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ABSTRACT Identifying seizure activities in non-stationary electroencephalography (EEG) is a challenging
task since it is time-consuming, burdensome, and dependent on expensive human resources and subject
to error and bias. A computerized seizure identification scheme can eradicate the above problems, assist
clinicians, and benefit epilepsy research. So far, several attempts were made to develop automatic systems to
help neurophysiologists accurately identify epileptic seizures. In this research, a fully automated system is
presented to automatically detect the various states of the epileptic seizure. This study is based on sparse
representation-based classification (SRC) theory and the proposed dictionary learning using electroen-
cephalogram (EEG) signals. Furthermore, this work does not require additional preprocessing and extraction
of features, which is common in the existing methods. This study reached the sensitivity, specificity, and
accuracy of 100% in 8 out of 9 scenarios. It is also robust to the measurement noise of level as much as 0 dB.
Compared to state-of-the-art algorithms and other common methods, our method outperformed them in
terms of sensitivity, specificity, and accuracy. Moreover, it includes the most comprehensive scenarios for
epileptic seizure detection, including different combinations of 2 to 5 class scenarios. The proposed automatic
identification of epileptic seizures method can reduce the burden on medical professionals in analyzing
large data through visual inspection as well as in deprived societies suffering from a shortage of functional
magnetic resonance imaging (fMRI) equipment and specialized physician.

INDEX TERMS EEG, epilepsy, seizure, sparse representation-based classification, dictionary learning.

I. INTRODUCTION
As reported by world health organization, about 50 million
worldwide are suffering from epilepsy [1]. Epilepsy, as the
second most common brain disorder after stroke, is charac-
terized by an unexpected seizure, where, nerve cells generate
abnormal electrical activities, which leads to loss of con-
sciousness in a limited period of time [2]. Proper diagnosis
of epileptic seizure is essential to control and reduce the risk
of epileptic attacks [3]. Currently, the diagnosis of epilepsy is
based on neurological examination and auxiliary tests such as
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neuroimaging and Electroencephalography. EEG signals can
reflect epileptic abnormalities between inter-ictal (between
seizures) and ictal (during seizures) stages. Typically, neu-
rons are in contact with each other by means of electrical
potentials that follow a normal pattern in healthy human
brain activity. While an abnormal electrical activity occurs in
the brain’s neural network during epilepsy, this incremental
electrical activity can spread out through the entire cortex.
A neurologist traditionally inspects the epileptic malforma-
tions. The interpretation of EEG signals using an intuitive
evaluation is a time-consuming and tedious task, and the
obtained results may vary and are limited according to the
level of knowledge and expertise of the related physician.
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The use of anti-epileptic drugs have some restrictions and
in 20-30% of patients is unable to control the seizure [3].
However, it is reported that using anti-epileptic drugs within
pre-ictal stage might be more effective, which prevents the
occurrence of ictal stage and the possible physical damages
caused by individual unconsciousness [3], [4]. Therefore,
designing an automated computer diagnostic system seems to
be essential to detect epileptic states from EEG signals based
on machine learning techniques. In addition to helping the
expert diagnose the epileptic stages, it will have the ability to
continuously monitor the high-risk patients, which alerts the
seizure before its occurrence and inform the patient to take the
drug. There are several stages of an epileptic seizure (brain
activity of an individual with epilepsy), which play a major
role in anticipating these seizures. Previous studies show
that the seizure process is divided into four stages, including
pre-ictal, inter-ictal (pre-seizure disturbances), ictal (during
a seizure), and postictal. Evidence suggests that seizures
come from a recognizable brain state called pre-ictal, which
can be considered as a clue to predict the upcoming stages
(ictal) [4]–[6].

