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ABSTRACT Massivemachine type communication (mMTC) serves an irreplaceable role in the development
process of the Internet of Things (IoT). Because of its characteristics of massive connection and sporadic
transmission, compressed sensing (CS) has been applied in joint user activity and data detection in the uplink
grant-free non-orthogonal multiple access (NOMA) system. In previous work, greedy iterative-based multi-
user detection (MUD) algorithms were developed in mMTC scenarios because of the computational benefit
and competitive performance. However, conventional greedy iterative-based MUD algorithms still suffer
from high computational complexity due to the process of large-size matrix inversion with the accession
of massive devices into the system. In this paper, gradient information is used to address this problem. A
low-complexity gradient descent-based gradient pursuit MUD (GDGP-MUD) algorithm is proposed, which
uses the gradient information of error function in the process of iteration as a new updating direction,
instead of the matrix inversion process. Then, a multi-step quasi-Newton MUD (MSQN-MUD) algorithm
is proposed to improve the precision of detection while maintaining low complexity. In the algorithm, high-
order information in the process of adjacent iteration is used effectively to update data valuesmore accurately.
Moreover, the convergence and complexity analysis of both algorithms are derived. The analysis shows that
both proposed algorithms have lower computational consumption than most of the state-of-the-art greedy-
based MUD algorithms. It is worth noting that in comparison to most existing CS-based MUD algorithms,
the two proposed algorithms do not require the exact user sparsity level and, thus, reduce the dependence on
prior knowledge. The numerical experiments demonstrate that the proposed algorithms have better real-time
performance than existing greedy-based MUD algorithms with similar symbol error rate performance.

INDEX TERMS Massive machine type communication (mMTC), non-orthogonal multiple access (NOMA),
multi-user detection, compressed sensing, gradient method.

I. INTRODUCTION
Massive machine type communication is expected to be
a key technology enhancement for 5th-generation wireless
networks [1], offering characteristics of massive connectiv-
ity, low latency, low power, short-message packets, sporadic
communication, etc. To meet the requirements of massive
connectivity, non-orthogonal multiple access (NOMA) is
considered an essential enabling technology for mMTC [2].
The key idea behind NOMA is to serve multiple devices in
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the same physical channel, which can support more connec-
tivity as compared to conventional orthogonal multiple access
(OMA) techniques [3].

In the existing long-term evolution (LTE) system, the base
station (BS) allocates different time-frequency resources to
each accessed user in a request-grant manner so that the
receiver knows which user is active or inactive. Compared to
the LTE system, multiple user signals will be superimposed
within the same time-frequency resources, the user activity
is unknown to the BS in uplink grant-free NOMA, and the
receiver needs to detect user activity and decouple these
superimposed signals. In [4], a message passing algorithm
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(MPA) receiver has been employed for different signature-
based NOMA (S-NOMA) schemes to implement MUD,
which results in zero probability of error in the absence of
noise. However, it exhibits the problem that activity informa-
tion should be known in advance, which offers little obvious
advantage in the grant-free scheme.

The grant-free NOMA system is considered a candidate
to reduce signaling overhead and transmission delay. The
BS does not allocate different channel resources for users.
Since the numbers of active devices are far smaller than
total devices, the characteristic of sparsity is satisfied. The
framework of compressive sensing could be introduced to
MUD in the uplink grant-free NOMA system, which has
inspired us to design low-complexity MUD algorithms based
on CS.

CS is an effective and promising signal processing tech-
niques, which has been widely used in many aspects of com-
munication systems, including joint source-channel-network
coding [5], channel estimation [6], [7], spectrum sensing [8]
and so on [9], [10]. In addition, CS has been extensively
investigated in MUD [11]–[25]. In view of the different
streams of the literature, compressive sensing can be divided
into three categories: convex optimization algorithms, greedy
iterative algorithms and Bayes algorithms. Convex optimiza-
tion algorithms attribute CS to the sparse LS (least squares)
problem, using convex optimization to solve, greedy iterative
algorithms via fast iterative computation for the joint detec-
tion of user activity and data, and Bayes algorithms relying
on a posterior probability to judge active users and data [7].
However, due to the computational benefit and competitive
performance, greedy iterative algorithms are widely used in
mMTC scenarios [26].

