
Received May 31, 2020, accepted July 13, 2020, date of publication July 27, 2020, date of current version August 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012084

A Survey on Coarse-Grained Reconfigurable
Architectures From a Performance Perspective
ARTUR PODOBAS 1,2, KENTARO SANO1, AND SATOSHI MATSUOKA1,3
1RIKEN Center for Computational Science, Kobe 650-0047, Japan
2Department of Computer Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
3Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Corresponding author: Artur Podobas (artur@podobas.net)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO).

ABSTRACT With the end of both Dennard’s scaling and Moore’s law, computer users and researchers
are aggressively exploring alternative forms of computing in order to continue the performance scaling
that we have come to enjoy. Among the more salient and practical of the post-Moore alternatives are
reconfigurable systems, with Coarse-Grained Reconfigurable Architectures (CGRAs) seemingly capable
of striking a balance between performance and programmability. In this paper, we survey the landscape
of CGRAs. We summarize nearly three decades of literature on the subject, with a particular focus on the
premise behind the different CGRAs and how they have evolved. Next, we compile metrics of available
CGRAs and analyze their performance properties in order to understand and discover knowledge gaps
and opportunities for future CGRA research specialized towards High-Performance Computing (HPC).
We find that there are ample opportunities for future research on CGRAs, in particular with respect to size,
functionality, support for parallel programming models, and to evaluate more complex applications.

INDEX TERMS Coarse-grained reconfigurable architectures, CGRA, FPGA, computing trends, reconfig-
urable systems, high-performance computing, post-Moore.

I. INTRODUCTION
With the end of Dennard’s scaling [1] and the looming threat
that even Moore’s law [2] is about to end [3], computing is
perhaps facing its most challenging moments. Today, com-
puter researchers and practitioners are aggressively pursuing
and exploring alternative forms of computing in order to
try to fill the void that an end of Moore’s law would leave
behind. There are already a plethora of emerging and intru-
sive technologies with the promise of overcoming the limits
of technology scaling, such as quantum- or neuromorphic-
computing [4], [5]. However, not allPost-Moore architectures
are intrusive, and some merely require us to step away from
the comforts that von-Neumann architecture offers. Among
the more salient of these technologies are reconfigurable
architectures [6].

Reconfigurable architectures are systems that attempt to
retain some of the silicon plasticity that an ASIC solution
usually throws away. These systems – at least conceptually
– allow the silicon to be malleable and its functionality

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Nitin .

dynamically configurable. A reconfigurable system can, for
example, mimic a processor architecture for some time (e.g.,
a RISC-V core [7]), and then be changed to mimic an LTE
baseband station [8]. This property of reconfigurability is
highly sought after, since it can mitigate the end of Moore’s
law to some extent– we do not need more transistors, we just
need to spatially configure the silicon to match the computa-
tion in time.

Recently, a particular branch of reconfigurable architec-
ture – the Field-Programmable Gate Arrays (FPGAs) [9]
– has experienced a surge of renewed interest for use in
High-Performance Computing (HPC), and recent research
has shown performance- or power-benefits for multiple appli-
cations [10]–[14]. At the same time, many of the limitations
that FPGAs have, such as slow configuration times, long
compilations times, and (comparably) low clock frequencies,
remain unsolved. These limitations have been recognized for
decades (e.g., [15]–[17]), and have driven forth a different
branch of reconfigurable architecture: the Coarse-Grained
Reconfigurable Architecture (CGRAs).

CGRAs trade some of the flexibility that FPGAs have
to solve their limitations. A CGRA can operate at higher

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 146719

https://orcid.org/0000-0001-5452-6794
https://orcid.org/0000-0001-5686-1131


A. Podobas et al.: Survey on CGRAs From a Performance Perspective

clock frequencies, can provide higher theoretical compute
performance, can drastically reduce compilation times, and
– perhaps most importantly – reduce reconfiguration time
substantially. While CGRAs have traditionally been used in
embedded systems (particular for media-processing), lately,
they too are considered for HPC. Even traditional FPGA
vendors such as Xilinx [18] and Intel [19] are creating and/or
investigating to coarsen their existing reconfigurable archi-
tecture to complement other forms of computing.

In this paper, we survey the literature of CGRAs, summa-
rizing the different architectures and systems that have been
introduced over time. We complement surveys written by our
peers by focusing on understanding the trends in performance
that CGRAs have been experiencing, providing insights into
where the community is moving, and any potential gaps in
knowledge that can/should be filled.

The contributions of our work are as follows:
• A survey over three decades of Coarse-Grained Recon-
figurable Architectures, summarizing existing architec-
ture types and properties,

• A quantitative analysis over performance metrics of
CGRA architectures as reported in their respective
papers, and

• An analysis on trends and observations regarding
CGRAs with discussion

The remaining paper is organized in the following way.
Section II introduces the motivation behind CGRAs, as well
as their generic design for the unfamiliar reader. Section III
positions this survey against existing surveys on the topic.
Section IV quantitatively summarizes each architecture that
we reviewed, describing key characteristics and the premise
behind each respective architecture. Section V analyzes
the reviewed architecture from different perspectives (Sec-
tions VII, VIII, and VI), which we finally discuss at the end
of the paper in section IX.

II. INTRODUCTION TO CGRAs
Before summarizing the now three decades of Coarse-Grained
Reconfigurable Architecture (CGRA) research, we start by
describing the main aspirations and motivations behind them.
To do so, we need to look at the predecessor of the CGRAs:
The Field-Programmable Gate Array (FPGA).

FPGAs are devices that were developed to reduce the
cost of simulation and developing Application-Specific Inte-
grated Circuits (ASICs). Because any bug/fault that was
left undiscovered post ASIC tape-out would incur a (poten-
tially) significant economic loss, FPGAs were (and still
are) crucial to digital design. In order for FPGAs to mimic
any digital design, they are made to have a large degree
of fine-grained reconfigurability. This fine-grained recon-
figurability was achieved by building FPGAs to contain a
large amount of on-chip SRAM cells called Look-Up Tables
(LUTs) [20].1 Each LUT was interfaced by a few input wires

1While most FPGAs are based on SRAM LUTs, it is worth mention-
ing that alternatives exist, such as those (for example) built on Antifuse
technology.

(usually 4-6) and produced an output (and its complement)
as a function of the SRAM content and their inputs. Hence,
depending on the sought-after functionality to be simulated,
LUTs could be configured and – through a highly reconfig-
urable interconnect – could be connected to each other, finally
yielding the expected designs. The designwould naturally run
between one and two orders of magnitude lower frequency
(for example, there is a 37× reduction in frequency when run-
ning Intel Atom on an FPGA [21]) than the final standard-cell
ASIC, but would nevertheless be an invaluable prototyping
tool.

By the early 1990s, FPGAs had already found other uses
(aside from digital development) within telecommunication,
military, and automobile industries—the FPGAwas seen as a
compute device in its own right and there were some aspira-
tions to use it for general-purpose computing and not only in
the niche market of prototyping digital designs. Despite this,
several limitations of FPGAswere quickly identified that pro-
hibited coverage of a wide range of applications. For exam-
ple, unlike software compilation tools that take minutes to
compile applications, the FPGA Electronic Design Automa-
tion (EDA) flow took significantly longer, often requiring
hours or even days of compilation time. Similarly, if the
expected application could not fit a single device, the long
reconfiguration overhead (the time it takes to program the
FPGA) demotivated time-sharing or context-switching of its
resources. Another limitation was that some important arith-
metic operators did not map well to the FPGA; for exam-
ple, a single integer multiplication could often consume a
large fraction of the FPGA resources. Finally, FPGAs were
relatively slow, running at a low clock frequency. Many
of these challenges and limitations of applying FPGAs for
general-purpose computing still hold to this day.

Early reconfigurable computing pioneers looked at the
limitations of FPGAs and considered what would happen
if one would increase the granularity at which it was pro-
grammed. By increasing the granularity, larger and more
specialized units could be built, which would increase the
performance (clock frequency) of the device. Also, since
the larger units require less configuration state, reconfig-
uring the device would be significantly faster, allowing
fine-grained time-sharing (multiple contexts) of the device.
Finally, by coarsening the units of reconfiguration, one would
include those units that map poorly on FPGAs into the fab-
ric (e.g., multiplications), making better use of the silicon
and increasing generality of the device. These new devices
would later be called: Coarse-Grained Reconfigurable
Architecture (CGRAs).

An example of what a CGRA looks like from the archi-
tecture perspective is shown in Figure 1. In Figure 1:a we
see a mesh of reconfigurable cells (RCs) or processing ele-
ments (PEs), which is the smallest unit of reconfiguration
that performs work, and it is through this mesh that a user
(or compiler) decides how data flows through the system.
There are multiple ways of bringing data in/out to/from
the fabric. One common way is to map the device in the

146720 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 1. Illustration of a simple CGRA, showing the mesh topology (a), the internal architecture of the Reconfigurable Cell, RC (b), and an example of
the configuration register (c). Although several variations exist, the illustrated structure is the predominantly used system in CGRA research.

memory of a host processor (memory-mapped) and have the
host processor orchestrate the execution. A different way is
to include (generic) address generators (AGs) that can be
configured to access external memory using some pattern
(often corresponding to the nested loops of the application),
and push the loaded data through the array. A third option
is to have the reconfigurable cells do both the computation
and address generation. Figure 1:b illustrates the internal
of an RC element, which includes an ALU (integer and/or
floating-point capable), two multiplexers (MUXs), and a
local SRAM used for storage. The two multiplexers decide
which of the external inputs to operate on. The inputs are usu-
ally the output of adjacent RCs, the local SRAM, a constant,
or a previous output (e.g., for accumulations). The output
of the ALU is similarly connected to adjacent RCs, local
SRAM, or back to one of the MUXes. The operation of the
RC is governed by a configuration register, here briefly shown
in Figure 1:c. For simplicity, we show a single register that
holds the state– however, in many architectures, each RC
can hold multiple configurations that are cycled through over
the application lifetime. Each of the configurations can, for
example, hold the computation for a particular basic block
(where live-in/out variables are stored in SRAM) or discrete
kernels.

Figure 1 illustrates how a majority of today’s CGRAs
look like, but at the same time, there are multiple varia-
tions. For example, early CGRAs often included fine-grained
reconfigurable elements (Look-Up Tables, LUTs) inside the

fabric. While the mesh topology is by far the most com-
monly used, some works chose a ring or linear-array topol-
ogy. Finally, the flow-control of data in the network can
be of varying complexity (e.g., token or tagged-token).
We describemany of these in our summary in the sections that
follow.