In the following, the recent studies on the automatic iden-
tification of epileptic seizures are reviewed. Tzallas et al. [7]
calculated the power spectrum density of the EEG signal seg-
ment using a variety of time-frequency distributions and used
PSD as a discriminative feature to classify epileptic seizure
stages. Adeli et al. [8] reported a classification algorithm
using wavelet transformation and nonlinear dynamics-based
features such as the largest Lyapunov exponent and correla-
tion dimension. Oweis et al. [9] extracted frequency features
from the Hilbert-Huang transform. They also used the t-test
to verify the importance of the features. The accuracy and
specificity of their algorithm for classification of 2 epileptic
and normal states were reported 94% and 96%, respec-
tively. Bajaj et al. [10] used the empirical mode decomposi-
tion (EMD) to compute modulation bandwidth features and
then utilized least squares-support vector machine (LS-SVM)
for classifications. They also used the statistical test of
Kruskal-Wallis to verify the features. The sensitivity, accu-
racy and specificity of their algorithm to classify 2 epilep-
tic and normal states were reported 100%, 99% and 99%
respectively. Alam et al. [11] used EMD and artificial neural
networks (ANN) for the identification of epilepsy. Both the
above methods are affected by mode-mixing problems due to
the use of EMD, meaning that EMD may result in varying
oscillations in the same mode or similar oscillations in differ-
ent modes. Peker et al. [12] extracted five statistical features
using dual-tree complex wavelet transform and then applied
complex-valued neural network transformations to classify
epileptic seizure states in 4 different scenarios. They also
used a 10-fold cross validation to evaluate their algorithm.
Wang et al. [13] introduced an autoregressive multivariate,
partially directed coherence and SVM classification for the
automatic seizure detection. Samiee et al. [14] proposed
a rationally discreet short-time Fourier transform and sta-
tistical features for the classification of epileptic seizures.

Das et al. [15] employed normal inverseGaussian parameters
in thewavelet domain into their seizure classification scheme.
Guler et al. [16] proposed a seizure detection scheme using
wavelet coefficients and a multi-class support vector machine
based on the Lyapunov exponents. Guo et al. [17] presented a
seizure detection model using the line length features of EEG
wavelet sub-bands, followed by an artificial neural network
for classification. Swami et al. [18] have extracted features
such as energy, Shannon entropy, and few other statistical
features from EEG sub-bands and feed them to a general
neural regression network classifier. Hassan et al. [19] pre-
sented an automatic diagnostic design for various epilep-
tic seizures based on the tunable-Q wavelet transformation
and bootstrap classification leading to an accuracy of 99%.
Sharma et al. [20] used flexible analytical time-frequency
wavelet transformation and calculated fractal dimensions to
discriminate various epileptic states. They have reported an
accuracy of 99% for their study based on LS-SVM classifier.
Acharya et al. [21] proposed conventional neural networks
(CNN) for automatic identification of pre-ictal, inter-ictal,
and normal states from EEG signal. The proposed CNN
architecture includes 10 convolution and 3 fully connected
layers, which lead to accuracy and sensitivity of 88% and
95%, respectively.

The main challenge in the automatic identification of
epileptic seizures is choosing the distinguishing features in
order to discriminate between different stages (including
ictal, pre-ictal and etc.). However, in most of the previous
works, at first, several time, frequency, time-frequency, and
statistical features are extracted, then, the best discriminative
features are selected either manually or using conventional
feature selection methods [22], [23], which is a time-
consuming procedure demanding high computational com-
plexity due to high dimensions and are usually not robust
and are computationally intensive [24], [25]. Furthermore,
the best features in one case/subject may not be considered
as optimum for another one. Therefore, using a generalized
method that learns the proper features corresponding to each
case/subject is essential. In this respect, methods such as
Deep Neural Network (DNN) and Sparse Representation-
based Classification (SRC) can provide an end-to-end model
without the need for basic knowledge. This will remain as the
main advantage of this paper. At first, a sparsifying transform
is introduced for the EEG signal of each designated state
of epileptic seizure. Then, the proposed online dictionary
learning is used to obtain the sparsest representation for each
of the states, and SRC is applied in order to identify different
classes. The proposed approach can be considered as an end-
to-end classifier, in which there is no need to a feature selec-
tion/extraction procedure, and the discriminative features of
each class will be automatically learned during dictionary
learning. In dictionary learning, there are two parameters that
need to be optimized, namely, the atoms of the dictionary and
the sparse coefficients that relate the atoms of the dictionary
to the training data set. Since the dictionary learning problem
is NP-hard, dictionary learning algorithms use alternating
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methods to optimize the parameters. In the first step, called
sparse coding, the sparse coefficients are calculated by con-
sidering a pre-defined dictionary. The most conventional
algorithms used as the first step are Matching Pursuit (MP),
OMP [26], [27]. In the second step, the sparse coefficients
that are calculated in the previous step are used to update
the atoms of the dictionary. These two steps are repeated
until the dictionary learning algorithm converges. Most of the
attention in the dictionary learning problem is to improve the
algorithms used in the second step. Some of the important
algorithms that are used in this step are: Method of Optimal
Directions (MOD) [28], Recursive Least Squares (RLS) dic-
tionary learning [29], Online Dictionary Learning (ODL) for
sparse representation [30] and K-Singular Value Decomposi-
tion (K-SVD) method [31]. Methods of dictionary updating
are categorized into two ways: batch learning methods and
sequential learning methods. In batch learning, the entire
training data will be used at once to obtain the dictionary
atoms. This approach also has a high computational burden,
although the computational burden is comparatively lower in
the sequential methods in which the training data is used in a
sequential way. In online dictionary learning, which is a sort
of sequential learning, its atoms are updated recursively as
the new training data, beginning from an initial guess for the
dictionary [30], [31].