In [27]–[30], greedy iterative algorithms, i.e., orthogo-
nal matching pursuit (OMP) [27], group orthogonal match-
ing pursuit (GOMP) [28], compressive sampling matching
pursuit (CoSaMP) [29], and subspace pursuit (SP) [30],
have been used to detect user activity and/or data based on
CS. However, the user activity and data are independently
detected in each time slot, which neglects the correlations of
transmitted signals in adjacent time slots. In practice, the sig-
nal transmission usually maintains several continuous time
slots, which brings out the temporal correlation of active user
sets and structured common sparsity in a frame. Therefore,
a dynamic compressive sensing based multi-user detection
(DCS) [15] algorithm has been proposed by exploiting the
temporal correlation. Instead of using an empty set as initial
active user set in each time slot, the current active user
set has been regarded as the initial set of user activity in
the next time slot. Based on the DCS algorithm, a prior-
information-aided adaptive compressive sensing (PIA-ASP)
algorithm [16] has been put forward to enhance the SER
performance.

Apart from temporal correlation, the exploitation of
the structured common sparsity of a frame can improve
MUD performance. An iterative order recursive least square
(IORLS) algorithm [17] and an alternative direction method

of multipliers (ADMM) [18] were proposed by exploiting
the structured common sparsity. In the two algorithms above,
user activity is assumed to remain unchanged within the
entire frame. However, in the MTC scenario, user access
is random and usually involves transmitting short packets.
A more general scenario is that the active user sets maintain
certain structured features but can be changed in a frame,
which is called the burst-sparsity model [16]. In this scenario,
the structured matching pursuit (SMP)-based dynamic MUD
(hereafter referred to as SMP) was proposed in [19], and the
active user sets have been divided into common user sets
and dynamic active user sets. The SMP algorithm achieves
better SER gain as a benefit of exploiting structured common
sparsity, but the frequent implementation of matrix inversion
leads to high computation complexity. Additionally, the user
sparsity level supported advance knowledge at the BS, and
this assumption is unrealistic. Block-sparsity-basedMUDhas
been used in [20], and the author proposed threshold aided
block sparsity adaptive subspace pursuit (TA-BSASP) and
cross-validation by statistics and machine learning mecha-
nisms (CVA-BSASP), which do not require user sparsity
level as prior information. The former exploits a threshold to
terminate iteration, while the latter adopts the statistical and
machine learning mechanism cross-validation to determine
the stopping condition. These algorithms still suffer from
high computational complexity due to the process of large
size matrix inversion with the access of massive devices into
the system.

To reduce the computational complexity and enhance real-
time performance, the gradient information was introduced
into MUD. We propose two novel gradient-based algorithms
to exploit the gradient information of the error function to
avoid matrix inversion. Furthermore, the computational com-
plexity analysis and comparison are provided. Numerical
experiments show that the two proposed algorithms have
lower computational complexity and higher real-time per-
formance compared with the existing structured CS-based
algorithms.

We summarize our major contributions as follows:
To reduce computational complexity, a low-complexity

first-order gradient pursuit-based MUD algorithm (GDGP-
MUD) is proposed. The MUD is modeled as an opti-
mization problem, and the first-order gradient of the error
function is introduced in the iterative process as the updating
direction to update the data value. The analysis and exper-
imental results show that the GDGP-MUD algorithm has
lower complexity and higher real-time performance than its
counterparts.

TheMSQN-MUD algorithm is proposed. The main idea of
MSQN-MUD is that the weighted average value of two-order
derivative gradient information between two successive itera-
tions is introduced to improve SER performance. To avoid the
calculation of the two-order derivative and matrix inversion,
an approximate positive definite symmetric matrix is intro-
duced to replace the inverse matrix of Hessian matrices (two-
order derivative).
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In dynamic user information detection, the revised conver-
gence condition has been adopted to allow for faster con-
vergence and the avoidance of requiring prior information
(sparsity), as in most state-of-the-art CS-based MUD algo-
rithms. In contrast with algorithms that rely on residual value
to determinewhether to terminate loops, our algorithms adopt
modified residual value, which is deduced via received signal
minus revised estimated symbols to break iterations.

The rest of this paper is presented as follows. In Section II,
we introduce the system model based on the burst spar-
sity model. Then, we show two proposed algorithms,
GDGP-MUD and MSQN-MUD, in Section III. Conver-
gence and complexity analyses are presented in Section IV.
In Section V, we simulate the proposed algorithm and com-
pare it with the respective former literature publications.
Finally, we present the conclusions in Section VI.