III. SCOPE OF THE PRESENT SURVEY
Since their inception in early 1990s, CGRAs have been
the subject of a plethora of research on their architec-
ture, compilation strategies, mapping, and so on and forth.
At the same time, surveys have closely monitored how the
CGRA technologies have evolved through time, and we can
today enjoy solid and condensed material on the subject.
Surveys have covered most aspects of CGRA computing,
including commercial CGRA adaptation [22], architec-
tures [23], [24], tools and frameworks [25], and taxonomy/
classification [26], [27].

The work in the present paper assumes a different position
to survey the field of CGRAs. Our paper complements the
existing literature by attempting to summarize and condense
the performance trends of CGRA architectures, and position
these against architectures such as Graphics Processing Units
(GPUs) (which is what most systems use as accelerators)
in order to understand what gaps future high-performance
CGRA should strive to fill. To the best of our knowledge, this
is the first survey providing such a comprehensive perspective
within the field of CGRAs.

VOLUME 8, 2020 146721



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 2. Three well-known early CGRA architectures that represent
different approaches to the concept, where (a) Garp represents RCs with
fine granularity (1-2bits), (b) MorphoSys used the structure commonly
found in modern CGRAs, and (c) RaPiD adopted a linear-array of
heterogeneous units that are connected through a shared segmented bus.

IV. OVERVIEW OF CGRA ARCHITECTURE RESEARCH
A. EARLY PIONEERING CGRAs
Some early CGRAs were not much coarser than their respec-
tive FPGAs. For example, the Garp [17] (shown in Figure 2:a)
infrastructure was reconfigurable at a 2-bit (rather than FPGA
1-bit) granularity. Here, each reconfigurable unit could con-
nect to neighbors in both the horizontal (used for carry-
outs) and vertical direction, as well as to dedicated bus
lines for interfacing memory. By using several reconfigurable
units along the horizontal axis, users could implement arith-
metic operations of varying sizes (e.g., 18-bit additions).
The arithmetic units created along the horizontal directions
could have their output connected along the vertical direction,
creating a computational data-path. An external processor
(the MIPS-based [28] TinyRISC in Garp’s case) could then
orchestrate the execution of this data-path. Using CGRAs as
co-accelerators in this way was (and still is) a common way

of leveraging them. The Garp project spanned several years
and included the development of a C compiler [29].

CHESS [30] – unlike Garp – operated on a reconfigurabil-
ity width of 4-bits. CHESS, as the name implies, layout the
individual reconfigurable elements in a fairly uniform mesh,
where elements of routing and elements of compute is altered
across the mesh. Here, each reconfigurable compute element
had access to all eight of its neighbors. Unlike Garp, whose
reconfigurable elements were built around look-up tables
(as FPGAs), CHESS used ALU-like structures with fixed
functionalities that a user could choose (or configure) to use.
Another interesting feature was that the compute elements
could be reconfigured to act as (limited) on-chip scratchpads.
D-Fabrix [31] was based on CHESS and was taped-out as a
commercial product.

Raw [16], [32], [33] takes a different approach to CGRAs.
Rather than keeping the reconfigurable tiles minimalistic,
it instead chose to make them software programmable.
Where-as Garp was based on LUTs, and CHESS was
based on a single 64-bit configuration register per RC,
Raw RCs have a fully dedicated instruction memory and
highly dynamic network-on-chip, along with necessary hard-
ware to support it. In fact, the Raw architecture is very
similar to the modern many-core architecture, albeit lack-
ing shared-memory support such as cache coherency. Raw
spanned several years, and had a mature software infrastruc-
ture and prototype chips were taped out in 2004 [34]. It was
also the precursor to the modern many-core architecture
Tilera [35], which was partially built on the outcome of Raw.

The REMARC [15], [36] architecture was an early – at
the time, quite coarse – architecture that operated on a 16-bit
data-path. It was quite similar to modern CGRAs, since the
reprogrammable elements all included an ALU, a small reg-
ister file, and were directly connected to their neighbors in
a mesh-like topology. Configuring the CGRA was done by
programming the instruction RAM that was local to each
tile with some particular functionality, where a global pro-
gram counter (called nano-PC) synchronously orchestrated
(or sequenced) the execution. Global communication wires
ran across the horizontal and vertical axis, allowing elements
to communicate with external resources. As with Garp – but
unlike the Raw – the REMARC architecture was designed to
work as a co-processor.

Another early but influential CGRAwas theMATRIX [37]
architecture, which (similar to REMARC) revolved around
ALUs as the main reconfigurable compute resource, but was
slightly more fine-grained than REMARC due to choos-
ing an 8-bit (contra REMARCs 16-bit) data-path. Despite
their name, the functionality of the ALU was actually more
similar to that of an FPGA, where a NOR-plane could
be programmed to desired functionality (similar to a Pro-
grammable Logic Array, PLAs), but did also include native
support for pattern matching. The MATRIX, for its time, had
a remarkably advanced network topology, where compute
elements could directly communicate with neighbors on a
two-square Manhattan distance. Additionally, the network

146722 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

included by-pass layers for remote compute elements to com-
municate. The network also supports computing on the data
that was routed, including both shift- and reduction opera-
tions.

The MorphoSys [38], [39] (shown in Figure 2:b) was
similar to the REMARC architecture, both in structure, gran-
ularity (16-bit), and also in the type of applications it tar-
geted (media applications). MorphoSys was designed to act
as a co-processor, and had the (today) well-known structure
of CGRAs, which included an ALU, a small register file,
an output shifter (to assist fixed-point arithmetic) and two
larger multiplexers driven by the outputs of neighbors. The
compute elements are arranged hierarchically in two layers:
the first is a local quadrant where elements have access to
all other compute elements along the vertical and horizontal
axis, and the second layer are four quadrants composed into a
mesh. Unlike previous CGRAs, MorphoSys had a dedicated
multiplier inside the ALUs. A CGRA based on MorphoSys
was also realized on silicon nearly seven years from its
inception [40].

While most of the CGRAs described so-far used a mesh
topology of interconnection (with some connectivity), other
topologies have been considered. RaPiD [41], [42] (shown
in Figure 2:c) was a CGRA that arranged its reconfigurable
processing elements in a single dimension. Here, each pro-
cessing element was composed of a number of primitive
blocks, such as ALUs, Multipliers, scratchpads, or regis-
ters. These primitive blocks were connected to each other
through a number of local, segmented, tri-stated bus lines
that could be configured to form a data-path– a so-called
linear array. These processing elements could themselves
be chained together to form the final CGRA. Interestingly,
RaPiD could be partially reconfigured during execution in
what the authors called ‘‘virtual execution’’. RaPiD itself did
not access data; instead, a number of generic address pattern
generators interfaced external memory and streamed the data
through the compute fabric.

The KressArray [43]–[45] was one of the earliest CGRA
designs to be created, and the project spanned nearly a
decadewithmultiple versions and variants of the architecture.
It features a hierarchical topology, where the lowest tier was
composed of a mesh of processing elements. The process-
ing elements interfaced with neighbors and also included
predication signals (to map if-then-else primitives). Generic
address generators supported the CGRA fabric by continu-
ously streaming data to the architecture.

Chimaera [46] was a co-processor conceptually similar
to Garp, with an array of reconfigurable processing ele-
ments operating at quite a fine granularity (similar to modern
FPGAs) that could be reconfigured to perform a particular
operation. It was closely coupled to the host processor to
the point where the register file was (in part) shadowed and
shared. Mapping application to the architecture was assisted
by a ‘‘simple’’ C compiler, and they demonstrated perfor-
mance on Mediabench benchmarks [47] and the Honeywell
ACS suite [48].

PipeRench [49] applied a novel network topology that was
a hybrid between that of a mesh and a linear array. Here,
a large number of linear arrays were layered, where each
layer sent data uni-directionally to the next layer. Several
future CGRAs would adopt this kind of structure, includ-
ing data-flow machines (e.g., Tartan) and loop-accelerators
(e.g., FPCA). The layers themselves in PipeRench were fairly
fine-grained and comparable to Garp as they had recon-
figurable Look-Up Tables rather than fixed-function ALUs
within. PipeRench introduced a virtualization technique that
treated each separate layer as a discrete accelerator, where
a partial reconfiguration traveled alongside with its associ-
ated data, reconfiguring the next layer according to its func-
tionality in a pipeline fashion, which was new at the time.
PipeRench was also later implemented on silicon [50].

The DReAM [51] architecture was explicitly designed to
target the (then) next-generation 3G networks, and argues
that CGRAs are well suited for the upcoming standard with
respect to software-defined radio and the flexibility to hot-fix
bugs (through patches) and firmware. The system has a
hierarchy of configuration managers and a mesh of simple,
ALU-based, RCs operating on 16-bit operands and with lim-
ited support for complex operations such as multiplications
(since operations were realized through Look-Up Tables).

So far, all architectures reviewed have been computing
using integer arithmetics. Imagine [52] was among the early
architectures that included hardware floating-point arithmetic
units. The architecture itself was similar to RaPiD—it was
a linear array, where each processing element had a number
of resources (scratchpads, ALUs, etc.) all connected using a
global bus. Similar to RaPiD, the processing elements were
passive, and external drivers were responsible for streaming
data through the processing elements. The Imagine archi-
tecture had a prototype realized six years after its seminal
paper [53].

B. MODERN COARSE-GRAINED RECONFIGURABLE
ARCHITECTURES
Most modern CGRA architectures’ lineage can be linked
back to those described in the previous section, and amajority
of these architectures follow the generic template that was
described in the previous section. However, while the overall
template remains similar, many recent architectures special-
ize themselves towards a certain niche use (low-power, deep
learning, GPU-like programmable, etc.).

TheADRESCGRA system [54], [55] (Figure 3:a) has been
a remarkably successful architecture template for embed-
ded architectures, and is still widely used. ADRES is a
template-based architecture, and while the most common
example arranges RC’s in a mesh, users are capable of
defining arbitrary connectivity. Inside each element, we find
an ALU of varying capability and a register file, alongside
the multiplexers configured to bring in data from neigh-
bors. The first row in the mesh, however, is unique, as an
optional processor can extend its pipeline to support interfac-
ing that very first row in a Very Long Instruction Word [56]

VOLUME 8, 2020 146723



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 3. The (a) ADRES architecture was a CGRA template architecture
that also later was commercialized (by among others Samsung); unique
to ADRES was that the first row of RCs extended the backend pipeline of
the VLIW processor that orchestrated the execution. (b) The TRIPS
architecture was among the first to replace the traditional super-scalar
processor pipeline with a relatively large CGRA-like mesh in order to
exploit more parallelism. (c) The Plasticine architecture is a recent CGRA
architecture that focuses on parallel patterns through specialized pattern
address generators (for both external and internal storage).