In this paper, we have also focused on various scenarios for
the occurrence of epileptic seizures considered in the related
literature (and also the existing datasets) and evaluated the
proposed algorithm in 9 most complex scenarios to identify
the specific states related to the epileptic seizure. We also
presented a proposed algorithm for learning the dictionary
for each class. The results very promising, such that in 8 out
of 9 scenarios, the classification accuracy was 100% while in
the remaining one, it was as much as 95%.

Finally, unbalanced class data is another challenging issue
in the previous work, where, the authors used data augmenta-
tionmethods tomake the data from different classes balanced,
or some classifiers which are not sensitive to unbalanced
class data. In contrast, the our work for dictionary learning
is almost insensitive to the unbalanced class population.

The remaining of the paper is organized as follows: The
used database and the related mathematical background of
SRC are given in Section 2. The theory of the proposed
algorithm is discussed in Section 3. The simulation results
and comparison of the our study with the state-of-the-art are
given in Section 4, followed by the conclusion remarks in
Section 5.

II. MATERIALS AND METHODS
In this section, we first introduce the EEG database from the
University of Bonn. Then, the mathematical background of
the SRC theory will be provided.

A. EEG DATABASE
In this paper, we have used the EEG database created by
Andrzezak et al. [6] at the University of Bonn. This database

FIGURE 1. Sample EEG epochs belonging to the subsets; A, B, C, D, and E.

is widely used in seizure detection techniques which are
publicly available. It consists of 500 single-channel EEG
signal epochs in 5 subsets (A, B, C, D, and E) from both
normal and individuals suffering from seizure (100 epochs
from each subset). Sample EEG epochs belonging to the
subsets; A, B, C, D, and E are shown in Fig. 1. Subsets A
and B contain EEG data, recorded in a relaxed and awake
state from five healthy subjects with open eyes (subset A) and
closed eyes (subset B). Subsets C, D, and E were taken from
the EEG archive of presurgical diagnosis. Subsets C and D
were recorded in five patients who had complete seizure
control after epileptic focus resection. The EEG signals in
subset C were recorded from the formation of the oppo-
site brain hemisphere (inter-ictal), while the signals in D
were recorded from the hippocampal formation identified as
an epileptogenic area. Also, signals in two sets have been
measured in seizure-free intervals in the epileptogenic zone
(D) and from the hippocampal formation of the opposite
hemisphere of the brain (C). While subsets C and D con-
tained only activity measured during seizure-free intervals,
subset (E) only contained seizure activity. Here for subset
(E) segments were selected from all recording sites exhibiting
ictal activity. In addition, surface electrodes have been used
to record EEG signals for subsets A and B and the implant
electrodes used for subsets C, D and E. Apart from the
different recording electrodes, the recording parameters were
fixed. Fig. 2. shows the areas of the signal recorded for these
subsets. All subsets include 100 EEG segments, whereas each
segment has a sampling rate of 173.610 Hz for 23.6 seconds
(thus containing 4097 samples).