II. SYSTEM MODEL
We consider an uplink grant-free NOMA scheme for a
mMTC scenario, where M users transmit signals to the BS.
Due to their size limitation, all user terminals are equipped
with a single antenna. We assume that the system uses N
subcarriers, where N < M . The BS can be configured with
single or multiple antennas. If the BS has multiple antennas,
then diversity gain can be provided at the receiver. For sim-
plicity, we use the single-antenna receiver model. The trans-
mitted symbol is spread onto a unique spreading sequence sm
with length N , which is known at the BS station. Therefore,
the received signal of BS in j slot is formulated as follows:

yj =
M∑
m=1

gnmsnmxm(j)+ zj, n = 1, . . . ,N (1)

where xm(j) represents the mth user transmit signal in j slot. zj
is the noise at j slot that follows complex Gaussian distribu-
tion with 0 mean and σ 2 variance. snm is the nth component
of the spreading sequence of sm. gnm is the channel gain in
the nth channel of the mth user, and the identically and inde-
pendently distributed (i.i.d.) complex Gaussian variables with
zero mean and unit variance, i.e., Rayleigh fading channel,
is considered in this paper. The received signal at j slot can be
rewritten as follows:

yj = Axj + zj, j = 1, 2, . . . , J (2)

A ∈ CN×M is the equivalent channel matrix for which
the element of the nth row and kth column is gnmsnm. A is
formulated as follows:

A =

 g11s11 . . . g1M s1M
...

. . .
...

gN1sN1 · · · gNM sNM

 (3)

It is assumed that A remains unchanged over the entire
frame time because the length of a frame is designed to
be shorter than the channel coherence time. In the receiver,
the equivalent channel matrixA could be deduced by channel
estimation technology.

Because of the characteristics of the sporadic transmitting
signal, CS knowledge can be utilized to jointly detect active
user location and recover the transmission signal. There are
several characteristics in the realistic communication sys-
tem, including the following: 1) users can randomly con-
nect or leave the system, and 2) there are some correlations
in adjacent consecutive time intervals for user transmission
data. The burst-sparsity model [16] has been considered in
this paper, where only a small percentage of user activity will
change.

We refer to users who remain active within a frame as
common active users, while users whose activity has changed
are called dynamic active users. The union of the dynamic
active user set and the common active user set is called the
support set. The number of total usersM is far larger than the
active user number K .

We assume that each user switches their activity and trans-
mits a signal in an identical slot. For an active user, the trans-
mitting signal value after the channel code is taken from a
complex constellation set is3, while the transmit signal value
of an inactive user is equivalent to zero.

III. PROPOSED ALGORITHM
In this section, we propose two low-complexity MUD algo-
rithms to jointly detect user activity and data. In essence, our
proposed algorithms are both based on the gradient pursuit
framework, but they are different from the classical pursuit
framework. More specifically, we derive the common active
user set and dynamic active user set of support in the burst-
sparsity model so that we can detect common active user
information (C-MUD) and dynamic active user information
(D-MUD), respectively. Additionally, unlike the classical
gradient pursuit framework, which only relies on residuals to
determine the termination condition, two methods have been
individually adopted into C-MUD and D-MUD to terminate
iteration.

The goal of C-MUD is to find all common active users that
have fixed locations in a frame and to reconstruct the estimate
signal x̂0C ,j. When the locations and data of all common
active users have been detected, the information is used as
a priori information to jointly detect dynamic active user
location and data in D-MUD. First, we set an iteration termi-
nation parameter S, which relies on experience to determine
whether to terminate the C-MUD part. It is not necessary
for S to precisely match the length of the common active
user set. This is because the information detected by C-MUD
is not the final output data so that we can approximately
detect it in C-MUD. Then, one frame gradient is accumulated
for each user to justify the maximum gradient user index
update common active support set 0C , which is expressed
as follows:

0C = 0C ∪ argmax
J∑
j=1

|G(m, j)|2 (4)
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G(:, j) = AHr (s−1)j . In C-MUD, the estimated signal is for-
mulated as follows:

x̂s0C ,j = x̂s−10C ,j + a
s
jd

s
j (5)

where d and a represent update direction and step size,
respectively, and using different methods to solve for d will
result in different algorithms. When S iterations are com-
pleted, x̂S0C ,j, r

S
j , and 0C will serve as prior information to

detect user activity and data in D-MUD.
The goal of D-MUD is to detect dynamic active user infor-

mation and revise detected information in the former part.
The D-MUD steps are essentially similar to those of the C-
MUD, but there are some differences. In this part, we do not
require setting an iteration termination parameter but rather
rely on a revised residual to determine the break iteration.
We stop iterations until the revised residual value is no longer
reduced.

The revised residual is defined as follows:

r_reviseij = yj − Ax̃ij (6)

where x̃ im,j =
{
3 if m ∈ 0i

0 otherwise
Furthermore, it is not necessary to accumulate the gradients

in one frame, and only the gradients in the individual time
slots need to be calculated. Because the locations of dynam-
ically active users are not fixed, we have to search for them
by time slot.

