ (11)

where θ̂ denotes the estimate of θ and u2 is the feedback
control law to ensure the robustness of the closed-loop system
when the system is suffered from external disturbances and
unmodeled uncertainties. Since the reference command vec-
tor Yd and its time derivative depend on the reference com-
mand only, they can be calculated offline so that the online
computation time will be saved and the measurement noise is
reduced. Thus, it is more suitable for practical applications.

To avoid the excitation of the resonant modes, it is impor-
tant to ensure that the control signal u2 is continuous, the jerk
signal u̇2 should be bounded. Hence, the time derivative is
taken on the closed-loop tracking error system of (8)

θ1ė3 = −
1
2
θ̇1e3 + Ẏd θ̃ + Ñ + Nd − u̇2 − e2 (12)

where θ̃ = θ − θ̂ refers to the parameter estimation error
vector and the unmeasurable terms Ñ and Nd are defined
to be

Ñ (t) = Yd
˙̃
θ + Ṡ + e2 −

1
2
θ̇1e3 (13)

Nd (t) = ḋ (14)

It is a fact that the Ñ and Nd in (13) and (14) have different
bounds, which facilitates the development of the θ̂ update
law and the subsequent stability analysis. Here, θ̂ is designed
based on a gradient-based adaptive update law, as in [27], and
is given by

˙̂
θ = Γ Ẏ

T
d e3 (15)

where Γ ∈ R is a positive scalar gain. To avoid utilizing ẍ for
calculating e3, the feedforward control law u1 is integrated by
parts as

Yd θ̂ = Yd θ̂ (0)+ YdΓ Ẏ
T
d e2 (τ )

∣∣∣t
0

−YdΓ
∫ t

0

[
Ÿ
T
d e2 (τ )− k2Ẏ

T
d e2 (τ )

]
dτ (16)

where θ̂ (0) is the value of θ̂ (t) when t = 0.

B. INTELLIGENT ADAPTIVE JERK CONTROL
The jerk u̇2 of the RISE feedback control term is designed to
be

u̇2 = (Ks + 1) e3 +
(
β̂1 + β2 + β̂c

)
sgn (e2) (17)

where β̂1 > −β2 and β2 > 0 are adaptive feedback gain
and fixed feedback gain according to the jerk respectively,
β̂c is the dynamic compensation gain which is designed by
a dynamic neural network to refine the adaptive feedback

gain β̂1. Accordingly, the feedback control law u2 with the
integral term is given by

u2 (t) = (Ks + 1)
∫ t

0
(ė2 (τ )+ k2 (ė1 (τ )+ k1e1 (τ ))) dτ

+

∫ t

0

(
β̂1 + β2 + β̂c

)
sgn (e2 (τ )) dτ + u2 (0)

= (Ks + 1) [(e2 (t)− e2 (0))+ k2 (e1 (t)− e1 (0))

+k1k2

∫ t

0
e1 (t) dτ

]
+

∫ t

0

(
β̂1 + β2 + β̂c

)
× sgn (e2 (τ )) dτ
+u2 (0)

= (Ks + 1)
[
ė1 + (k1 + k2) e1 + k1k2

∫ t

0
e1 (τ ) dτ

]
+

∫ t

0

(
β̂1+β2+β̂c

)
sgn (e2 (τ )) dτ+E0+u2 (0)

(18)

where Ks > 0, u2 (0) is the value of u2 (t) when t = 0, E0 is
the offset due to initial conditions, expressed as

E0 = − (Ks + 1) [k2e1 (0)+ e2 (0)] (19)

Due to the structural complexity of the disturbance, it is
very difficult to find its precise limits, even in practice.
If boundaries are sometimes available, they are usually
very conservative. Large-gain feedback will result in seri-
ous design conservativeness, while too small selection may
result in performance degradation or even instability, such as
high-frequency resonance. To avoid the negative effect of
excessive feedback gain, β̂1 is proposed as

˙̂
β1 = −k3β̂1 + β̄1 + e3sgn (e2) (20)

where β̄1, k3 are constants. Let β̂1 converge exponentially to
β1 = β̄1

/
k3, then β̂1 yields

β̂1 = β1

(
1− e−k3t2

)
+ |e2| − e

−k3t
2 |e2 (0)|

+e−k3t2 β̂1 (0)+ (k2 − k3) e
−k3t
2 ∗ |e2 (t)| (21)

where (∗) denotes the convolution operator. Compared with
the jerk lawwith the fixed RISE feedback gain, uwill respond
faster to adjust the filtered error back to zero.