B. SPARSE REPRESENTATION-BASED CLASSIFICATION
In the following, the mathematical background of SRC algo-
rithm is introduced. The main idea in SRC is to obtain a
sparsifying transform for each of the classes using training
data set and then classify the data from test set based on the
residual reconstruction error of the test data using each of the
sparsifying transforms [32]. In mathematical terms, a signal
y ∈ RN is called k-sparse if at most k out of N samples
are nonzero (this is also stated as y0 ≤ k , where ‖‖0 is the
zero norm of vector y). Most of the existing natural signals,
including EEG, are sparse or have sparse representation in a
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FIGURE 2. Scheme of intracranial electrodes implanted for presurgical
evaluation of epilepsy patients. Depth electrodes were implanted
symmetrically into the top of the hippocampal formation. Segments of
sets C and D were taken from all contacts of the respective depth
electrode. Strip electrodes were implanted onto the lateral and basal
regions middle and bottom of the neocortex. Segments of set E were
taken from contacts of all depicted electrodes [6].

specific domain (transform). Considering φ ∈ RN×M (which
is over-complete if N < M ) as the sparsifying dictionary,
the sparse representation of the data signal vector y can be
obtained by solving the linear system of equations y = φ x .
Gathering length N data vectors of class i from S EEG
recording electrodes in the columns of a single matrix Y i, the
sparse representation model for multi-electrode EEG signal
can be obtained as follows:

Y i = φiX i, i = 1, . . . ,C (1)

where C is the total number of classes, Y i =(
yi1, y

i
2, . . . , y

i
S

)
∈ RN×S , and X i =

(
x i1, x

i
2, . . . , x

i
S

)
∈

RM×S is the corresponding sparse representation. Now,
assuming the test data sample Y , the corresponding sparse
representation will be obtained by solving the following
optimization problem using the dictionaries of each class,
to obtain αi:

zij = min
α

α1 s.t. yij = φ
iα, j = 1, . . . , S and i = 1, . . . ,C

(2)

where zij is the sparse representation of the j-th column of
the test data matrix, i.e., yj, using the sparsifying dictionary
of class i, φi. Finally, SRC classifies the data by comparing
the residual error of the reconstructed EEG signal using the
dictionaries of all classes, i.e.,

i∗ = argmin
i=1,...,C

ri (Y ) = Y − φiZ iF (3)

where Z i =
(
zi1, z

i
2, . . . , z

i
S

)
, ‖.‖F is the Frobenius norm

and for a matrix like Y ∈ RN×S can be calculated as ‖Y‖2F =∑
all i,j

y2ij where yij is the entry in the i-th row and j-th column

of Y , and i∗ is the estimated label of the test data. In many
practical cases, however, the test data are accompanied by
some bounded observation/measurement noise, where the
optimization problem in (2) can be restated as follows in order
to account for the noise component:

zij = min
α

α 1 s.t. yij − φ
iα2 ≤ ε,

j = 1, . . . , S and i = 1, . . . ,C (4)

FIGURE 3. The block-diagram of the proposed algorithm.

ε is accounted for the observation noise. For example, if
the noise of the observations is zero, the ε will be zero,
otherwise, its value is equal to a positive and small number
that corresponds to the energy of the noise [32].

Algorithm 1 Sparse Representation Based Classification
(SRC)

1. Input: the matrix of training samples Y i ∈ RN×S , a test
sample y ∈ RN (collect EEG signals for different states,
i(i = 1, 2, . . . ,C) and divide the signals into two parts
for training and testing)

2. Learn the dictionaries φi(φ1 for i = 1, φ2 for i =
2, . . . , φC for i = C) using dictionary learning algo-
rithm.

3. Learn the sparse representations X i(i = 1, 2, . . . ,C)
by expanding a test sample y on all the dictionaries
(φ1, φ2, . . . , φC ), using OMP.

4. Calculate errors ri(i = 1, 2, . . . ,C) defined in Eq. (3).
5. Output: identify (y) using compute i∗ defined in Eq.

(3). Finding the minimum error, the sample y can be
classified into the corresponding state.

III. THE PROPOSED METHOD VIA DICTIONARY
LEARNING AND SPARSE REPRESENTATION-BASED
CLASSIFICATION
In this section, the suggested method to automatically clas-
sification of epileptic seizure states is described. The block
diagram of our work can be found in Fig. 3.