A. GDGP-MUD
Conventional greedy multi-user detection algorithms often
require the matrix inverse process or pseudo-inverse process
to reconstruct the transmitted signal. While matrix inver-
sion requires i3

3 multiplication operations, matrix pseudo-

inversion requires i3
3 + (N + 1)i2 + Ni multiplication oper-

ations, which we specifically analyse in Section IV. The
gradient descent method based on gradient pursuit [31] uses
the derivative information of the objective function as the
new update direction in each iteration to reconstruct the trans-
mission signal. We can formulate the update direction d ij as
follows:

d ij = −g
i
0i,j (7)

The detail of GDGP-MUD is shown in Algorithm 1.

B. MSQN-MUD
The Newton method is one of the most effective methods to
solve the unconstrained optimization problem, which utilizes
the first and second derivatives of the objective function to
update the direction.

The update direction is expressed as follows:

∇
2f (x i)d = −∇f (x i) (8)

where ∇f (x i) and ∇2f (x i) are represented as the first-order
and second-order Hessian matrices of the objective func-
tion, respectively. However, as the users transmit signal is

Algorithm 1 GDGP-MUD
Input:

Received signals: y1, y2, . . . , yJ
Equivalent channel matrices: A

Output:
Reconstructed sparse signals: x̃i−11 , x̃i−12 , . . . x̃i−1J
Initialize

1: 0C = ∅, r0j = yj, i = 0, j = 1, 2, . . . , J ;
C-MUD:

2: for s = 1 : S, make

3: 0C = 0C ∪ argmax
T∑
t=1
|G(m, j)|2, where G(:, j) =

AHr (s−1)j
4: d sj = −g

s
0C ,j = −G(0C , j)

5: csj = A0C d
s
j

6: asj =

〈
rsj ,c

s
j

〉
∥∥∥csj∥∥∥22

7: x̂s0C ,j = x̂s−10C ,j + a
s
jd

s
j

8: rsj = rs−1j − asj c
s
j

9: end for
D-MUD:

10: 0i = 0C , i = 1,r0j = rSj ,x̂
0
j = x̂Sj

11: for j = 1 : J , make
12: while i = 1 or ‖r_reviseij‖

2
2 ≤ ‖r_revise

i−1
j ‖

2
2

13: i = i+ 1
14: 0i = 0i ∪ argmax

m

∣∣gm,j∣∣2, where gj = AHr (i−1)j

15: d ij = −g
i
0i,j

16: cij = A0id
i
j

17: aij =

〈
r ij ,c

i
j

〉
∥∥∥cij∥∥∥22

18: x̂i
0i,j = x̂i−10,j + a

i
jd
i
j

19: r ij = r i−1j − aijc
i
j

20: x̃ im,j =
{
3 if m ∈ 0i

0 otherwise
21: r_reviseij = yj − Ax̃ij
22: end while
23: end for

increased, the solution of the update direction requires more
complex matrix inverse. To reduce the computation complex-
ity, the positive definite symmetric matrix H, which utilizes
the gradient information from the previous p steps to estab-
lish an extended quasi-Newton equation to approximate the
Hessian matrix of the objective function by an interpolation
polynomial, is used to replace the inverse of the second-
order Hessian matrix ∇2f (x i)−1 in Newton’s method [32].
Hence, the update direction in the ith iteration is indicated
as follows:

d ij = −H
i
j∇f (x

i) (9)
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Moreover, w and t denote estimated signal interpolation
and gradient interpolation, respectively.

wij = x̂ij − x̂i−1j (10)

t ij = ∇f (x
i)−∇f (x i−1) (11)

According to the derivation of the interpolation polyno-
mial, the linear combinations of the first p terms {wi−q}p−1q=0

and {t i−q}p−1q=0 are represented by u
i
j and v

i
j, respectively.

uij =
p−1∑
q=0

wi−pj


p∑

i=p−q

ζ ′i (τp)

 (12)

vij =
p−1∑
q=0

t i−pj


p∑

i=p−q

ζ ′i (τp)

 (13)

ζ ′o(τp) = (τo − τp)−1
l−1∏

q=0,q 6=o

τp − τq

τo − τq

= (−1)p−o
p!