(VLIW) fashion. ADRES, by design, is thus heterogeneous.
ADRES comes with a compiler called DRESC [57], which
can handle the freedom that ADRES allows with respect

to arbitrary connectivity. ADRES as an architecture has
been (and still is) a popular platform for CGRA research,
such as when exploring multi-threaded CGRA support [58],
topologies [59], asynchronous further-than-neighbor com-
munication(e.g. HyCUBE [60]), or CGRA designs frame-
works/generators (e.g. CGRA-ME [61], [62]). Furthermore,
ADRES has been taped out on silicon, for example in the
Samsung Reconfigurable Processor (SRP) and the follow-up
UL-SRP [63] architecture.

TheDynamically ReconfigurableALUArray (DRAA) [64]
was a generic CGRA template proposed in 2003 to encourage
compilation research on CGRA architecture. Architecture-
wise, DRAA allowed changing many of the parameters that
define a CGRA, such as the data-path width, the interconnect,
size of the register file, etc. Preceding both DySER and
ADRES, DRAA as a template has been used to e.g. study
the memory hierarchy of CGRAs [65].

The TRIPS/EDGE [66], [67] microarchitecture
(Figure 3:b), was a long-running influential project that
attempted to move away from the traditional approach of
exploiting instruction-level parallelism inmodern processors.
The premise behind TRIPS was that as technology reduced
the sizes of transistors, wire delays and paths would dominate
latency, and that it would be hard to continue to scale the com-
munication in superscalar processors [68]. Instead, by tightly
coupling functional units in (for example) a mesh, direct
neighbor communication could easily be scaled. In effect,
TRIPS/EDGE replaced the traditional superscalar Out-of-
Order pipeline with a large CGRA array: single instructions
were no longer scheduled, but instead, a new compiler [69],
[70] was developed that scheduled entire blocks (essentially
CGRA configurations) temporally on the processor, allowing
up to 16 instructions to be executed at a single time (andmany
more in-flight). The TRIPS architecture was taped out on
silicon [71], [72], and – despite being discontinued – repre-
sented a milestone of true high-performance computing with
CGRAs. An interesting observation, albeit not necessarily
related to CGRAs, is that the Edge ISA has recently received
renewed interest as an alternative to express large amounts of
ILP in FPGA soft processors [73].

The DySER [74] architecture integrates a CGRA into the
backend of a processor’s pipeline to complement (unlike
TRIPS that replace) the functionality of the traditional
(super-)scalar pipeline and has been integrated in the
OpenSPARC [75] platform [76]. The key premise behind
DySER is that there are many local hot regions in pro-
gram code, and higher performance can be obtained by
specializing in accelerating these inside the CPU. DySER
was evaluated using both simulator-based (M5 [77]) and an
FPGA implementation on well-known benchmarks (PAR-
SEC [78] and SPECint) and compared with both CPU
and GPU approaches, showing between 1.5×-15× improve-
ments over SSE and comparable flexibility and perfor-
mance to GPUs. Recently (2016 onwards), DySER has been
the focus of the FPGA-overlay scene (see Section IV-G).
Other similar work to DySER that integrates CGRA-like

146724 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

structures into processing cores with various goals includes
CReAMS/HARTMP [79], [80] (applies dynamic binary
translation) or CGRA-sharing [81] (conceptually similar to
what AMD Bulldozer architecture [82] and UltraSPARC
T1/T2 did with their floating-point units).

The AMIDAR [83] is another exciting long-running
project that (amongst others) uses CGRA to accelerate
performance-critical sections. The AMIDAR CGRA extends
the traditional CGRA PE architecture with a direct inter-
face to memory (through DMA). There is support for mul-
tiple contexts and hardware support for branching (through
dedicated condition-boxes operating on predication signals),
which also allows speculation. The AMIDA CGRA has been
implemented and verified on an FPGA platform, and early
results show that it can reach over 1 GHz of clock frequency
when mapped to a 45 nm technology.

The Versat CGRA [84] is a co-processor system that pri-
marily targets different transforms (IDCT, FFT, etc.) and
filters (FIR, IIR, etc.), and the authors argue that for these
kernels, there is no need to use unnecessarily large CGRAs,
and that minimal power-efficient CGRAs are preferred. The
Versat CGRA is a linear array, where a number of functional
units share a data-bus, whose output connects back to the
inputs of the functional units. It is programmed using a
C/C++ dialect. The Versat was evaluated against an ARM
Cortex A9, and experienced between 1.7× (IIR) and 17.7×
(FFT) performance increase over said processor.

The MORA [85] architecture was a platform for
CGRA-related research. MORA targeted media-processing,
and hence provided an 8-bit architecture with processing
elements covering the most commonly used operations.
MORA itself was similar to the previous MATRIX, with
a simple 2D mesh structure with neighbor communication.
Each processing element had a scratchpad (256 bytes large).
MORAwas programmable using a domain-specific language
developed over C++ [86].
The CGRA Express [87] is yet another architecture that

follows the concept of being a mesh with simple, ALU-like
structures. The premise and motivation for their work is that
most existing CGRA applications are optimized for maximal
graph coverage rather than sequential speed. The hypothesis
is that – depending on the operators each PEs is configured
to use – they can exploit the resulting positive clock slack of
the operators and cascade (fuse) more operations per clock
cycle than blindly registering the intermediate output. This,
in turn, allows them to execute more instructions per cycle (or
reduces the frequency) with little performance losses. In their
architecture, they add an extra bypass network that can be
configured to not be pipelined. They show both power and
performance benefits on multimedia benchmarks with and
without their approach. The work could be conceptually seen
as the opposite to what modern FPGAs (e.g., Stratix 10) do
with Hyperflex [88], but for CGRAs.

The polymorphic pipeline array (PPA) [89] performed
an interesting pilot study that drove the parameters of
their CGRA: they simulated a large number of benchmarks

scheduled on a hypothetical (infinite) CGRA, with focus on
modulo-scheduling and loop unrolling. They revealed that
evenwith infinitely large CGRAs, the performance levels will
be bound as a function of the instruction-level parallelism in
the loops and the limitation of modulo-scheduling, and they
argue that there is a definitive need to include other forms of
parallelism to scale on CGRAs. While the PEs themselves
follow a standard layout, they propose an interesting tech-
nique that allows multiple (unique) kernels to be executed
concurrently on the CGRA, where each kernel communicates
with each other either through DMA or shared memory.
Kernels can also be resized to fully exploit the CGRA array.

The premise behind SIMD RA [90] is similar to that of
PPA: CGRAs relies too much on instructional-level paral-
lelism, and opportunities from other forms of parallelism are
lost. SIMD RA focuses on embedding support to modularize
the CGRA-array to supporting multiple discrete controllable
regions that (may) operate in SIMD fashion. They found that
using SIMDnot only yielded better performance, but was also
more area-efficient compared to using software pipelining
only.

SmartCell [91] was a CGRA that aspired to be low-power
and provide high-performance, supporting both SIMD- and
MIMD-type parallelism. The architecture was effectively a
2D mesh, but with the mesh divided into 2 × 2 quadrants of
processing elements. These 2 × 2 islands shared a reconfig-
urable router, and inter-quadrant communication was limited
to the connectivity of these routers. The processing elements
themselves were fairly standard and contained instruction
memory whose instruction (configuration) was set either per
processing element (MIMD) or sequenced globally (SIMD).

The Butter [92] architecture was an early effort at provid-
ing a CGRA template with subword compute capabilities,
meaning that while the data-path width was 32-bit it could be
segmented into carrying multiple values and operate on them
in SIMD fashion. The size was fixed to 4 × 8 PEs (changed
in the later SCREMA architecture, see section IV-G), had
multiple contexts, and the CGRA is programmed using C
functions. The Butter architecture was synthesized towards
both ASICs and FPGAs, while its sequels (CREMA and
SCREMA) were more FPGA-focused (described in later
section IV-G).
BilRC [93] is a heterogeneous mesh composed of three

different blocks: generic ALU blocks, Multiplication/Shifter
nodes, andmemory blocks, following the (by now) traditional
recipe of a CGRA. Unique to BilRC is that the architecture
explicitly exposes the triggering of instructions, allowing the
programmer and/or application fine-grained control over the
amount of parallelism or when instructions are executed.

The lack of floating-point support in CGRAs has also
been a driving force for research. FloRA [94] is 16-bit
IEEE-754 floating-point capable CGRA. The architecture
itself is composed of 64 RCs, and each RC is fairly
standard and does not include a dedicated floating-point
core itself; instead, two RCs can be combined to enable
single-precision (32-bit) floating-point support, where

VOLUME 8, 2020 146725



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

mantissa and exponent-computation is distributed among the
pair.

Feng et al. [95] introduce a floating-point capable architec-
ture specifically designed for radar signal processing. Despite
the familiar mesh-based interconnection, the design deviates
from the traditional approach since their processing elements
are fairly diverse and heterogeneous. The CGRA itself was
taped out on silicon and could reach up to 70 GFLOP/s
floating-point performance.

The recent TRANSPIRE architecture [96] is a small 2× 4
CGRA that targets near-sensor Internet of Things (IoT)
use cases. Realizing the importance of variable precision
floating-point computations, the TRANSPIRE architecture
supports both the IEEE-754 single-precision computations
and a recently proposed 8-bit format called binary8 [97].
When configured in binary8, the architecture is capable of
leveraging SIMD parallelism to increase performance and
energy efficiency. The CGRA was empirically shown to
perform up to ten times better than a RISC-V [98] proces-
sor with a comparable silicon footprint and could reach up
to 224 GOPs/W of binary8 performance and 156 GOPs/Watt
when employing full 32-bit precision for selected near-sensor
kernels.

A PRET-driven (Precision Timed) CGRA aimed towards
predictable real-time processing was developed by Siqueira
and Kreutz [99]. Interestingly, the CGRA has support for
threads, which is a concept used more in high-performance
designs rather than in real-time designs. The architecture is
similar to a SIMT (Simultaneous Multi-Threading) architec-
ture, where each processing element has a duplicate number
of resources (primarily the register files) that are unique to
each thread. Aside from having deterministic timing inside
the CGRA, the authors also implemented a predictable exter-
nal memory access, required for real-time systems.

The recent Sparse Processing Unit (SPU) [100] architec-
ture aspires to provide a CGRA for general-purpose comput-
ing. The main novelty is that SPU extends existing CGRA
designs with support for two types of computational patterns:
what they call ‘‘stream-joins’’ (e.g., sparse vector multipli-
cation inner-product) and alias-free scatter/gather (regular
loops with indirection). This is achieved by extending the
typical CGRA with options to conditionally consume input
tokens (re-use values), reset accumulators, or conditionally
discard output tokens. Address generation units (linear and
non-linear) reside inside on-chip SRAMcontrollers. The SPU
targets general-purpose workloads with some favor towards
deep learning applications.