In the first phase, the recorded signals are divided into
two subsets of test and training data (data collection). In the
second phase, the dictionary matrices are updated for the
different classes using the training data (dictionary learning).
The sparse representation of the test data is obtained in the
third stage using the dictionary matrices from the dictio-
nary learning phase and then, they are reconstructed (recon-
struction phase). Finally, in the fourth phase, the automatic
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identification of epileptic seizures is performed based on the
difference between the initial (original) and the reconstructed
signals from the third stage (classification phase). In the
upcoming subsections, at first, online dictionary learning
algorithm is discussed, followed by the introduction of the
proposed classification procedure and its parameters.

A. THE PROPOSED DICTIONARY LEARNING
In general, the dictionary is referred to a set of atoms
(columns of the dictionary matrix), which can be used to
represent underlying data as a linear combination of its atoms.
Dictionaries which are used to obtain sparse representation
for the signals are called sparsifying dictionaries and divided
into two categories of deterministic and training-based dictio-
naries. Deterministic sparsifying dictionaries are not depen-
dent on the underlying signal, like FFT and DCT bases
matrices, while the entries of the training-based sparsifying
dictionaries are completely dependent on the signal to be
represented. Training-based dictionaries are signal-specific
and can obtain the sparsest representation of a specific sig-
nal. Dictionary learning algorithms use training data in two
manners: batch learning methods and sequential learning
methods. In batch learning, the whole training data is used at
once in order to obtain the atoms of the sparsifying dictionary.
This method often has high computational burden, while
the sequential methods in which the training data is utilized
in a sequential manner have relatively lower computational
burden. In online dictionary learning (a kind of sequential
learning), starting from an initial solution/guess for the dic-
tionary, its atoms are updated in a recursive manner as the
new training data becomes available. In this paper, a new
online dictionary learning algorithm, namely, correlation-
based weighted recursive least square update (CBWRLSU),
is proposed to update the atoms of the dictionary one by
one based on their correlation with the new training data.
This method has two major advantages: First, it significantly
reduces the computational burden of heavy matrix-inversion
by reducing the dimension of the matrix, which should be
inverted. Second, it prevents the updating of the unnecessary
atom. Algorithm 2 shows the summary of CBWRLSU dictio-
nary learning [33].

In this work, instead of the forgetting factor, a new data cor-
relation with the previous data is used and the data correlated
with the new data is used to update the atoms of the dictionary
as well as the new data from the correction coefficient given
in [33].

B. SRC USING PROPOSED CBWRLSU DICTIONARY
LEARNING
First of all, for the collected signals of epileptic seizure states,
the over-complete learned dictionary from training samples
for the state i(i = 1, 2, . . . ,C) using CBWRLSU algorithm
is denoted as φi. Then, the sparse representation for a test
data y (of unknown label) will be obtained using all of the
C learned dictionaries, leading to their corresponding sparse
representations as Xi, i = 1, 2, . . . , C. The reconstruction

error for the test data y using the sparsifying dictionary from
i-th state, i.e., ei, can be calculated as:

ei = y− φiX2
i2 (5)

Algorithm 2 Proposed CBWRLSU Dictionary Learning
Algorithm Method
1. Initialize φ and C
2. For (i = 1 : L)
3. Get the new training data yi
4. Find X i, sparse representation of yi, using OMP
5. Find�

(
yi
)
, indices of previous signals which use com-

mon atoms in their sparse representation with yi
6. Find Y

(
yi
)
∈ Rm×qi , the set of all previous signals

correlated with yi
7. Find φ

(
yi
)
, the subset of φ which deals with Y

(
yi
)

8. For (j = 1 : q)
9. Calculate uj

(
yi
)
= C−1j−1

(
yi
)
X j
(
yi
)

10. Calculate ej
(
yi
)
= Y j

(
yi
)
− φj−1

(
yi
)
X j
(
yi
)

11. Calculate ωj (yi), the correction weight using
ωj (yi) = 1

‖ ej(yi)‖
2
2

12. Calculate step size β j using β j =
ωj(yi)

1+ωj(yi)X
T
j (yi)uj(yi)