(p− o)!o!(p− o)!
(14)

ζ ′p(τp) =
p−1∑
q=0

(τp − τq)−1 =
p∑

o=1

1
o

(15)

where ζ ′p(τ ) is the first derivative of the ith-order of the pth
standard Lagrange polynomial of the set τp. The multiple
quasi-Newton equation is expressed as follows:

Hi+1
j vij = uij (16)

In this paper, we consider the two-step quasi-Newtonian.
Letting p = 2, uij and v

i
j can be updated.

uij =
3
2
wij −

1
2
wi−1j (17)

vij =
3
2
t ij −

1
2
t i−1j (18)

The update method of the approximate matrix Hi
j is the

same as the following:

Hi+1
j = Hi

j −
Hi
jv
i
j(v

i
j)
HHi

j

(vij)
HHi

jv
i
j

+
uij(u

i
j)
H

(uij)
H
vij

(19)

Embedding the idea of the multi-step quasi-Newton
method into the framework of gradient pursuit, we propose a
new multi-user detection method, called MSQN-MUD. The
update direction with the multi-step quasi-Newton method in
every iteration is equivalent to Eq. 20.

d ij = −H
i−1
j gi

0i,j (20)

The specific steps of the MSQN-MUD algorithm are
shown in Algorithm 2.

IV. PERFORMANCE ANALYSIS
In this section, we analyse the convergence and computa-
tional complexity of the proposed GDGP-MUD and MSQN-
MUD algorithms.

Algorithm 2 MSQN-MUD
Input:

Received signals: y1, y2, ..., yJ
Equivalent channel matrices: A

Output: Reconstructed sparse signals: x̃i−11 , x̃i−12 , ...x̃i−1J
Initialize

1: 0C = ∅, r0j = yj, i = 0,H0
j = 1

C-MUD:
2: for s = 1 : S do

3: 0C = 0C ∪ argmax
J∑
j=1
|G(m, j)|2, where G(:, j) =

AHr (s−1)j

4: d sj = −H
s−1
j gs0C ,j = −H

s−1
j G(0C , j)

5: csj = A0C d
s
j

6: asj =

〈
rsj ,c

s
j

〉
∥∥∥csj∥∥∥22

7: wsj = x̂sj − x̂s−1j = asjd
s
j , t

s
j = AH

0C
A0Cw

s
j

8: usj =
3
2w

s
j −

1
2w

s−1
j , vsj =

3
2 t
s
j −

1
2 t
s−1
j

9: using Equation (19), update Hs
j

10: x̂s0C ,j = x̂s−10C ,j + a
s
jd

s
j

11: rsj = rs−1j − asj c
s
j

12: end for
D-MUD:

13: 0 = 0C , i = 1,r0j = rSj ,x̂
0
j = x̂Sj ,H

i
j = HS

j
14: for j = 1 : J do
15: while i = 1 or ‖r_reviseij‖

2
2 ≤ ‖r_revise

i−1
j ‖

2
2

16: i = i+ 1
17: 0i = 0i−1 ∪ argmax

m

∣∣gm,j∣∣2, where gj = AHr (i−1)j

18: d ij = −H
i−1
j gi

0i,j
19: cij = A0i,jd

i
j

20: aij =

〈
r ij ,c

i
j

〉
∥∥∥cij∥∥∥22

21: wij = x̂ij − x̂i−1j = aijd
i
j , t

i
j = AH

0i,jA0i,jw
i
j

22: uij =
3
2w

i
j −

1
2w

i−1
j , vij =

3
2 t
i
j −

1
2 t
i−1
j

23: Compute Hi
j using Equation (19);

24: x̂i
0i,j = x̂i−1

0i,j + a
i
jd
i
j

25: r ij = r i−1j − aijc
i
j

26: x̃ im,j =
{
3 if m ∈ 0i

0 otherwise
27: r_reviseij = yj − Ax̃ij
28: end while
29: end for

A. CONVERGENCE ANALYSIS
The GDGP-MUD and MSQN-MUD algorithms, similar to
the GP algorithm, should have global convergence to achieve
user activity and data detection. Since the revised residual
value has been applied to break iteration, we propose theorem
1 to prove the optimality of the algorithms.
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Theorem 1: for both algorithms, there exists a constant c <
1, which only depends on A, such that the revised residual
value decays as

‖r_reviseij‖
2
2 ≤ c‖r_revise

i−1
j ‖

2
2 (21)

Proof: the revised residual can be formulated as
r_reviseij = yj − Ax̃ij, and we can obtain

r_reviseij − r_revise
i−1
j = A(x̃i−1j − x̃ij) (22)

After phase shifting, Eq. 22 can be rewritten as

r_reviseij = r_revisei−1j − A(x̃ij − x̃i−1j ) (23)

We can determine that

‖r_reviseij‖
2
2 = ‖r_revise

i−1
j − A(x̃ij − x̃i−1j )‖22

≤ ‖r_revisei−1j − A(x̂ij − x̂i−1j )‖22
= ‖r_revisei−1j − A0i (x̂

i
0i,j − x̂i−1

0i,j)‖
2
2

= ‖r_revisei−1j − aijA0id
i
j‖

2
2

= ‖r_revisei−1j ‖
2
2 −

〈
r i−1j ,A0id

i
j

〉2
‖A0id

i
j‖

2
2

(24)