C. DOUBLE-LOOP RECURRENT FEATURE SELECTION
FUZZY NEURAL NETWORK
In order to increase the approximating capacity of the
adaptive feedback gain, and to improve the robustness and
dynamic tracking accuracy of the PMLSM servo system,
accordingly, the proposed double-loop RFSFNN combines
the features of FNN, recurrent structure, and feature selection.
The proposed double-loop RFSFNN is a new structure of
recurrent feature selection fuzzy neural networkwith a double
feedback loop, where the recurrent weight and the output
signal in the previous step are memorized and utilized as the
feedback signal in the internal loop and external loop. The
merit of the structure is that the internal state information
and output signal are captured at the same time, thus, it can
achieve better approximation performance compared with the
single-loop RFNN. In addition, the feature selection layer,
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which is incorporated by the recurrent feature selection and
Gaussian membership functions, and the rule layer are the
hidden layers. In other words, the appearance of the recurrent
feature selection will make double-loop RFSFNN become
a dynamic structure that has enough ability to deal with
uncertainties of the PMLSM servo system.

1) LAYER 1—INPUT LAYER
The nodes in layer 1 transmit the input signals to the next
layer. The input variables are the filtered error e1, e2. For
every node i in this layer, the input and the output of the
double-loop RFSFNN can be represented as

net (1)i (N ) =
∏
o

x(1)i (N ) y(4)o (N − 1), o = 1 (22)

y(1)i (N ) = f (1)i

(
net(1)i (N )

)
=net(1)i (N ) , i = 1, 2 (23)

where x(1)i (N ) represents the input of ith node in this layer,
x(1)1 = e1, x

(1)
2 = e2; net

(1)
i (N ) represents inputs of the net-

work where the superscript is the layer number and subscript
is the node number; y(4)o is the output of double-loop RFSFNN
and y(1)i (N ) is the output of ith node; N is the number of the
sampling iteration; f (1)i is a unit function of the ith node.

2) LAYER 2—FEATURE SELECTION LAYER
In this layer, each output from layer 1 is connected to three
neurons that act as a linguistic label of one of the input vari-
ables. Moreover, Gaussian function is adopted as the mem-
bership function, and feature selection with a unit of memory
is determined in this layer. For the j node, the relationship of
the input and output can be described as

net(2)j (N ) =

−
(
x(2)i (N )− mij

)2
(
σij
)2

 (24)

y(2)j (N ) = f (2)j

(
net(2)j (N )

)
αj (N )

=

[
exp

(
net(2)j (N )

)]
·[

1− exp
(
−
(
δj (N )wjδj (N − 1)

)2)]
,

j = 1, . . . , 6 (25)

djk (N ) =
{
M , αj (N ) ≤ Tj
1, otherwise

(26)

where x2i (N ) = y2i (N ) is the input of this layer; mij
and σij are the mean and standard deviation, respectively,
of the Gaussian functions of the jth term associated with
the ith input variable. f (2)j is an exponential function of the

jth node; f (2)j

(
net(2)j (N )

)
is the Gaussian function output;

αj (N ) =
[
1− exp

(
−
(
δj (N )wjδj (N − 1)

)2)] is the door
adjuster that can adjust the door, which state is opened or
closed. δj (N ) is the feature degree parameter of the jth node;
wj is the recurrent weight of jth node; Tj is a threshold value,
expressed as

Tj =
1

1+ κ
(
e21 + e

2
2

) (27)

FIGURE 2. Structure of the double-loop RFSFNN.