13. Update φj
(
yi
)
using

φj+1
(
yi
)
= φj

(
yi
)
+ β j+1ej+1

(
yi
)
uTj+1

(
yi
)

and normalize its columns
14. Update C−1j

(
yi
)
for next step using

C−1j+1 (yi) = C−1j (yi)− β j+1uj+1 (yi)u
T
j+1

(
yi
)

15. end
16. Replace the updated atoms of φj

(
yi
)
into the original

dictionary φ
17. Update sparse coding of yi using OMP
18. end

Finally, the data will be assigned a label, j∗, based on the
solution of the following optimization problem:

j∗ = argminei
i=1,...,C

(6)

This procedure is depicted in Fig. 4. According to Fig.4, the
main procedure of the proposed method shall be as follows:

(a) Dictionary learning: supposing there are C predefined
patterns of the raw signals, a series of dictionaries φi (i =
1, 2, . . . ,C) can be learned from the signals in each category
via CBWRLSU algorithm, respectively. All the dictionaries
are employed to construct a whole dictionary φ.

(b) Sparse coding: for a test sample belonging to a certain
category, the sparse representation problem can be solved
based on the whole dictionary φ. Then, the sparse represen-
tation vector containing diagnosis information is utilized for
further identification and classification.

(c) Classification: all the errors ei of the test sample can
be calculated. Finding the minimum error, the sample can be
classified into the corresponding pattern.

The trial and error procedure shall be followed to determine
the parameters of this work. This method is described in the
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FIGURE 4. Block Diagram for automatic identification of epileptic seizures.

TABLE 1. Nine different classification cases considered in this study and
their description.

results section step by step. Since the length of each segment
is considered to be equal to the length of the sample data
(4097 samples), the dimensions of the sparsifying dictionary
are set to 4097× 6000. In the training and testing processes,
90% of the data is randomly used for training and the remain-
ing 10% for testing and 10-fold cross-validation is used to
evaluate the classifier. The sparsity parameter k is empirically
set to 10 for both learning and classification procedures.

IV. SIMULATION RESULTS
The simulation results of our study are presented in this
section. The simulations are conducted on a PC with 8 GB
of RAM and a 1.6 GHz core i5 CPU. In order to assess
the classification performance of the proposed algorithm in
different scenarios in terms of complexity as well as clinical
relevance, nine different scenarios (namely case I to IX in
Table. 1) were considered based on different combinations of
the five existing EEG subsets (A, B, C, D and E) introduced in

Section 2.1. These cases consist of four 2-class, three 3-class,
and one 4-class as well as one 5-class problems, constituting
a more practical as well as a fair testbed to compare with the
existing state-of-the-art. In order to visually asses the recon-
struction performance of the proposed algorithm, a random
sample is picked from each of the subsets and the original
and reconstructed signals are plotted in Fig. 5, which shows
that the reconstructed signals are quite consistent with the
original ones. In order to gain more insight, the reconstructed
signals of 90 samples of each subset (for training dataset) are
shown in Fig. 6 at a particular time instance. Furthermore,
as a quantitative measure for the reconstruction performance,
the normalized reconstruction error (E = y − ŷ/y), for the
segment of the signal in Fig. 6 is computed and plotted in
Fig. 7. Accordingly, it can be concluded that the samples
could be efficiently encoded as sparse representations using
learned atoms. To put it more clearly, we chose one test
sample from each subset (A, B, C, D and E) and the sparse
representation coefficients of these five test samples based on
their corresponding learned dictionaries are given in Fig. 8.

In terms of the computational complexity of the dictionary
learning procedure, the runtime of the proposed algorithm
for training each dictionary using the corresponding train-
ing dataset is roughly 28 minutes. In other words, a total
of 140 minutes was spent on training 5 dictionaries (for each
subset), while only 6 seconds were spent on classifying the
total testing dataset given the trained dictionaries.

In order to evaluate the classification of the suggested
study for 9 different predefined cases, the classification per-
formance in terms of accuracy, sensitivity, and specificity is
shown in Table. 2. It is evident from Table. 2 that among
various clinically important cases, maximum accuracy, sen-
sitivity, and specificity for 8 out of 9 predefined cases is
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FIGURE 5. Original and reconstructed signals for each subset (A, B, C, D and E) for the sample no 50.