For the GDGP-MUD algorithm, d ij = −gi
0i,j =

−A0i
Hr (i−1)j , and we can formulate〈

r i−1j ,A0id
i
j

〉2
‖A0id

i
j‖

2
2

=
‖A0i

Hr (i−1)j ‖
4
2

‖A0iA0i
Hr (i−1)j ‖

2
2

(25)

For the MSQN-MUD algorithm, d ij = −H
i−1
j gi

0i,j =

−Hi−1
j A0i

Hr (i−1)j , and we also can formulate that〈
r i−1j ,A0id

i
j

〉2
‖A0id

i
j‖

2
2

=
‖Hi−1

j ‖
2
2‖A0i

Hr (i−1)j ‖
4
2

‖Hi−1
j ‖

2
2‖A0iA0i

Hr (i−1)j ‖
2
2

=
‖A0i

Hr (i−1)j ‖
4
2

‖A0iA0i
Hr (i−1)j ‖

2
2

(26)

Thus, we can have that

‖A0i
Hr (i−1)j ‖

4
2

‖A0iA0i
Hr (i−1)j ‖

2
2

≥
‖A0i

Hr (i−1)j ‖
4
2

‖A0i‖
2
2‖A0i

Hr (i−1)j ‖
2
2

≥
‖A0i

Hr (i−1)j ‖
2
2

‖A0i‖
2
2

(27)

The residual value can be formulated as r ij = r i−1j −a
i
jc
i
j =

yj − A0i x̂
i
0i,j so that we can have that ‖r ij‖

2
2 ≥ ‖r_revise‖

2
2.

Eq. 27 can be formulated as

‖A0i
Hr (i−1)j ‖

4
2

‖A0iA0i
Hr (i−1)j ‖

2
2

≥
‖A0i

Hr (i−1)j ‖
2
2

‖A0i‖
2
2

≥
‖A0i

Hr_revise(i−1)j ‖
2
2

‖A0i‖
2
2

≥
‖A0i

Hr_revise(i−1)j ‖
2
∞

‖A0i‖
2
2

(28)

According to the nature of the 2 norm and the infi-
nite norm, for any x, there exists ω > 0, which makes
‖AHx‖2∞ ≥ ω‖x‖2∞. Due to the selection procedure,
‖AHx‖2∞ = ‖A

H
0i
x‖2∞. We see that theorem 1 holds for

c = (1− (ω/‖A‖22)).

B. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, we analyse the computational complexity
of the ADMM algorithm proposed in [20], the SMP algo-
rithm proposed in [21], and our two proposed algorithms.
In analysing the complexity, we count floating point opera-
tions (Flops) such as multiplication [23].
To elaborate on the complexity analysis process, we use

the SMP algorithm as an example for analysis. Since it
individually detects common active user information and
dynamic active user information, we divide the two parts to
count SMP Flops. In the signal detection for common active
users, the pseudo-inverse of A0C is required when updating
the residual, where A†

0C
= (AH

0C
A0C )

−1AH
0C

. Therefore,
the Flops of updating the residual is

Cresidual =
S∑
s=1

[
s3

3
+ (N + 1)s2 + 2Ns]J

≈ (
S4

12
+
NS3

3
)J (29)

Apart from updating the residual, the correlation between
the equivalent channel matrix and the residual is calculated
to update common support 0C in the signal detection for
common active users. Thus, the Flops of this step is

C0C =
S∑
s=1

(MN +M )J

≈ MNSJ (30)

In the signal detection for dynamic active users, SMP Flops
is

CSMP,d

=

Ī∑
i=1

[(
2S3

3
+ 2(N + 1)S3 + 3NS +M (N + 2)+ 2N ]

≈ (
2S3 Ī
3
+ 2NS2 Ī +MNĪ )J (31)

Ī is the average iteration number per slot. Combining (29),
(30) and (31), we formulate SMP Flops as

CSMP = [
S4

12
+

(N + 2Ī )S3

3
+ 2NS2 Ī +MN (S + Ī )]J (32)

As mentioned in Section 3, as in the SMP, our proposed
algorithms can also be divided into two parts. However,
the difference is that SMP relies on the exact active user
number to terminate the common support update, and our
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algorithms rely on iteration termination parameter S, where
it is not necessary to be precise to terminate the updating
common support update. Additionally, the matrix or vector
dimension of the SMP algorithm does not extend again in
the dynamic support detection, while the matrix or vector
dimension in our algorithms is expanded with iteration num-
ber increase.