TABLE 1. Relationships between data, Features, Door statues, Doorplate,
and door adjuster.

where κ is a positive gain. It is worth noticing that the values
of Tj are related to the tracking error. If the tracking error
becomes larger, the values of Tj will be decreased and there
are more control rules transmitted in the neural network.
Contrarily, if the tracking error becomes smaller, the values
of Tj will be raised and the control rules will be reduced.
According to this mechanism, the adaptability of the fuzzy
operator can be enhanced, and the unfavorable features are
eliminated; M is the door mark, which is a positive constant
and bigger than 1, and M is set to be 2 in this study; djk (N )
is the doorplate of the jth term associated with kth term node.
If αj(N ) is equal to 1, the output of Gaussian function will
be the most useful data in the system and the door will fully
open. If the value of αj(N ) is between 1 and 0, the output
of Gaussian function will be the useful data in the system
and the door will partially open. If αj(N ) is equal to Tj or
smaller than Tj, the output of Gaussian function will be the
unfavorable data in the system and the door will close. The
relationships between data, features, door statues, doorplate,
and door adjuster are shown in Table 1.

3) LAYER 3—RULE LAYER
Each node k in this layer represents one feature selection
rule and performs precondition matching of a rule. Hence,
the neuron in this layer is denoted by 5, which multiplies
the input signals from layer 2 and outputs the result of
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the product. For every kth node

net(3)k (N )

=

∏
j

w(3)jk x
(3)
j (N ) (28)

y(3)k (N )

=


max

(
w(3)jk x

(3)
j (N ) ,w(3)jk x

(3)
j (N )

)
,

djk (N ) djk (N ) = M

f (3)k

(
net(3)k

)
= net(3)k , otherwise

k = 1, . . . , 9 (29)

where x(3)j (N ) = y(2)j (N ) is the input in this layer; w(3)jk ,
which is set to 1 simplify the implementation for the real-time
control, is the connected weight between the feature selection
layer and the rule layer; y(3)k (N ) is the output in this layer;
f (3)k is a unity function of the kth node. In (29), if djk (N ) djk
(N ) = M , there are two possible conditions for the status of
the door adjuster: 1) full open and close and 2) partially open
and close. On the other hand, djk (N ) djk (N ) 6= M , there are
four possible conditions for the status of the door adjuster:
1) both full open; 2) both partially open; 3) one fully open
and one partially open; and 4) both close.

4) LAYER 4—OUTPUT LAYER
The single in this layer is denoted by 6, which computes
the overall output as the summation of all input. the output
node together with related links acts as a defuzzifier. The
mathematical function can be stated as

net(4)o (N ) =
∑
k

w(4)k x(4)k (N ) (30)

y(4)o (N ) = f (4)o

(
net(4)o

)
= net(4)o (31)

where x(4)k is the output of rule layer; w(4)k is the connected
weight between the rule layer and the output layer; y(4)o is
the final output of double-loop RFSFNN and also estimated
nonlinear function βc.

D. LEARNING ALGORITHMS OF THE DOUBLE-LOOP
RFSFNN
The final output of double-loop RFSFNN can be rewritten as

βc (e1, e2,W ,m, σ ,R, δ) ≡ WX (32)

whereW =
[
w(4)1 w(4)2 w(4)3 w(4)4 w(4)5 w(4)6 w(4)7 w(4)8 w(4)9

]
∈

R1×9 is a vector matrix formed by weight w(4)k , which is
updated by the online learning algorithm and initialized to be

zero; X =
[
x(4)1 x(4)2 x(4)3 x(4)4 x(4)5 x(4)6 x(4)7 x(4)8 x(4)9

]T
∈

R9×1 is the output vectormatrix;m =
[
m11 m12 . . . m25 m26

]T
∈

R6×1 and σ =
[
σ11 σ12 . . . σ25 σ26

]T
∈ R6×1 are the

mean vector matrix and standard deviation vector matrix,
respectively; R =

[
w1 w2 . . . w5 w6

]T
∈ R6×1 is the

recurrent weight vector matrix; δ =
[
δ1 δ2 . . . δ5 δ6

]T
∈

R6×1 is the feature degree parameter vector matrix.