FIGURE 6. 90 samples of the reconstructed signals (for training dataset) at a particular time for each subset.

FIGURE 7. Reconstruction error (E = y − ŷ/y ) for the samples of the subsets in Fig. 5.

obtained, which is 100 percent, while the accuracy, sensitiv-
ity, and specificity for the remaining VIII case are still very
promising.

The different parameters of the proposed method are accu-
rately regulated. The trial and error method was used to adjust
these parameters. In this method, in the first step, to determine
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TABLE 2. Nine different classification cases considered in this study and
their description.

FIGURE 8. 90 samples of the reconstructed signals (for training dataset)
at a particular time for each subset.

FIGURE 9. Accuracy of the classification obtained for the different
sparsity values in the 8th scenario.

the optimum value of the sparsity parameter k, different
sparsity values are considered for the constant value of M.
As shown in Fig. 9, setting the value to 10 for the k parameter
will have the highest accuracy for the 8th scenario. According
to Table 3, as the value of k increases, training time will also
increase. For further examination of Table. 3, it is noted that
if the value of k is selected 5 or 1, the training time will be
reduced, but in this cases, according to Fig. 9, the accuracy in
the range will not be as high as possible. Therefore, according
to what has been said, the optimum value for k in terms of
accuracy and speed will be 10. Then, in the second step,
different values of M are considered for determining the

TABLE 3. Nine different classification cases considered in this study and
their description.

TABLE 4. The computational efficiency of training time for different
dictionary dimensions.

optimum number of columns of the dictionary (M) for the
constant value of the k parameter. According to Fig. 10, if the
value of M is greater than the value of 4097 (over complete
dictionary), the accuracy value will be increased, andwhen its
value is set to 6000, it is observed that the accuracy reaches
its maximum value (approximately 95%). After that, as the
M value increases, the accuracy remains almost constant.
In addition, the smaller the value of M than 4097 (under
complete dictionary), the accuracy value is also reduced.
For the value of M equal to 4097 (complete dictionary), the
accuracy value is approximately 82%. Therefore, it can be
stated that the optimum values for the number of columns in
the dictionary are M ≥ 6000. Also, according to Table. 4,
by reducing the value of M, the training time of the proposed
algorithm is also reduced, but in this situation the accuracy is
not acceptable. According to Fig. 10 and Table. 4, the optimal
value (both in terms of accuracy and time) the choosing of
dictionary dimensions is 6000.

During recent years, several automatic seizure detection
methods using EEG signals were proposed. In Table. 5,
we compared various studies conducted on the same database
to classify different predefined cases using EEG signals.
The best results are highlighted in boldface. It is clear from
Table. 5 that our method offers the highest accuracy, sensitiv-
ity, and specificity for all 9 cases among all the comparative
methods. In previous studies, common methods such as WT,
EMD, etc. were used to extract the important characteristics
and features of the signal, involving some common problems
regarding the parameters of the feature selection/extraction
procedure such as choosing the type of the mother wavelet,
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TABLE 5. The performance of the proposed method compared with the other methods on the Bonn EEG database.

the number of decomposition levels, and etc. One of the
most important advantages of our study compared with the
other methods is that the feature extraction is automatically
done based on dictionary learning, and no feature selection
procedure is needed.

To illustrate the performance of the proposed CBWRLS
method with various data types as input, the classifica-
tion accuracy is obtained using the other common methods
for 3 different predefined cases (I, III, and VIII). In this
regard, time data and several manual features from time data

along with BPNN and SVM are selected as the compara-
tive methods [43]–[46]. The Gaussian Radial Basis Func-
tion (RBF) is used as the kernel function of the SVM, and the
grid search method is used to optimize the kernel parameters.
In order to achieve better results from the BPNN model, the
number of layers and hyper-parameters are adjusted by differ-
ent data types. The parameters of the minimum, maximum,
skewness, crest factor, variance, root mean square (RMS),
mean, and kurtosis are chosen as the manual features of the
time domain (time features) [47]. The testing accuracy of the
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TABLE 6. The testing accuracy of different methods for identification of epileptic seizures for 3 different predefined cases (I, III and VIII).