We now analyse the computational complexity of our pro-
posed algorithms. In C-MUD, the Flops of GDGP-MUD
algorithm and MSQN-MUD algorithm are

CGDGP−MUD,c =
S∑
s=1

(MN+M+3N+Ns+s)J

≈ (
NS2

2
+MNS)J (33)

CMSQN−MUD,c =
S∑
s=1

[MN+(N+7)s2+(N+4)s+3N+M ]J

≈ (
NS3

3
+
NS2

2
+MNS)J (34)

Both algorithms require updating the support set, recon-
structing the sparse signal, and computing the step size and
residual: those operations consume MN + M , s and Ns +
2Nand s, respectively. The difference between the GDGP-
MUD algorithm and MSQN-MUD algorithm is that the for-
mer obtains a new update direction via the gradient descent
method, while the latter obtains the update direction via a
multi-step quasi-Newton method. For the GDGP-MUD algo-
rithm, it is not necessary to count new update direction Flops
in each iteration since the new update direction is equal to the
gradient information we compute in the former. Apart from
all required Flops, the MSQN-MUD algorithm requires an
additional (N + 7)s2 + (N + 3)s Flops in C-MUD.

Since the D-MUD part is similar to the C-MUD part,
we will not repeat the analysis. In D-MUD, the GDGP-MUD
algorithm Flops is

CGDGP−MUD,d =
Ī∑
i=1

[2MN +M + 5N + (N + 1)(S + i)]J

≈ (
NĪ2

2
+ NSĪ + 2MNĪ )J (35)

Moreover, theMSQN-MUD algorithm Flops in D-MUD is

CMSQN−MUD,d =
Ī∑
i=1

[2MN+(N+7)(S+i)2

+(N+4)(S+i)+5N+M ]J

≈ [2MNĪ+
N (S+ Ī )3

3
+
N (S+ Ī )2

2
−
NS3

3

−
NS2

2
]J (36)

TABLE 1. Computational complexity comparison of different algorithms.

Combining (33) and (35), we can formulate the Flops of
GDGP-MUD as

CGDGP−MUD ≈ [
N (S + Ī )2

2
+MN (S + 2Ī )]J (37)

Combining (34) and (36), we can formulate the Flops of
MSQN-MUD as

CMSQN−MUD≈ [
N (S+ Ī )3

3
+
N (S+ Ī )2

2
+MN (S+2Ī )]J (38)

For the ADMM algorithm, the Flops of all slots are

CADMM ≈ (
M3 Ī
3
+M2NĪ )J (39)

Table 1 specifically shows the computational complexity
of different algorithms. We observe that algorithm compu-
tational complexity depends on several parameters such as
M , N , J , S and Ī . When M , N , and J remain constant,
the computation complexity of the algorithm is only related
to S and the number of average iterations Ī .

V. SIMULATION
In this section, we verify that our algorithms exhibit per-
formance strength in uplink grant-free NOMA systems.
We use pseudo-random noise as the spreading matrix so
that restricted isometry property (RIP) can be satisfied with
high probability. Additionally, quaternary phase shift keying
(QPSK) is considered. As analysed in Section IV, when M ,
N , and S are determined, the algorithm Flops is only related
to the number of iterations. Since ADMM [18] calculates
all user information (including inactive users), i.e., consumes
(M

3 Ī
3 + M2NĪ )J multiplication operations, where M3 >>

NS2, the Flops of ADMM is far greater than those of other
algorithms. Fig. 1 shows the number of iterations for three
algorithms to complete 1,000 experiments in different SNR
conditions, where M = 200 and N = 100, and there are 15
common active users and 5 dynamic active users. For our pro-
posed algorithm, we select S= 15 as the iteration termination
parameter in the C-MUD part to terminate common support
set searching. Note that the selection of S exerts a minimal
effect on performance, which we analyse in later simulations.

In these conditions, we calculated the average iteration
number per time slot for SMP [19], GDGP-MUDandMSQN-
MUD. Specific values are shown in Table 2. All parameters
are applicable for simulations of Fig. 2, Fig. 3 and Fig. 4.
Fig. 1 and Table 2 indicate that our proposed algorithms have
faster convergence speed.
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Fig. 2 investigates the Flops of different algorithms. From
Fig. 2, we observe that the GDGP-MUD algorithm has a min-
imum Flops in comparison with the other three algorithms.
The MSQN-MUD algorithm Flops is obviously lower than
the SMP [19] algorithm while slightly greater than GDGP-
MUD. This is because the MSQN-MUD algorithm sacrifices
some complexity for performance improvements.

FIGURE 1. Iteration number for different algorithms to complete
1,000 experiments.