By the universal approximation theorem, there exists an
optimal double-loop RFSFNN β∗c for any nonlinear function
such that

βc = β
∗
c
(
e1, e2,W∗,m∗, σ ∗,R∗, δ∗

)
+ ε

= W∗X∗ + ε (33)

where ε is aminimum reconstructed error;W∗,m∗, σ ∗,R∗, δ∗

and X∗ are the optimal parameters of W ,m, σ ,R, δ and X,
respectively. Moreover, the four-layer double-loop RFSFNN
approximation for βc is given as

β̂c

(
e1, e2, Ŵ , m̂, σ̂ , R̂, δ̂

)
:= ŴX̂ (34)

where Ŵ , m̂, σ̂ , R̂, δ̂ and X̂ are the estimated parame-
ters of W ,m, σ ,R, δ and X, respectively. Subtracting (34)
from (33), the approximation error β̃c can be obtained

β̃c = β
∗
c
(
e1, e2,W∗,m∗, σ ∗,R∗, δ∗

)
+ ε

−β̂c

(
e1, e2, Ŵ , m̂, σ̂ , R̂, δ̂

)
= W∗X∗ + ε − ŴX̂

= W̃X
∗
+ ŴX̃ + ε (35)

where W̃ = W∗−Ŵ and X̃ = X∗−X̂ . Then, the linearization
technique is used to transform the nonlinear output of the
double-loop RFSFNN into partially linear form to obtain the
expansion of X̃ in Taylor series is obtained as

X̃ = XT
mm̃+ X

T
σ σ̃ + XT

R R̃+ X
T
δ σ̃ + Nh (36)

where m̃ = m∗− m̂; σ̃ = σ ∗− σ̂ ; R̃ = R∗− R̂; β̃ = β∗− β̂;
and Nh is a vector of higher order terms;

XT
m =


∂x(4)1

∂m11
· · ·

∂x(4)1

∂m26
...

. . .
...

∂x(4)9

∂m11
· · ·

∂x(4)9

∂m26



∣∣∣∣∣∣∣∣∣∣∣∣
mij=m̂ij

∈ R9×6

XT
σ =


∂x(4)1

∂σ11
· · ·

∂x(4)1

∂σ26
...

. . .
...

∂x(4)9

∂σ11
· · ·

∂x(4)9

∂σ26



∣∣∣∣∣∣∣∣∣∣∣∣
σij=σ̂ij

∈ R9×6

XT
R =


∂x(4)1

∂w1
· · ·

∂x(4)1

∂w6
...

. . .
...

∂x(4)9

∂w1
· · ·

∂x(4)9

∂w6



∣∣∣∣∣∣∣∣∣∣∣∣
wj=ŵj

∈ R9×6

XT
δ =


∂x(4)1

∂δ1
· · ·

∂x(4)1

∂δ6
...

. . .
...

∂x(4)9

∂δ1
· · ·

∂x(4)9

∂δ6



∣∣∣∣∣∣∣∣∣∣∣∣
δj=δ̂j

∈ R9×6
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The adaptation laws of the double-loop RFSFNN are
designed as

˙̂W
T
= −ηwe2X̂

T
(37)

˙̂m
T
= −ηme2ŴX

T
m (38)

˙̂σ
T
= −ησ e2ŴX

T
σ (39)

˙̂R
T
= −ηRe2ŴX

T
R (40)

˙̂
δ
T
= −ηδe2ŴX

T
δ (41)

where ηw, ηm, ησ , ηR and ηδ are learning rates parameters and
all set as positive constants.