FIGURE 10. Accuracy of the classification obtained for the different
dictionary dimensions in the 8th scenario.

different methods based on the feature learning from raw data
and the manual features are presented in Table 6, where the
result of the proposed CBWRLSU method is marked in bold.

Comparing the performance of feature learning and man-
ual features, feature learning from raw time data with the pro-
posed CBWRLS method provides better results than manual
features. This result is significantly correlated with the unique
Algorithm 2 of the proposed CBWRLS method, which can
automatically extract the useful features for classification.
While proposed CBWRLS has a better result with feature
learning from raw time data, all the tested models, including
CBWRLS, BPNN and SVM provide similar results with
manual features. This indicates that the CBWRLS cannot
achieve further more improvements in the identification of
epileptic seizures than traditional methods without the ability
of feature learning.

In order to assess the performance of the suggested
work against observation noise, the white Gaussian noise of
SNR -20 to 20 dB is added as the measurement noise to the
EEG signals and the classification accuracy for all 9 cases
is reported in Fig. 11. As it is seen, the classification per-
formance of the suggested method is considerably robust to
the measurement noise in a wide range of SNR, such that the
accuracy is still more than 80% for SNR of -4 to 20 dB.

Due to the high performance of the proposed algorithm
classification for automatic detection of various stages of
epileptic seizures, In the near future, it is felt that using
the proposed method as an intelligent medical assistant in
the emergency departments (EDs) can detect non-convulsive
status epilepticus (NCSE) cases quickly and automatically.
Non-convulsive seizure (NCS) is defined as a cerebral ictal

FIGURE 11. Accuracy of the suggested algorithm versus SNR in additive
white Gaussian noise scenario.

activity with no clear clinical evidence of motor activ-
ity [48], [49]. This is the root cause of approximately 5 per-
cent of patients with altered mental status (AMS) presenting
to the Emergency Department (ED). Nearly half of these
NCS cases are in the form of non-convulsive status epilep-
ticus (NCSE) [50]. The mental shift can be in the form of
confusion, lethargy, delirium, anxiety, coma, or even depres-
sion or improper behavior. Electroencephalography (EEG)
continues to be the gold standard for NCS diagnoses. EEG
is however not routinely available in most EDs [51], [52].
The treatment of this time-sensitive neurological emergency
is still a challenge for emergency physicians. Therefore,
the diagnosis of this time-sensitive neurological emergency
remains a challenge for emergency physicians. However, in
another study, it is necessary to examine the performance of
the proposed algorithm in a comprehensive database of NCSE
cases. The use of the proposed method is expected to reduce
the mortality rate from NCSE cases.

Despite the contributions, this work has some limitations,
as with other previous studies. First, notwithstanding the use
of the Bonn database, a clinical validation study based on a
bigger dataset is still necessary. Second, the training time of
the proposed algorithm is relatively high, which can be solved
using graphical processing unit (GPU) systems.

V. CONCLUSION
In this paper, a new method for automatic identification
of epileptic seizures is presented using SRC and proposed
dictionary learning. In this study, the EEG signals are used
to separate 2 to 5 classes in 9 different scenarios using the
dataset recorded at the University of Bonn. We achieved
100% accuracy, sensitivity and specificity for all scenarios
except C-VIII, which is very promising compared to the
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state-of-the-art seizure detection approaches. Furthermore,
it is shown that the our method is robust to the measurement
noise of level as much as 0 dB. Due to fatigue and the need for
expert human resources, detection of the various states of the
epileptic seizure based on visual examination is unpleasant,
time-consuming, and erroneous and also leads to low accu-
racy in the identification. However, with the expansion of the
proposed method, this method can be used in the near future
as a medical assistant to automatically detect the various
states of the epileptic seizure from EEG signals with an
accuracy of more than 95%. Also, the proposed algorithm can
also be used to automatically detect the non-convulsive status
epilepticus (NCSE), which is a big challenge by physicians to
diagnose. Automatic identification of the epileptic seizure not
only causes quick diagnosis but also reduces the workload of
doctors and is very effective in timely treatment and reduction
of patient mortality.
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