The premise of Softbrain [101] is to combine both
vector-level (for regular, efficient memory-access) and
data-flow (for instruction-level parallelism) computation in
CGRAs to reach high performance and power-efficiency.
The architecture consists of a number of stream-engines
(essentially address generators in prior work) and the
CGRA substrate itself. The input to the CGRA substrate
is a number of vector ports (512-bit memory interfaces),
the on-chip scratchpad, or the local output feedback, and

a stream-controller that orchestrates the execution of the
system.

The Chameleon [102] CGRA was an early commercial
CGRA that focused on competing with early DSPs and
FPGAs. Here the CGRA is layered, where they call each layer
a slice. Each slice has three tiles, where each tile has a number
of scratchpad memories that interface with eight processing
elements that can be reconfigured. The idea is to load the
local scratchpad with data, configure the processing elements
associated with the scratchpad with some functionality, and
then pipe the data onto other slices. The Chameleon was
implemented in a 0.25um process running at a 125MHz clock
frequency. The architecture itself operates on 32-bit data-path
width but can be configured to divide the data stream into two
16-bit or four 8-bit streams as well.

SiLago (Silicon Large Grain Objects) [103] is a methodol-
ogy for creating CGRA-based platforms. The premise behind
the method is to use reconfigurable CGRA processing ele-
ments (based on DRRA [104]) as building blocks for future
systems in order to reduce production cost with little impact
on performance (compared to hand-made ASICs). Platforms
based on SiLago and DRRA are (among others) specialized
for deep learning [105], Brain-simulation computing [106],
and genome identification [107]. The Q100 [108] is similar
in concepts but specializes in data-base computing and pro-
vides tiles for computing on data-flow streams that users can
assemble larger systems from.

C. LARGER CGRAs
Most CGRA systems (e.g., ADRES, TRIPS, DySER) limit
the size of the array to less than 64 processing elements, and
only a few of so-far mentioned CGRAs are larger than that
(PipeRench had 256 PEs, Garp had 768) but they are rela-
tively fine-grained). Likely the limited size of these CGRAs
was due to their application domain, which mostly involved
image-, audio-, or telecommunication applications. However,
in recent years, even larger, more powerful, CGRA-based
systems have emerged, many of which explicitly target
High-Performance Computing.

The eXtreme Processing Platform [109] (XPP) was a
CGRA that focused on multiple levels of parallelism, includ-
ing that of pipeline processing, data-flow computing, and
task-level execution. XPP’s interconnection was deep and
complex, consisting of multiple levels of various functional-
ity. At the lowest tier, small processing elements containing
scratchpad, an ALU, and associated configuration manager
reside in mesh-like connectivity called a cluster. These clus-
ters themselves are connected through switch-boxes running
along their vertical and horizontal axes. Each tier had a con-
figuration manager that is responsible for the functionality
of that layer (and below), allowing fine-grained control and
partitioning of the functionality of the system. XPP was
token-driven, and execution of operation occurs only when
data is present at inputs.

The High-Performance Reconfigurable Processor [110]
(HiPReP) is an on-going CGRA research platform capable

146726 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

of floating-point computations. HiPReP has dedicated
floating-point circuitry (unlike, e.g., FloRA). Processing ele-
ments are organized in a mesh with a heterogeneous (in terms
of bandwidth) interconnect, and include address generation
units for driving data through the device. The HiPReP explic-
itly targets high-performance computing.

WaveScalar [111]–[113] was an exciting architecture that
focused on whole-application mapping onto token-driven,
data-flow CGRA-like architecture. Most CGRA systems
limit the size of the CGRA fabric to the point where
basic-blocks (instructions without branches) have to be split
temporally across the fabric. WaveScalar takes a different
approach: do not limit the CGRA fabric; instead, create a
large fabric and remove all materialization of control-flow
in the application by converting them to data-dependencies,
enabling them to map to the architecture. The WaveScalar
architecture is larger, with over 500 RCs, and – as with its
rival TRIPS – was evaluated on a subset of SPECint2000,
SPECfp2000, and SPEC2000 benchmarks.

Tartan [114] was another hierarchical architecture. It was
a mix between a traditional mesh-based topology (e.g.,
ADRES) and a layered linear array (e.g., PipeRench). The
system was fine-grained and operated on an 8-bit data-path
with primarily addition and logical operations (no native mul-
tiplication). However, the architecture was not easily recon-
figured, and expected the full application (or the majority
of it) to be fully placed onto the architecture to prevent
any form of context-switching. Tartan itself represents the
extreme case where the majority of silicon is spent on simple
compute elements, and was evaluated using SPECint [115].
The EGRA [116] architecture was similar in topology to
Tartan, and had a mesh where each node consists of layered
programmable ALUs. Both Tartan and EGRAwere evaluated
primarily using software simulators (SimpleScalar [117] and
in-house simulator for Tartan).

While most CGRAs target a classic SISD architectural
model – with a few exceptions for SIMD – the SGMF [118],
[119] architecture instead focuses on the SIMT [120]
(Single-Instruction Multiple-Thread) model that is com-
monly found in GPUs and programmed using languages such
as CUDA [121] or OpenCL [122]. The SGMF is claimed
to be similar in area to the Nvidia Fermi [123] or Kepler
architecture. The architecture itself is a mesh-like CGRA
with thread-tagged token flow-control and with support for
synchronization. Although there are limits on what CUDA
constructs can bemapped (e.g., atomic operations are not sup-
ported), the architecture itself is shown through simulation to
be a viable and competitive alternative to existing GPUs.

REMUS [124] is a relatively large – for embedded SoC
standards – CGRA with 512 processing elements that are
driven by two ARM processors. REMUS is fairly standard
in terms of layout and uses a layered mesh, although with
extra temporary registers capable of holding state along the
horizontal lines of the mesh, increasing opportunities for
routing and more aggressive pipelining (to increase operating
frequency).

The Dynamically Reconfigurable Processor [125] (DRP)
was a CGRA that targeted stream-based computation. The
processing elements were divided into eight tiles, each con-
taining 8 × 8 processing elements, where each processing
element had an ALU, input selectors (multiplexers), and an
instruction memory (for multiple contexts). A number of
scratchpad memories sat at the fringes of each tile and were
used to store streamed data. The operation of the processing
elements was controlled by an instruction pointer that was
governed by hierarchical sequencers (one per tile and one
global). The sequencer – effectively a programmable FSM –
dictated which context was being executed, and could (re)act
on signals from the tiles themselves. DRP was commercially
taped out in the DRP-1 prototype by NEC.

The commercial DAPDNA-2 [126] processor produced
by IPFlex contained up to 376 32-bit processing elements,
organized as 8 × 8 PE quadrants in a mesh. The architec-
ture was heterogeneous, with discrete tiles supporting ALU
operations, scratchpad, programmable delay lines, simple
address generators (counters), and I/O buffers. The process-
ing elements contained both multiplication and arithmetic
units and also supported optional pre-processing of inputs
through rotation/masking units. The tiles were interconnected
using horizontal and vertical busses that ran in-between and
through the mesh, and crossing the quadrants could only be
done at border tile locations. Performance of selected appli-
cations (FIR, FFTs, Image processing) showed two orders of
magnitude better performance over the then state-of-the-art
Pentium 4 processor.

The 167-processor architecture [127] was architecturally
similar to both a CGRA and a conventional multi-core pro-
cessor, and we include it here since the processing elements
are simple, and communication between them is only per-
formed using direct (yet dynamically configured) connec-
tivity (and not through shared-memory or cache coherence
as done in multi-core). The main focus of this work is to
reduce power consumption through a series of advanced
low-level optimizations (DVFS, clock generation and distri-
bution, GALS [128], etc.). They show performance of up
to 196.7 GMAs/Watt when fabricated in 65 nm technology.
Other similar architectures, based on programmable cores
with limited connectivity, were the IMAPCAR [129]/IMAP-
CECGRA [130] fromNEC aimed towards image recognition
in automobiles.

The RHyMe/REDEFINE [131], [132] architecture is a
CGRA targeting High-Performance Computing (HPC) ker-
nels. It follows a fairly typical CGRA design, where process-
ing elements are connected through in a torus network. The
premise of their work is that there is a need to exploit multiple
levels of parallelism (instruction-, loop- and task-level paral-
lelism), albeit the current implementation focuses primarily
on instruction-level parallelism through modulo-scheduling.
The Rhyme-Redefine supports floating-point computations.

Plasticine [133] (Figure 3:c) is a recent, large CGRA that
focuses on parallel patterns. At the highest abstraction layer,
it is built of a mesh of units. There are two types of units:

VOLUME 8, 2020 146727



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

compute and memory units, both of which are programmable
with patterns. Inside the compute units, we find the raw
functional units (the ALUs) as well as a programmable
state for controlling them. The compute units are built with
both SISD- and SIMD-type parallelism in mind, and vector
operations map natively to these units. Similarly, inside the
memory units, we find a small set of ALUs coupled with
programmable logic to interface the SRAM local to the units.
The mesh itself interfaces external memory through a set of
address generators and coalescing units. More importantly,
Plasticine targets floating-point intensive applications, which
is also shown in their evaluation (only three out of 13 applica-
tions are integer only). Plasticine is programmable using Spa-
tial [134]– a custom language based on patterns for data-flow
computing.

The Riken High-Performance CGRA [135] (RHP-CGRA)
is a recent architecture template that targets the exploration of
CGRAs for use in HPC environments. Several architectural
parameters can be modified (e.g., data-path width, size in
RCs, functionality, SIMD width), and the system supports
co-integration with third-party memory simulators (DRAM-
Sim3 [136]), allowing future memory technology to be eval-
uated with CGRAs. The system is token-based, supports
sub-word parallelism, and leverages address generators to
bring data in and out. An example design (9 × 9 mesh with
7×9 RCs) of the system was evaluated with several different
memory technologies (DDR3, GDDR6, and HBM2) and was
capable of reaching between 44.5 GOP/s (111.4 OP/cycle)
and 177.2 GOP/s (234 OP/cycle) on a variety of benchmarks.

Recently, the Cerebras Wafer Scale Engine [137] has been
created explicitly for high-end deep learning training. Little
information is publicly available, but the architecture seems
to contain both software programmable tiles and specialized
tiles for tensor computations, which could make it the single
largest CGRA to date with a size of over 46,225 mm2.

D. LINEAR-ARRAYS AND LOOP-ACCELERATORS
VEAL [138] was a linear array that explicitly targets the
acceleration of small, compute-intensive loop-bodies. Sim-
ilar to before-mentioned PPA, the authors behind VEAL
performed a rigid empirical evaluation of the benchmarks
they target, and demonstrate that one of the main limita-
tions to the performance of mapping said benchmarks to
CGRA fabrics is not the number of resources, but actually the
amount of instruction-level parallelism extracted by modulo-
scheduling. The VEAL linear array was fed by a number
of custom address generators, which broadly corresponds
to the induction variables of the loops that were executed.
An interesting observation is that VEAL was among the few
CGRA works that use double-precision arithmetics. Another
loop-accelerator similar to VEAL was the FPCA [139].