E. STABILITY ANALYSIS OF THE INTELLIGENT ADAPTIVE
JERK CONTROL SYSTEM
Assumption 1: Uncertainty d is smooth enough such that [37]

‖Nd (t)‖1 ≤ ς1,
∥∥Ṅd (t)∥∥1 ≤ ς2 (42)

where ς1 > 0, ς2 > 0 are known constants.
Since Ñ is continuous, by the Mean Value Theorem, its

norm can be upper bounded by a positive, non-decreasing
function ρ as ∥∥∥Ñ∥∥∥ ≤ ρ (‖z‖) ‖z‖ (43)

Theorem 1: Consider the system (8) controlled by the
two-degrees-of-freedom control structure (10), with feedfor-
ward (16) and feedback (18) including adaptive feedback
gain (21) and the dynamic adaptation (34). If the model
mismatch (13) and the disturbance (14) are bounded by (42)
and (43) accordingly, and Ks is selected such that

Ks >
ρ2 (‖z‖)
4η3

(44)

where η3 = min
{
k1 − 1

2 , k2 −
1
2 , 1

}
, k1 > 1

2 and k2 > 1
2 . �

For β1 ≥ ς1+ 1
k2
ς2 and β2 ≥ 0, auxiliary functions L1, L2

are defined as

L1 = e3 (Nd (t)− β1sgn (e2)) (45)

L2 = −β2ė2sgn (e2) (46)

Provided the sufficient conditions β1 and β2 are satisfied,
the following inequality can be obtained [26], [28]∫ t

0
L1 (τ )dτ ≤ ςb1 (47)∫ t

0
L2 (τ )dτ ≤ ςb2 (48)

where ςb1 , ςb2 are positive constants. Then, the following
defined function P1, P2 are always positive

P1 = ςb1 −
∫ t

0
L1 (τ )dτ ≥ 0 (49)

P2 = ςb2 −
∫ t

0
L2 (τ )dτ ≥ 0 (50)

y(t) is defined as

y (t) =
[
zT (t) θ̃

T
(t) β̃1 (t) β̃c (t)

√
P1
√
P2
]T

(51)

Considering the Lyapunov function V (y, t) be defined as

V (y, t) =
1
2
e21 +

1
2
e22 +

1
2
e23θ1

+
1
2
θ̃
T
Γ −1θ̃ +

1
2
β̃21 +

1
2
β̃2c + P1 + P2 (52)

where β̃1 = β1−β̂1.Moreover, the approximated compensate
gain βc is assumed to be bounded by |βc| ≤ βb, βb is a
positive gain. Since the sampling interval in the experiment
is short enough, βc is also assumed to be a constant during
the approximation. However, the upper bound βb is difficult
to know. Therefore, an adaptive law is proposed to adopt
the value of the dynamic approximated compensate for gain.
Then, differentiate β̃c with respect to time, one can obtain
˙̃
βc = −

˙̂
βc.

V (y, t) ≥ 0 since P1 ≥ 0,P2 ≥ 0 and other terms are
quadratic. In addition,

η1 ‖y‖2 ≤ V (y, t) ≤ η2 ‖y‖2 (53)

where η1 = 1
2 min

{
1,m, Γ −1

}
, η2 =

1
2 max

{
2, M̄ , Γ −1

}
,

m = inf (θ1), and M̄ = sup (θ1). Then it yields

V̇ (y, t) = e1ė1 + e2ė2 + e3ė3θ1 +
1
2
e23θ̇1

+θ̃
T
Γ −1
˙̃
θ + Ṗ1 + Ṗ2 + β̃1

˙̃
β1 + β̃c

˙̃
βc (54)

With substituting equations (6), (12), (15), (17), (49),
and (50) into equation (54)

V̇ = e1 (e2−k1e1)+e2 (e3−k2e2)+e3(−
1
2
θ̇1e3+Ẏd θ̃ + Ñ

+Nd−u̇2 − e2)+
1
2
e23θ̇1+θ̃

T
Γ −1

(
−Γ Ẏ

T
d e3

)
−e3 (Nd

−β1sgn (e2))+ β2ė2sgn (e2)+ β̃1
(
β̇1 −

˙̂
β1

)
− β̃c

˙̂
βc

= e1e2 − k1e21 + e2e3 − k2e
2
1 −

1
2
θ̇1e23 + e3Ẏd θ̃ + e3

(
Ñ

+Nd − u̇2)− e2e3 +
1
2
e23θ̇1 − θ̃

T
Ẏ
T
d e3 − e3 (Nd

−β1sgn (e2))+ β2ė2sgn (e2)− β̃1
˙̂
β1 − β̃c

˙̂
βc

= e1e2 − k1e21 − k2e
2
1 + e3

(
Ñ + Nd − (Ks + 1) e3

−

(
β̂1 + β2 + β̂c

)
sgn (e2)