TABLE 2. Average iteration number per time slot.

FIGURE 2. Flops comparison.

Fig. 3 depicts the time consumption of different algorithms
in completing 1,000 experiments.We observe that theGDGP-
MUD algorithm completes 1,000 experiments with minimal

time consumption, while the ADMM [18] algorithm con-
tributes to maximum time consumption. This phenomenon
also indicates that one of our proposed algorithms, GDGP-
MUD, has a low computation complexity. For the MSQN-
MUD algorithm, the time consumption is greater than the
GDGP-MUD algorithm. Fortunately, this gap remains within
an acceptable range.

FIGURE 3. Time consumption comparison for 1,000 experiments.

Fig. 4 compares the SER of two proposed algorithms
and three algorithms proposed in the former literature.
We observe that the detection performance of our algo-
rithm not only outperforms ADMM [18] and OMP [27]
but also approaches the detection accuracy of SMP [19].
Combining Fig. 2 and Fig. 3, we conclude that the GDGP-
MUD algorithm and MSQN-MUD could detect data with
low computational complexity. Especially in SNR < 6dB
conditions, the GDGP-MUD performance outperforms the
dynamic MUD algorithm SMP, but SMP exhibits superior
detection in the SNR > 8dB condition. From the perspec-
tive of the MSQN-MUD algorithm, it maintains a detection
performance advantage under small SNR conditions in com-
parison to SMP and approaches SMP detection performance
under large SNR conditions.

Fig. 5 shows the SER comparison with only sparsity
changed. Sparsity is defined as q = K/M . We set constants
M = 200, N = 100, J = 7, and SNR = 8dB, and the active
user number remains 5. From Fig. 5 we observe that three
dynamic algorithms always exhibit strength in detection as
compared with OMP and ADMM.We also observe that SMP
performs better with low sparsity, but the detection accuracy
of our proposed algorithm approach to SMP even exceeds
SMP as the active user numbers increase.

Fig. 6 and Fig. 7 show the detection performance with
different iteration termination parameter S for two proposed
algorithms in different SNR conditions. We clearly observe
that when S differs, our proposed algorithms exhibit similar
detection performance. Especially in a low SNR condition
(SNR < 6dB), multiple performance curves are coupled into
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FIGURE 4. SER comparison of different SNR conditions.

FIGURE 5. SER comparison with only sparsity changed.

FIGURE 6. SER comparison of SMP algorithm and GDGP-MUD with
different iteration termination parameter S.

one curve. When SNR > 8dB, using different S caused a
slight deviation in detection performance, although the slight
fluctuation is within an acceptable range.

FIGURE 7. SER comparison of SMP algorithm and MSQN-MUD with
different iteration termination parameter S.

Fig. 8 shows the performance comparisons for each algo-
rithm with the total number of users increased when SNR =
8dB, the number of experiments of 1, 000, and the over-
load factor and sparsity remaining unchanged. Fig. 8(a) and
Fig. 8(b), respectively, reflect the real-time performance and
SER performance comparison of each algorithm with the
total number of users increased. From Fig. 8(a), we can see
that when the sparsity and overload rate are fixed, the ADMM
[18] algorithm consumes much more time to complete 1, 000
experiments than do the greedy iterative algorithms, and as
the total number of users increases, the gap between them
exhibits a gradually increasing trend. From Fig. 8(b), we can
find that the SER of the ADMM [18] and SMP [19] will
increase with increasing total user number, and the two algo-
rithms we proposed can always maintain a stable state, even
when the total number of users is changed, which also shows
that our proposed algorithms can be applied to the massive
communication device scenario.

VI. CONCLUSION
In this paper, we first propose a low-complexity algorithm,
the GDGP-MUD algorithm, which is based on a gradient
pursuit framework. The process of matrix inversion in con-
ventional greedy MUD algorithms is replaced by gradient
projection, where the GDGP-MUD algorithm jointly detects
user activity and data via the gradient information of the
objective function to update the optimization direction in
each iteration. To speed up convergence, we adopt a modified
residual value to determine whether to terminate the loop.
Additionally, we propose another low-complexity MUD
algorithm based on the GDGP-MUD algorithm, the MSQN-
MUD algorithm, which uses a multi-step quasi-Newton
method to update the optimization direction. The simula-
tion results show us that both proposed algorithms possess
a lower computational complexity compared to the conven-
tional greedy MUD algorithms. With the SNR increase, our
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FIGURE 8. Performance comparisons of different user numbers.

proposed algorithms outperform conventional greedy MUD
algorithms with respect to the real-time characteristic. The
MSQN-MUD algorithm sacrifices a small amount of com-
plexity for an increase in detection accuracy.
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