The BERET [140] architecture was yet another linear array
that was designed to accelerate hot regions of code. One
of BERETs main contributions was the identification of a
small set of graphs that the processing elements should cover
(called SEBs); the set was empirically extracted from the

benchmark and has since then been used in other studies (e.g.,
SEED [141], which is similar but improved in concept).

E. DEEP LEARNING CGRAs
Deep learning [142], in particular the computationally regular
Convolutional Neural Networks (CNNs), have lately become
a target for specialized CGRAs. Here the focus is to limit the
generality and reconfigurability of traditional CGRA to fit the
computational patterns of CNNs and instead spend the gained
logic on supporting specialized operations for the intended
deep learning workloads (such as compression, multicasting,
etc.). Furthermore, these architectures often honor smaller (or
mixed) number representations, since deep learning often is
amendable to lower-precision calculations [143].

The DT-CGRA [144], [145] architecture follows a CGRA
design with relatively coarse processing elements that include
up to three multiply-accumulate instructions. The processing
elements also include programmable delay lines to easier
map temporally close data. Data inside the RCs is synchro-
nized through tokens. Support for multiple common deep
learning access patterns (with stride, type, etc.) is facilitated
through custom stream-buffers units that are programmable
in a VLIW-fashion, and that generate accesses to external
memory.

The Sparse CNN (SCNN) [146] is a deep learning architec-
ture that primarily targets CNNs and can exploit sparseness
in both activations and kernel weights. The architecture itself
is composed of a mesh of RCs, where each element also
includes a 4 × 4 multiplier array and a bank for accumula-
tion registers. These RCs are driven- and orchestrated-by a
layer sequencer, which fetches and broadcasts (compressed)
weights and activations. SCNN supports inter-PE parallelism
in the form of spatial blocking/tiling, where each block is
artificially enlarged with a halo region, which is exchanged
between adjacent tiles at the end of the computation. They
also implement a dense version (DCNN) of the architec-
ture in order to measure the area overhead and power- and
performance-gains of including sparsity in the accelerator.

Liang et al. [147] introduce a CGRA accelerator that tar-
gets reinforced learning. The processing elements themselves
are fairly static, with support for addition, multiplication,
or a fusion of both. Additionally, a number of different acti-
vation functions (ReLu, sigmoid, and tanh) can be selected
using the configuration register, and data can be temporally
stored in a local scratchpad. Unlike most current CGRAs that
place address generators in discrete units outside the RCs,
Liang et al.’s RC include address generators inside. Global
communication lines allow the user to control the reinforced
training experience of the system.

The Eyeriss deep learning inference engine [148], [149]
follows a CGRA design methodology as well, albeit with
more focus on re-configuring the network access pat-
terns rather than the compute (which mostly is based on
multiply-accumulate operations). The CGRA itself is a mesh
with a variety of options of point-to-point and broadcast oper-
ations, highly suitable for deep learning convolution patterns.

146728 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

Additionally, the platform supports compression of data and
exploits sparseness of intermediate activations to increase
observed bandwidth. The Eyeriss architecture, depending on
the type of neural network used, can utilize nearly 100% of
the CGRA resources when inferring AlexNET.

One of the most recent (and perhaps radical) changes to the
FPGAs is coming in the form of support for deep learning
CGRAs. The Xilinx Versal [150], [151] series allocates a
large part of the silicon to a mesh-like CGRA structure of pro-
grammable, neighbor-communicating, processing elements.
The elements themselves are fairly general-purpose, but are
marketed as targeting deep learning and telecommunication
application. To remedy the eventuality that the AI engine
might be missing crucial parts of deep learning functionality
that has yet to come, the AI engine can directly interface
remaining parts of the reconfigurable (FPGA) silicon, which
is in the form of the fine-grained reconfigurable cells that
Xilinx is known for. The system itself is an attempt to com-
bine the best of both the fine-grained and coarse-grained
reconfigurable worlds.

F. LOW-POWER CGRAs
CGRAs have also been shown to be competitive in terms of
power consumption, particularly when compared to existing
(low-power) processors and DSP engines. The CGRAs in this
domain follow the same concept as earlier CGRA designs,
but focus on both technology and architecture improvements
to reduce the static and/or dynamic power of the fabric.

These CGRAs tend to focus on reducing the frequency
and voltage as much as possible. Since the dynamic power
consumption of a system is a function of both frequency
and voltage (Pdynamic = C ∗ V 2

∗ fclk ), reducing frequency
can have a dramatic effect on power consumption. Several
CGRAs in this area operate on near-MHz levels, and some
even remove the clock altogether.

The Cool Mega-Array [152], [153] (CMA-1 and CMA-2)
architecture builds on the following two premises: (i) the
clock (clock-tree, flip-flops, state, etc.) is the culprit behind
much of the consumed power on amodern chip, and (ii) appli-
cations have adequate parallelism to freely trade silicon for
performance where needed. The CMA-1was a typical CGRA
mesh architecture, but created without a single clock. The
architecture focuses on stream-computing, where a processor
presents inputs to the CGRA that – in due time – are computed
using the clock-less fabric. The architecture (and its follow
up, CMA-2) is power-efficient, and experiments on taped-out
versions showed that the leakage power of the chip could be
as low as 1 mW. The CMA architecture manages to reach
up to 89.28 GOPS/Watt using a 24-bit data-path. The CMA
architecture is still being researched, and recent work has
focused on improving performance (through variable-latency
pipelines in VPCMA [154]) or further reducing power con-
sumption through body-biasing.

The SYSCORE [155] architecture is another similar archi-
tecture that focuses on low-power consumption, but leverages
dynamic scaling of both voltage and frequency (DVFS) for

power-benefits, and uses a fixed-point (and not floating-
point) number representation. As with CMA-1/2, it is a
24-bit data-path with a standard mesh-like arrangement of
CGRA-tiles.

The i-DPs [156] architecture is an embedded biosignal
processing CGRA that allows multiple configurations to
share the CGRA substrate through reconfiguration. The main
contribution of i-DPs is an extension of the configuration con-
troller, which can manage RC allocation to different proces-
sors. As with most CGRAs in the biosignal domain, the i-DP
runs at a low 2MHz clock frequency, and shows both runtime
and energy efficiency gains when running ECG applications.

Lopes et al. [157] evaluated a standard mesh-like CGRA
for use in real-time biosignal processing. The CGRA they
constructed had the additional benefit of being able to
power-down sections of the CGRA when unused to extend
battery life. Another biomedical CGRA was introduced
by Duch et al. [158], and uses a mesh-like composition
and a 1 MHz clock-frequency to accelerate electrocardio-
gram (ECG) analysis kernels.

The Samsung UL-SRP [63] was designed for biomedical
applications. The UL-SRP is based on the ADRES, and fea-
tures a hybrid high-power/high-performance mode as well as
a low-power/low-performance mode which covers the differ-
ent needs and scenarios.

The PULP [159] cluster system features a 16 RC
mesh to improve performance and energy-consumption for
near-sensor data analytics. The CGRA (called IPA [160])
is standard in the design and adopts most concepts that we
have described so far, with the RCs connected in a torus
fashion. The RCs are capable of 32-bit operations and feature
a discrete power-controller (implementing clock-gating) for
reducing energy usage when idle, and the array is capable
of running at 100 MHz targeting various image processing
kernels.

A different – yet equally interesting – form of power
reduction is to extend the CGRA RCs to support approximate
computing. X-CGRA [161] is one such example showing that
adapting approximate computing in kernels that are resilient
to errors (e.g., image manipulation) can drastically reduce
power consumption by up to 3.21× compared to exact-
methods, with as little as 4% loss in quality.

G. OVERLAYS: CGRAs ON-TOP OF FPGAs
Some of the original incentives for incepting CGRAs was
to build faster – still reconfigurable – hardware accelerators,
citing FPGAs as inadequate with respect to programmability,
performance, and reconfiguration overhead. While FPGA
vendors did indeed remedy parts of these problems (even
including floating-point DSPs [162] into the fabric), prob-
lems with compilation times and reprogramming overhead
still persist to this day. By the early 2010s, several research
groups had started to experiment on encapsulating the typical
fine-grained resources on FPGAs with CGRA-like structures
in the hope of including some of their benefits; these archi-
tectures came to known as FPGA overlays.

VOLUME 8, 2020 146729



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

Overlays remedy two large performance and usabil-
ity problems with FPGAs: compilation times and recon-
figuration overheads. It is well-known that compiling a
design towards FPGAs is a time-consuming task. Modern
FPGAs are larger with many unique characteristics making
it non-trivial to place and route on them. Furthermore, as the
FPGAs grow, so does also the memory footprint of the syn-
thesis tools, and it not uncommon for tools compiling against
new devices (e.g., Intel Stratix 10) to consume a large portion
of the system memory, effectively restricting the number of
parallel compilations possible in a machine. By coarsening
and reducing the number of reconfigurable units, compilation
times can be significantly reduced (e.g., nearly three orders of
magnitude [163]). Furthermore, FPGAs – once programmed
– are often expected to run for a long time, since context
switching incurs a relatively large (seconds long) overhead.
Coarsening the units decreases the size of the configurable
state, and multiple contexts can be (and are) stored within the
same fabric.

QUKU [164]–[166] (Figure 4:a) was one of the earli-
est CGRA-like overlays on FPGAs, dating back to 2006,
and it was actively researched well into 2013. It features a
mesh of processing elements, each capable of addition or
multiplication, with nearest-neighbor communication and a
token-like network. QUKU – as a prototype – was demon-
strated on FIR-filters, Sobel, and Laplacian operations, show-
ing improvements over a similar software implementation in
the soft-coreMicroblaze [167] processors or custom circuitry.

Not strictly a CGRA, ZUMA [168] (Figure 4:b) was an
early effort to virtualize the fine-grained resources of an
FPGAusing a ‘‘virtual FPGA’’, for reason of portability, com-
patibility, and FPGA-like reconfigurability inside of FPGA
designs. Similar to a real FPGA, ZUMA discretized the
FPGA into logic clusters that contain a crossbar and K-input
Look-Up Table with an optional flip-flop capturing the out-
put. Each cluster was connected to a switch box that can
be programmed to route the data around. The area cost of
using a virtual FPGA could be as low as only 40% more than
the barebone FPGA, demonstrating its benefits. Other (even
earlier) work was Firm-core virtual FPGA [169], and some
more recent efforts include the vFPGA [170].