)
− e3 (Nd − β1sgn (e2))

+β2ė2sgn (e2)− β̃1
˙̂
β1 − β̃c

˙̂
βc

= e1e2 − k1e21 − k2e
2
1 + e3Ñ + e3Nd − Kse

2
3 − e

2
3

−e3
(
β̂1 − β1

)
sgn (e2)+ β2 (ė2 − e3) sgn (e2)

−e3β̂csgn (e2)− e3Nd − β̃1
˙̂
β1 − β̃c

˙̂
βc

= e1e2−k1e21 − k2e
2
1+e3Ñ−Kse

2
3−e

2
3

− e3
(
−β̃1

)
sgn (e2)

−β2k2e2sgn (e2)− e3β̂csgn (e2)− β̃1
˙̂
β1 − β̃c

˙̂
βc (55)

According to

e1e2 ≤
1
2
e21 +

1
2
e22 (56)
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FIGURE 3. Block diagram of the PMLSM drive system using the proposed
control system.

FIGURE 4. DSP-based IAJC for PMLSM servo system.

TABLE 2. Parameters of PMLSM.

substituting equation (56) into (55) and combining (43),
it yields

V̇ ≤
1
2
e21 +

1
2
e22 − k1e

2
1 − k2e

2
2 + |e3| ρ (‖z‖) ‖z‖

−Kse23 − e
2
3 −

∣∣∣e3β̃1∣∣∣− |β2k2e2| − ∣∣∣e3β̂c∣∣∣
−

∣∣∣β̃1 ˙̂β1∣∣∣− ∣∣∣β̃c ˙̂βc∣∣∣
≤−

(
k1−

1
2

)
e21−

(
k2 −

1
2

)
e22−e

2
3+ρ (‖z‖) ‖z‖

2
−Kse23

≤ −η3 ‖z‖2 + ρ (‖z‖) ‖z‖2 − Kse23

≤ −‖z‖2
(
η3 −

ρ2 (‖z‖)
4Ks

)
(57)

TABLE 3. Parameters of controllers.

FIGURE 5. (a) Trapezoid reference command (b) External load
disturbance.

To guarantee V̇ ≤ 0, the sufficient condition being (44) with
k1 > 1

2 and k2 > 1
2 . Thus, by Barbalat’s Lemma, ‖z‖ → 0

and β̃1→ 0 when t →∞, which ensures the stability of the
system.

In summary, the design steps of the proposed IAJC system
is described as follows:
Step 1: The filtered error vector, the position tracking error

e1, the filtered velocity error e2 and the filtered accelerate
error e3 is calculated as shown in (6) and (7), respectively.
Step 2: The control law of the PMLSM servo system is

computed by (10).
Step 3: The model-based feedforward control law is com-

puted by (11) and the gradient-based adaptive update law is
shown in (15).
Step 4: The intelligent control law is computed by (18),

where the adaptive feedback gain β̂1 is updated by (21).
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FIGURE 6. Experimental results of trapezoid command.

TABLE 4. Result of RMS position tracking error and control efforts for
trapezoid command.

Step 5: The input variables of the double-loop RFSFNN
are e1 and e2. The output of double-loop RFSFNN, which is

computed by (34), is used to compensate β̂1. The parameters
of double-loop RFSFNN are estimated by the adaptation
laws (37) ∼ (41).
Step 6: Return to Step 1 and repeat the process.

IV. EXPERIMENTAL VERIFICATION
The block diagram of the PMLSM drive system, which
consists of a pulsewidth modulated inverter, PI current con-
trollers and a coordinate transformation mechanism of the
field-oriented control, is shown in Fig. 3. With the implemen-
tation of field-oriented control, the PMLSM system can be
directly controlled via (2).

A. EXPERIMENTAL SYSTEM
To test the feasibility and the validity of the proposed scheme,
DSP-based IAJC for PMLSMservo system is shown in Fig. 4.
The parameters of PMLSM are listed in Table 2. The con-
trol chip is TMS320F2812A produced by TI. The switching
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FIGURE 7. Experimental results of sinusoidal command.

frequency of the IPM is 5 kHz. The sampling time of the
control system is 200 µs.

To illustrate the advantage of intelligent jerk control
with the dynamic compensation gain, AJC and SMC with
switching law are introduced for comparison. The control law
of the SMC is given as

uSMC=B−1n
[
ẍd (t)−Anẋ (t)+λė1+2sign

(
s
/
8
)]

(58)

The values of parameters in the above controllers are
shown in Table 3. The regulation of the IAJC follows the
guidelines provided by Theorem 1.

B. COMPARATIVE EXPERIMENTS FOR TRAPEZOID
COMMAND
For the periodic trapezoid reference command in Fig. 5(a)
with the varying external load in Fig. 5(b), it is to validate
the effectiveness of the proposed IAJC. Fig. 6 depicts the
experimental results of SMC, AJC, and IAJC with dynamic
compensation gain.

It can be seen that, concerning the external load dis-
turbance, their performance of position tracking error is
shown in Fig. 6(a) ∼ (c). Especially, the robust control
characteristics can be achieved using the proposed IAJC.
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TABLE 5. Result of RMS position tracking error and control efforts for
sinusoidal command.

FIGURE 8. Welch Power Spectral Density estimate of velocity error for
sinusoidal command.

However, the SMC bears larger tracking error at sharp cor-
ners, and the tracking performances are evidently deteriorated
at a smooth trajectory. Furthermore, as seen in Fig. 6(d) ∼ (f),
the chatting phenomenon of the SMC is obvious owing to
the discontinuous switching law (58) . The error distribution
statistics of the tracking error and control efforts are shown
in Fig. 6(g) ∼ (h). Moreover, the root-mean- square (RMS)
values of tracking errors and control efforts by three control
methods are summarized in Table 4. By comparing the per-
formance between the AJC and the IAJC, it can be known
that the dynamic compensation gain of the proposed IAJC
can effectively suppress the uncertainties and the chattering
phenomenon is attenuated. Although the AJC and the pro-
posed IAJC demonstrate similar tracking performance during
the whole tracking performance, it can be seen that, with the
help of the dynamic compensation gain, the average and RMS
values of the IAJC keep in a small level. The evolutions of the
adaptive feedback gain β̂1 and dynamic compensation gain β̂c
are shown in Fig. 6(i). The evolutions are with ripples to cater
for the time-varying of the uncertainties. β̂1+ β̂c is converged
following the designed response in the steady-state, which
proves the applicability of the exponential adaptive law of
β̂1 and the proposed double-loop RFSFNN. The parameter
estimates are shown in Fig. 6(j). Here it is evident that the pro-
posed IAJC not only achieved the best robustness and control
precision but also eliminated the chattering phenomenon.

C. COMPARATIVE EXPERIMENTS FOR SINUSOIDAL
COMMAND
To further verify the tracking performance of the proposed
IAJC, the reference command is set as a sinusoidal command

FIGURE 9. Exponentially increasing sinusoidal reference command.