Intermediate fabrics (IFs) [163] coarsen the FPGA logic by
creating a mesh of computational elements of varying sizes,
such as for example multipliers and square root functions,
where small connectivity boxes (routers) govern the traffic
throughout the data-path. IFs were evaluated on image pro-
cessing (stencil) kernels, and overall showed an on average
17% drop in clock frequency against a gain of 700× in
compilation time over using the FPGA alone.

The CREMA [171] overlay architecture was a follow-up
of the Butter architecture (described in section IV-B), and
targeted both integer and floating-point arithmetic on FPGAs.
It was based around a parametrizable VHDL template and
supports changing architectural details such as data width and
the number of external routing inputs per PE, albeit the size
of the CGRA itself was fixed at 4 × 8 PEs. CREMA can

FIGURE 4. (a) The QUKU overlay was among the earliest CGRAs running
on an FPGA, and adopted a simple scheme where RCs connect to
adjacent tiles and (an optional) address generator for reading/writing
external memory data. (b) The ZUMA architecture – while not technically
a CGRA – was an FPGA-on-FPGA overlay whose RCs mimicked those of
the actual FPGA. (c) The Xilinx DSP block is versatile and controllable
without reconfiguration, and has been a popular choice as a basis for
CGRA-overlays.

hold multiple contexts and was evaluated on a matrix-vector
multiplication kernel, demonstrating performance improve-
ments of up to four times over the Butter accelerator.
The AVATAR [172] CGRA shared many similarities with
CREMA but specialized on Fast Fourier Transforms (FFTs)
and also had a different layout (4 × 16 vs the 4 × 8 in
CREMA). The SCREMA [173] CGRA was an extension to
CREMA allowing the size of the CGRA to be parametrized,
and focused on accelerating matrix-vector multiplications.

TheMIN overlay architecture [174] approaches the CGRA
design differently; it uses a one-dimensional strip of pro-
cessing elements whose output is connected to each other
through an all-to-all interconnect. Hence, data-flow graphs

146730 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

are cut and fitted onto the linear array, and different parts
of the graph are scheduled in time on the array and the
interconnect. Different combinations and compositions of the
processing elements were evaluated, and the clock frequency,
for the most part, ran at 100 MHz, competitive to soft pro-
cessor cores at the time. Other, arguably less configurable,
overlays follow a similar one-dimension strip design, such
as the VectorBlox MXP Matrix Processor [175]. The FPCA
loop-accelerator described earlier was also prototyped on
FPGAs. The READY [176] architecture extends the linear
array concept further by also having multiple threads running
on the overlay.

The Shared-ALU (SALU) based architecture [177] tar-
gets FPGA reconfigurability on two levels: the first level
is that a system architect designs the core overlay using a
set of FIFO banks, shared ALU clusters, and state machines
with microcode. The second (more abstract) level allows
dynamic reconfiguration by changing the microcode in the
state machines to control how data flows through the array
and what operations the shared ALUs use. SALU is (unlike
many others) token-driven. The system was evaluated on a
Stratix III platform, reaching 204 MHz and demonstrating an
FFT use case.

An example of a layered CGRA overlay for FPGAs is
the VDR architecture [178]. Here, computational resources
are laid out in a one-dimensional strip where each strip
is fully-connected to downstream units. Links are unidirec-
tional, and synchronization protocol guides data throughout
the data-path. TheVDR architecture runs at a clock frequency
of 172 MHz, and was shown to be between 3 and 8 times
faster compared to the NiosII processor [179] (a well-known
soft-core used in FPGA design). Another architecture similar
to VDR is the RALU [180].

A flurry of innovative overlays has been introduced since
2012, all centered around the Digital Signal Processing (DSP,
Figure 4:c) block of modern FPGAs. The DSP blocks were
originally included to allow the use of expensive operations
that do not necessarily map well to FPGAs (e.g., multipliers).
Since then, DSP blocks have been continuously evolved to
include more diverse (various-size multiplication, accumula-
tion, etc.) or more complex (e.g., single-precision floating-
point arithmetic [162]) functionality. Some of the vendors
(e.g., Xilinx) directly expose the interface to control the
different functionality of the DSP blocks to the FPGA fabric,
and it was not long before the idea to build CGRA archi-
tectures around said DSP blocks emerged. reMORPH [181]
was one of the early architectures to adopt this style of
reasoning. Several different architectures have been explored
around the concept of DSPs, including various topologies
(e.g., trees [182]) or adaptation of existing architectures
(e.g., DySER using DSP blocks [183]). The strengths of
these architectures lie in their near-native performance, where
small overlays built around DSPs can run at 390 MHz (or
higher).

QuickDough [184], [185] is a design framework for using
CGRA overlays on FPGAs, specifically targeting them to

assist CPU in accelerating compute-intensive program code.
The overlay itself follows the standard layout with a mesh
of processing elements, each containing a small instruction
memory that sequences the ALU within the processing ele-
ment. The mesh can interface external memory by enqueuing
requests to an address unit. Unique for the architecture is that
the two parts (the address unit and the PE mesh) run at two
distinctly different frequencies.

Most FPGA overlays presented so far focused exclusively
on integer computation. The Mesh-of-FUs [186] was an
exception that targeted both integer and floating-point com-
putation. The architecture was similar to other mesh-based
approaches, but the work demonstrated high (at the time)
performance capabilities of FPGAs also for floating-point
operations, reaching nearly 20 GFLOP/s on a Stratix IV [187]
device. Using floating-point processing elements seems to
incur a 33% area overhead, yielding a smaller CGRA mesh,
and also a (arguably negligible) 13% reduction in clock fre-
quency.

A different overlay architecture that targets floating-point
operations was the TILT array [188], [189]. The TILT array
architecture was conceptually very similar to the MIN over-
lay. A linear array of processing elements was arranged to
communicate with an all-to-all crossbar, which saves the state
into an on-chip RAM and relays information to the computa-
tion in the next cycle. The authors illustrated the benefits of
TILT over High-Level Synthesis (OpenCL) with both com-
parable performance and improved productivity, reaching an
operating frequency of up to 387 MHz on a Stratix V [190].

The URUK [191] architecture took a different approach on
how the ALUs inside overlay should be implemented. Rather
than having a fixed function, URUK leveraged partial recon-
figuration [192], changing the RCs functionality throughout
time.

Finally, tools for automatically creating CGRA over-
lays for FPGAs have emerged, such as the Rapid Overlay
Builder [193] and CGRA-ME [61] that simplify generation
(and in the case of CGRA-ME also compilation) of applica-
tions and overlays.

An interesting observation is that out of the 27 CGRAover-
lay architectures that we surveyed herein, 17 chose Xilinx
FPGAs as the target platform while 10 focused on Intel (then
Altera) FPGAs, with some studies using both. There seems
to be a favoring of Xilinx architectures, which we believe is
due to the more dynamic control that Xilinx offers in their
DSP blocks compared to Intel. On the other side, Intel DSPs
have (starting from Arria 10 onwards) hardened support for
IEEE-754 single-precision floating-point operations, encour-
aging research on floating-point capable FPGA overlays.

V. CGRA TRENDS AND CHARACTERISTICS
A. METHOD AND MATERIALS
For all previous surveyed and summarized work, we collected
several metrics associated with each study. These were:

1) Year of publication,

VOLUME 8, 2020 146731



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

2) Size of the CGRA array in terms of unique RCs,
3) Data-path width of the CGRA (e.g., MATRIX oper-

ates on 4-bit while RaPiD operates on 16-bit),
4) Clock frequency of operations (fmax) in MHz as

reported in the study,
5) Power consumption in Watt. For studies that

empirically measured this metric, we collected the
(benchmark, power) tuple. Otherwise, we used
what is reported in the study (often the post place-and-
route power estimation),

6) Technology (in nm) of architecture when either taped
out on silicon, or the standard cell library used with the
EDA tools,

7) Area (mm2) of the fully synthesized chip as reported in
the study. In some cases, we had to manually calculate
it based on the individual RC size or based on the
gates used (after verification with authors). For FPGAs,
we used the chip (BGA) package size and assumed a
chip-to-die ratio of 7:1, as has been reported in [194].

8) Peak performance, including peak operations per
second (OP/s), peak multiply-accumulates per sec-
ond (MAC/s), Peak floating-point operations per sec-
ond (FLOPS) as reported in the paper. We differentiate
between integer MAC/s and OP/s because some archi-
tectures (e.g., EGRA) do not balance them, leading to
a large theoretical OP/s but not a proportionally large
MAC/s.

9) Obtained performance out of the theoretical peak
(%). We used what the authors reported. For those
cases where authors did not report obtained perfor-
mance (e.g., only reported absolute time), we derived
this metric manually where applicable (otherwise we
do not include it), such as for example when the
authors report both the input dimension and the exe-
cution time (in seconds or cycles) of known appli-
cations such as (non-Strassen) matrix-multiplication,
FIR-filters, matrix-vector multiplication, etc.

For items 8-9, we ignored studies that only reported rel-
ative performance improvements, as it is hard to reason
around the performance of a baseline unless explicitly stated.
All metrics included have either been directly reported in
the seminal publication, have been verified by the authors,
or we were confident in our understanding of the architec-
ture to derive them ourselves. We positioned and related
our obtained CGRA characteristics against those of modern
GPUs. We used NVIDIA GPUs as references with data col-
lected from [195] and integer performance calculated using
methods described in [196].

VI. OVERALL ARCHITECTURAL TRENDS
Figure 5 shows an overview of how CGRAs have changed
over time with respect to various metrics. The total number of
RCs, as a function of the respective publication year, is shown
in Figure 5:a. We see that a majority of CGRAs are quite
small (median: 64 RCs) and even smaller for FPGA-based

CGRAs (median: 25 RCs). This is in line with the reasoning
that most CGRAs focus on small kernels in the embedded
application domain, honoring ILP rather than other forms
of parallelism (e.g., thread- or task-level). There are several
exceptions to this, such as Garp, which was an early CGRA
that used 1/2-bit reconfigurable data-paths and thus needed
a large number of RCs to implement various functionality.
The other exception is Tartan, where the author’s largest
evaluated version is up to 25,600 RCs, making it likely
the largest CGRA ever simulated; this awe-inspiring size
was reached by severely restricting the functionality of the
RCs (e.g., there is no multiplication support). Thirdly, the
Plasticine architecture can have up to 6208 RCs of varying
sorts. Figure 5:b shows the transistor scaling of CGRAs and
Nvidia GPUs. As expected, the transistor dimensions have
continuously shrunk, as predicted by Moore. Note, however,
that both FPGAs and GPUs are (on average) one transistor
generation ahead of CGRAs, likely due tomost CGRAs being
developed by academia and thus restricted to those standard
cell libraries available at the time (which usually are not the
most recent).

Figure 5:c shows the area of the CGRAs as reported either
by the ASIC synthesis tools, estimation by authors, or by
the final taped-out chip. We also include the full-size of the
FPGA die sizes (that FPGA-based CGRAs have access to),
and we position these against the die-size of modern Nvidia
GPUs. We can see that the trend of CGRA research is – as
with the size of CGRAs – to favor smaller CGRAs, and the
median size of the CGRAs is around 13 mm2. Compared to
GPUs, which have monotonically increased their size over
time, CGRAs have almost done the inverse, and decreased in
size. There are two major exceptions: the first is the Imagine
architecture, which reported an amazing size of 1000 mm2

(later 144 mm2 in the follow-up paper six years later)– larger
than any CGRA or GPU reported to this day. The other larger
architecture is the CUDA-programmable SGMF at 800 mm2.
Figure 5:d shows how the reported power consumption of

ASIC-based CGRAs has grown over time, and is compared
to the Thermal Design Power (TDP) reported for Nvidia
GPUs. The CGRAs are experiencing an on-average exponen-
tial decrease in power consumption, which is likely due to
smaller standard cell libraries coupled with small CGRA size
(Figure 5:a,c,d). On the other hand, new generations of Nvidia
GPUs tend to draw more power than older generations. The
most power-consuming CGRA, out of those reporting, is the
Plasticine architecture consuming a maximum of 49 Watt,
followed by Raw at 18.2 Watt and IPA at 11.26 Watt. On the
opposite side, we find architectures that target bio-signal
processing, where power efficiency is critical. Examples
include the 167-core processor (60 MHz version) at 99 mW,
SYSCORE at 66.3 mW, CMA-1 at 11.2 mW, and CCSOTB2
at 3.45 mW.

Figure 5:e shows how the clock-frequency has changed
throughout time for both ASIC and FPGA-based CGRAs,
as well as Nvidia GPUs. The GPUs have their clock fre-
quency increased, starting off well-around where CGRAs

146732 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 5. Architectural trends of CGRAs (both ASIC and FPGAs), showing how different metrics have changed as a function of time, where possible
positioned against that of Nvidia GPUs (dotted lines are fit to data to show trend).

operated in the early 2000s to the high-frequency devices we
see today. The CGRAs, as one would expect (following the
trend of previous graphs), took a different path and instead
focused on low-power (and thus low-frequency). The average
CGRA will run around 200 MHz, with the frequency slowly
increasing as a function of better and smaller standard cell
libraries. There are but few CGRAs that operate at high-
frequency, and these include the loop-accelerator SEED at
2GHz, the GPU-like SGMF at 1.4 GHz, the 167-core proces-
sor (high-frequency version) at 1.17 GHz, and both Plasticine
and Wavescalar at 1 GHz. At the opposite edge, we find
CGRAs with very low frequency, such as ULP-SRP at (as

low as) 7 MHz and the Bio-CGRA [158] at 1 MHz. The
FPGA-based CGRAs have less of an opportunity to tune
for frequency, as they are often bound by limitation in the
fabric itself; however, it is interesting to see that the operation
frequency of FPGA-based CGRAs is rivaling most of the
ASIC CGRAs.

Figure 5:f shows the chosen data-path width that CGRAs
research tends to adopt. Most architecture adopts either a
16-bit (30%) or 32-bit (53%) data-path width; those tar-
geting 16-bit data-path are usually more tailored towards
a specific application, such as telecommunication or deep-
learning, while those that target 32-bit (or beyond) are

VOLUME 8, 2020 146733



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 6. Integer and floating-point characteristics of CGRAs as they appear in the scientific literature, and compared with historical data of Nvidia GPUs
for 32-bit integer and single-precision performance.

more general-purpose. A few (11.5%) target 8-bit archi-
tecture, but often have support for chaining 8-bit oper-
ations for 16-bit use. MATRIX and Garp target very
fine-grained reconfigurability, with 4-bit and 1-/2-bit, respec-
tively. Despite this, we can expect future architectures
to include more support for low or hybrid-precision,
since it is a reliable way of obtaining more performance
while mitigating memory-boundness for applications that
permit it.

Figure 5:g shows the power-consumption of CGRAs and
GPUs as a function of their respective die sizes. This
graph complements the graph in Figure 5:d to show that
the low power-consumption of CGRAs is mainly because
they are small, with (out of those CGRAs that report both
power- and area) only Plasticine coming closer to the trend
of GPUs.

Finally, Figure 5:h shows how the individual RC area has
grown throughout time, and we see that the size of RCs
has been following the technology scaling, and continuously
decreased in size. However, when normalizing the CGRAs
manufacturing technology to that of 16 nm, we actually
noticed a different trend, where the area of individual RCs
is increasing, due to incorporating more complex elements
(such as wider data-paths, more complex arithmetic units,
etc.).

VII. INTEGER AND FLOATING-POINT PERFORMANCE
ANALYSIS
Figure 6 overviews data associated with the pure performance
of the CGRAs, often when positioned against that of Nvidia
GPUs.

Figure 6:a-f shows the obtained integer performance. Here
we distinguish between operations and MAC-based oper-
ations in order to reveal architectures that are starved of
multipliers. For example, the Tartan CGRA can execute
a large number of operations per unit time, but has no
support for multiplications, leading to a very low com-
parable multiply-add performance. Figure 6:a-b show the
Garp and MATRIX architecture as the sole candidates for
low-precision arithmetic, and that while both of these have
comparable high performance (for their time), their multi-
plication (MAC) performance is lacking (in Garp, the over-
head was 32× compared to an addition). Figure 6:c shows
8-bit integer performance, which has recently been of inter-
est to the deep-learning inference community, and where
next-generation Xilinx Versal architecture will be capable of
reaching thousands of GOP/s of 8-bit integer performance.
Figure 6:d shows 16-bit integer performance, showing a
continuous growth over the years. Note how the Tartan archi-
tecture claims to reach similar performance levels of the
upcoming Xilinx Versal CGRA, despite being more than a

146734 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

decade old. Figure 6:e is a special case, since only a few
CGRAs (e.g. Cool Mega-Array 1 and SYSCORE) support
them. Despite their low visible performance, these devices
are actually very power-efficient (see the next section for
discussion). Finally, 32-bit integer performance is shown
in Figure 6:f, where we also included Nvidia GPU integer
performance for comparison. We see that CGRAs have his-
torically been comparable in performance to that of Nvidia
GPUs, and even FPGAs are becoming a effective way of
obtaining integer performance through CGRAs.

Figure 6:g shows the peak floating-point performance that
CGRAs reported over the years. The number of floating-point
capable CGRAs prohibits us from drawing any reasonable
trend-line, unlike the one for GPUs that exponentially grows
with years (together with the die-area, see Figure 5:c). How-
ever, those CGRAs that do include floating-point units can
compete with the performance of modern GPUs– sometimes
even outperform them. For example, the Plasticine architec-
ture is capable of delivering 12.3 TFLOP/s of performance,
rivaling GPUs from that generation, and the earlier Redefine
and SGMF architecture could deliver 300 and 840 GFLOP/s
respectively. Even earlier, the WaveScalar architecture was
capable of 128 GFLOP/s, which was well ahead of GPUs at
that time. At a lower performance, we find architecture such
as FloRA (600 MFLOP/s) and the loop-accelerator VEAL
(5.4 GFLOP/s). Finally, the Xilinx Versal AI engines will
come in different configurations, three shown in the graph
(at 3 TFLOP/s, 5 TFLOP/s, and 8 TFLOP/s).

Figure 6:h shows the distribution over the number of
CGRAs that supports floating-point versus those that sup-
port integer computations. Floating-point support is clearly
underrepresented, and only one in four architectures support
floating-point arithmetics.

VIII. PERFORMANCE USAGE ANALYSIS
Figure 7:a shows the number of instructions-per-cycle (IPC)
that applications/benchmarks experienced when executing on
different CGRAs.We see that amajority of CGRAs operate in
a fairly low-performance domain, primarily due to their size,
and most execute around 12 IPC (median). There are corner
cases, such as the Rhyme-Redefine architecture, which aims
to explore CGRA in High-Performance Computing, reaching
300+ IPC on selected workloads, or the Deep-Learning SDT-
CGRA architecture on inference, reaching 172 IPC. Simi-
larly, Eyeriss is capable of occupying 100% of its resources
when inferring AlexNET, yielding astounding 700+ IPC.
Most FPGA-based CGRAs also execute less than 100 IPC;
this is primarily because the size of most FPGA CGRAs is
rather small (see previous Figure 5:a).

Figure 7:b shows the performance that applications expe-
rience when running on different CGRA architectures as a
function of topology size, where we group CGRA archi-
tectures into three groups: small (<16), medium (16-64),
and large (>64). As is expected, we see that the perfor-
mance and obtained IPC grow as the architectures become
larger, where applications running on small-sized CGRA

commonly experience (median values) 7.96 IPC, 13.8 IPC
on medium-sized CGRAs, and 58.4 IPC on large ones, with
outliers being capable of reaching much more. A comple-
mentary graph is seen in Figure 7:c, where we see the
obtained performance as a fraction of the raw peak perfor-
mance. The graph reveals that reaching peak-performance
becomes harder as the CGRA architecture grows in size,
where small architectures commonly reach 25% and more of
the peak performance while large architectures reach 18.2%,
and medium-sized architecture reach 23.4%. Most of these
architectures, as we will discuss later, rely primarily on using
software pipelining as their prime source of parallelism,
which might not necessarily be able to fill architectures to
their maximum.

Figure 7:d shows compute densities and how they have
evolved throughout CGRA research history. For comparison,
we included Nvidia GPU performance for 32-bit integer and
single-precision floating-point. Overall, the compute densi-
ties of CGRAs are in-fact comparable to GPUs, and often
even surpass. For example, most CGRAs that support 32-bit
integer operations consistently pack more compute per mm2

than GPUs. This also holds true for some CGRAs with
floating-point support, such as Plasticine. Overall it makes
sense that CGRAs pack more compute per unit area, since
from an architectural perspective, a CGRA trades much of the
silicon used for orchestration (instruction memory, caches,
control-planes, etc.) for more compute. The compute den-
sities correlate with the transistor size, and the more recent
architectures have a more clear advantage. Note that CGRAs
are likely to have an even higher benefit than what the graph
shows since the transistor generation usually lags behind one
generation compared to commercial GPUs, likely yielding an
even higher benefit.

Figure 7:e shows how many operations can be performed
per unit power (OPs/Watt) given the architecture. This could
arguably be the most important metric, as it serves in part
to remedy dark silicon and is also a well-known met-
ric for how power-efficient an architecture/system is (e.g.,
Green500 [197]). Compared to GPUs, a majority of CGRAs
can execute more operations – integer and floating-point alike
– per unit power. Some architectures, such as the Plasticine,
can be up to two orders of magnitude more power-efficient
than GPUs, which offsets any criticism that using TDP as
proxy for GPU power consumption may incur. Similar to the
reasoning on compute densities, technology scaling impacts
power-consumption as well, and in reality it is likely that the
power-efficiency is even better thanwhat the graph illustrates.