described by xd = 0.01sin(4π t). Fig. 7 shows the results of
the experiment. The SMC has the worst tracking performance
and the position tracking error as a large deviation at the
peak of a sinusoidal command, where the velocity nears zero
because of the uncertain nonlinear friction in Fig. 7(a). From
Fig. 7(b)∼(c), the proposed IAJC gives the slower response
speed in transient-state, probably due to the adaptation of
dynamic compensation gain. Remarkably, it is found that
the IAJC system performs the best tracking precision in the
long term, as compared with the other control methods. The
control efforts of different control methods are presented
in Fig. 7(d)∼(f). In comparison, the proposed IAJC improves
the chatting of control efforts significantly. For the conve-
nience of understanding, the error distribution statistics of
tracking error and control effort are shown in Fig. 7(g)∼(h).
In themeantime, the RMS values of tracking error and control
efforts for sinusoidal command are summarized in Table 5.
Also, the gain revolutions and parameter estimates are shown
in Fig. 7(i)∼(j), respectively. Thus, it can be verified that the
proposed IAJC can carry out the best control performance
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FIGURE 10. Experimental results of different feedback gain.

and is suitable in the tracking control of the PMLSM servo
system.

The Welch Power Spectral Density (PSD) estimate of the
velocity tracking error for sinusoidal command is shown
in Fig. 8. The shaded area represents the 95% confidence
bound. It is observed that the PSD of the SMC is larger
at the higher frequency because the sign function and the
large robust gain cause the SMC to generate chattering phe-
nomenon, which leads to the worse tracking performance.
On the contrary, the velocity error of the AJC and the pro-
posed IAJC is concentrated at 0∼18Hz, and it is gradually
attenuated, which indicates that the continuous control sig-
nals, generated by the AJC and the proposed IAJC, do not
carrymuch power at high frequency. Comparedwith the AJC,

TABLE 6. Result of RMS position tracking error and control efforts for
different feedback gain.

the proposed IAJC eliminates the chattering phenomenon
more effectively at high frequency. Hence, the control efforts
of IAJC will not excite high-order terms in unmodeled
dynamics, which means that high-frequency oscillation can
be avoided.

D. EFFECT OF DIFFERENT FEEDBACK GAIN β1
To investigate the effect of different feedback gain β1 of the
proposed IAJC, in this experimental test, an exponentially
increasing sinusoidal reference command is given in Fig. 9,
and the experimental results of variable robust gain are
shown in Fig. 10. To show compensation results clearly,
Table 6 gives the RMS values of position tracking error and
control efforts under different values of feedback gain β1.

The reference command is difficult to be tracked at the
initial time since the velocity of this trajectory is rather small,
the nonlinear friction force centralizes in the Stribeck effect
area. From these compensation results, it is found that there
is an optimal choice to set the feedback gain β1 = 5. When
the value of β1 is equals to 1, the position tracking error is
larger, especially in the initial time.Meanwhile, the chattering
phenomenon of the control effects is limited in a rational
range. Although the tracking error is convergence in the
steady-state, when β1 = 9, it is difficult to obtain satisfactory
control performance due to the chatting phenomenon. It is
predictive that the larger value of β1 leads to an increased jerk,
which makes the proposed method is similar to the SMCwith
discontinuous control law. On the contrary, if the value of β1
is selected to be 1, it is too small to cater to the uncertainties of
the system so that the tracking performance is worse. Based
on the above-mentioned results, it is suggested that an appro-
priate selection of feedback gain β1 will improve the tracking
performance of the system without adding significant cost in
control effort.

V. CONCLUSION
This paper proposed an IAJC scheme with dynamic
compensation gain for the PMLSM servo system to achieve
high-precision and high-velocity control performance, which
guaranteed the robustness in the presence of the external
load disturbance, parametric uncertainties, nonlinear friction,
and unmodeled dynamics. To generate stable and continuous
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control efforts to improve the control performance of the
PMLSM servo system, the AJC was proposed and the
exponential update law guaranteed bounded adaptive feed-
back gain of the jerk. Additionally, to compensate for the
approximation deviation and attenuate the chattering phe-
nomenon, a dynamic compensation gain was designed by
the double-loop RFSFNN. The double-loop structure can
enhance the approximation performance of the RFNN and the
feature selection mechanism can eliminate the unfavorable
features to improve the learning capability of the FNN. The
stability of the closed-loop system was proved by the Lya-
punov approach. The experimental results verify robustness
and tracking performance of the proposed IAJC with respect
to the PMLSM servo system.
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