Figure 7:f-g shows how the area- and power-densities of
compute change with respect to frequency. As expected,
we see that the CGRAs operate largely in a different region
than GPUs– they have high power-efficiency while operating
at a lower frequency.

The Nvidia V100 is one of the largest commercial acceler-
ators readily available today, featuring an 815mm2 die built
on 12 nm technology. The peak performance of the V100
reaches 15.67 TFLOP/s and 13.43 TOP/s (32-bit). We scaled

VOLUME 8, 2020 146735



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 7. Performance with respect to time, power, and area of the CGRAs as reported in the scientific literature, compared to that of Nvidia GPUs. The
last figure (h) projects the performance of various CGRAs assuming scaling similar to that experienced by the GPUs.

historical CGRAs that reported both area and performance to
that of theNvidia V100 by scaling up the respective chip areas
up to the V100’s 814mm2 and also increase the performance
of the chip as a function of the increased transistor densities
(obtained by moving to 12 nm). The transistor densities we
used are the same as the one that Nvidia GPUs experienced
and can be seen in Figure 8. Albeit this analysis does have sev-
eral drawbacks, such as power- and thermal-effects (subject
to dark silicon [198]) being unaccounted for and frequency
un-scaled (we assumed original CGRA frequencies), it does
provide a perspective on the question: what if CGRAs were
on the same playing field as GPUs? The results are seen in

Figure 7:h. We see that while most CGRA architecture would
still be below the performance of a V100 (primarily due
to the lower clock frequency). However, those architectures
whose target indeed is to provide high-performance, such
as HyCube, WaveScalar, SGMF, CGRA-ME, and even the
older KressArray, show comparable performance to the V100
for either 32-bit integer, floating-point or both. The highest
obtained level is demonstrated by Plasticine, which – if given
an 815 mm2 design built on 12 nm technology – could reach
hundreds of TFLOP/s of performance. While this extrapo-
lation is indeed very limited and ignores many properties,
it aims to show that CGRAs have the architectural capability

146736 VOLUME 8, 2020



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

FIGURE 8. Transistor-density scaling as experienced by Nvidia GPU chips,
which we used to scale existing CGRAs from various times in history.

of competing with modern GPU designs, assuming we can
fully utilize these (potentially over-provisioned) computing
resources.

IX. DISCUSSION AND CONCLUSION
As we saw in the previous section, a vast majority of CGRAs
are fairly small and run at a (comparably) low frequency.
This, in turn, leads to very power-efficient designs, allowing
CGRAs to be placed into embedded devices such as mobile
phones or wearables and operate for hours. This power effi-
ciency, with respect to the performance they provide, allows
CGRAs to compete with (and possibly outperform) GPUs,
which in turn could lead to a partial remedy for dark silicon.
Based on the analysis herein, we argue that CGRAs should
be considered a serious competitor to GPUs, particularly in a
future post-Moore era when power-efficiency becomes more
important.

However, in order to reap the better compute-densities and
better power-efficiency that CGRAs offer, larger architec-
tures must be more thoroughly researched. Larger CGRAs,
particularly those aimed towards aiding or accelerating
general-purpose computing, will be challenging to keep occu-
pied. As we saw in the final graph, CGRAs scaled to the level
of an Nvidia V100 will potentially have a peak performance
consisting of hundreds of teraflops, but the main question is:
will we be able to map and fully utilize all those computing
resources for anything but the most trivial kernels?

Several authors have already pointed out that in order
to harvest larger CGRAs, we need to complement current
ways of extracting instruction parallelism (primary modulo
scheduling) with other forms of concurrency. While modern
CGRAs (e.g. Plasticine, SIMD-RA) do exploit SIMD-level

parallelism, there will, without doubt, be the need to even
further research and support programming models such as
CUDA (SGMFmove towards this direction), multi-threading
or even multi-tasking (e.g. OpenMP [199]) should be more
aggressively pursued both from an architectural and pro-
grammability viewpoint. For example, the recently added
task dependencies in frameworks such as OpenMP and
OmpSs [200] matches very well to clustered CGRAs that
have islands of both compute and scratchpad, where the
dependencies would dictate how data would flow on these
CGRAs (exploiting both inter- and intra-task level parallelism
and data locality).

Another limitation of existing architectures is the applica-
tion domain on which they accelerate. A large majority of
CGRAs target embedded applications such as filters, stencils,
decoders, etc. Studies that integrate the CGRA into the back-
end of a processor (e.g., TRIPS, DySER) tend to have a more
diverse set of benchmarks available, and those studies (e.g.,
Tartan, SEED, SGMF) that rely only on simulation (without
hardware being developed) have the richest set of application
support. Despite this, CGRAs suffer from a similar problem
that current FPGAs struggle with: we limit our studies to
small, simple kernels, rather than studying the impact of
these architectures on more complex applications. To give
a concrete example, there is no reconfigurable architecture
that has seriously considered many of the proxy applications
that drive HPC system procurement, such as for example
the RIKEN Fiber [201] or ECP benchmark suites [202]. For
FPGAs and High-Level Synthesis, this might make sense,
since there is always the danger that these large kernels might
not fit onto a single FPGA; CGRAs, however, can store mul-
tiple contexts and kernels with little overhead in switching
between them, opening up possibilities for executing whole
applications as well as opportunities to exploit inter-kernel
temporal and spatial data locality.

A different challenge with the present (and similar future)
surveys lies in the amount of reporting by the different stud-
ies. For example, studies that apply a simulationmethodology
often have a broader benchmark coverage, but fail to report
hardware details (e.g., area or RTL-information). At the same
time, many CGRAs that were actually implemented in hard-
ware (or RTL) do report area and power-consumption, but
limit the benchmark selection and information. This leads to
gaps in the graphs, where a high-performance CGRA candi-
date is represented in one graph (e.g., peak performance), but
is absent from another graph (e.g., area), in turn limiting our
analysis. This could more clearly be seen in those graphs that
use derivedmetrics, such as performance per power (OPs/W).
Similarly, many papers often report relative performance
improvement, rather than absolute numbers, leading to diffi-
culty in reasoning around performance across a wide range of
CGRAs. We would recommend authors of CGRA papers to,
as far as possible, include details on all above listed aspects.

Finally, an important limitation of this study is the
tool-agnostic view that we took. Clearly, different CGRAs
come with tools of varying maturity, and we must

VOLUME 8, 2020 146737



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

acknowledge that even if certain CGRAs could theoretically
operate very well, its performance would be a function of how
well the tools (e.g., compiler) did to schedule an application
onto them– the tool could even influence the performance
more than the CGRA hardware itself. The maturity in tooling
infrastructure could also very well explain why some CGRAs
were more successful than others. Future work would be
advised to (try to) factor out the quality of tools in similar
studies to provide an even more accurate view of different
CGRAs.

Overall, this survey has shown that there is plenty of
room for CGRA research to grow and to continue to be an
active research subject for use in future architecture, particu-
larly striving to design high-performance CGRAs that aim at
niche or general-purpose computation at scale. As transistor
dimensions stop shrinking and Moore’s law no longer allows
us the architectural freedom of carelessly spending silicon,
reconfigurable architectures such as CGRAs might excel at
providing performance in a post-Moore era.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
who have helped improving this survey paper. This article is
based on results obtained from a project commissioned by
New Energy and Industrial Technology Development Orga-
nization (NEDO).

REFERENCES
[1] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,

and A. R. LeBlanc, ‘‘Design of ion-implanted MOSFET’s with very
small physical dimensions,’’ IEEE J. Solid-State Circuits, vol. 9, no. 5,
pp. 256–268, Oct. 1974.

[2] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’
Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[3] T. N. Theis and H.-S. P. Wong, ‘‘The end of Moore’s law: A new
beginning for information technology,’’ IEEEComput. Sci. Eng., vol. 19,
no. 2, pp. 41–50, Oct. 2017.

[4] J. S. Vetter, E. P. DeBenedictis, and T. M. Conte, ‘‘Architectures for the
post-Moore era,’’ IEEE Micro, vol. 37, no. 4, pp. 6–8, Dec. 2017.

[5] C. D. Schuman, J. D. Birdwell, M. Dean, J. Plank, and G. Rose, ‘‘Neuro-
morphic computing: A post-Moore’s law complementary architecture,’’
Oak Ridge National Lab., Oak Ridge, USA, Tech. Rep., 2016. [Online].
Available: https://neuromorphic.eecs.utk.edu/publications/2016-
11-14-neuromorphic-computing-a-post-moores-law-complementary-
architecture/

[6] R. Tessier and W. Burleson, ‘‘Reconfigurable computing for digital
signal processing: A survey,’’ J. VLSI Signal Process., vol. 28, nos. 1–2,
pp. 7–27, May 2001.

[7] J. Gray, ‘‘GRVI phalanx: A massively parallel RISC-V FPGA accel-
erator accelerator,’’ in Proc. IEEE 24th Annu. Int. Symp. Field-
Programmable Custom Comput. Mach. (FCCM), May 2016, pp. 17–20.

[8] G. Wang, B. Yin, K. Amiri, Y. Sun, M. Wu, and J. R. Caval-
laro, ‘‘FPGA prototyping of a high data rate LTE uplink baseband
receiver,’’ in Proc. 43rd Asilomar Conf. Signals, Syst. Comput., 2009,
pp. 248–252.

[9] I. Kuon, R. Tessier, and J. Rose, ‘‘FPGA architecture: Survey and chal-
lenges,’’Found. Trends Electron. Des. Autom., vol. 2, no. 2, pp. 135–253,
2007.

[10] C. Yang, T. Geng, T. Wang, C. Lin, J. Sheng, V. Sachdeva, W. Sherman,
and M. Herbordt, ‘‘Molecular dynamics range-limited force evaluation
optimized for FPGAs,’’ in Proc. IEEE 30th Int. Conf. Appl.-Specific
Syst., Archit. Processors (ASAP), Jul. 2019, pp. 263–271.

[11] A. Podobas, H. R. Zohouri, N. Maruyama, and S. Matsuoka, ‘‘Eval-
uating high-level design strategies on FPGAs for high-performance
computing,’’ in Proc. 27th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2017, pp. 1–4.

[12] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka,
‘‘Evaluating and optimizing OpenCL kernels for high performance com-
puting with FPGAs,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Nov. 2016, pp. 409–420.

[13] H. R. Zohouri, A. Podobas, and S. Matsuoka, ‘‘Combined spatial and
temporal blocking for high-performance stencil computation on FPGAs
using OpenCL,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2018, pp. 153–162.

[14] A. Podobas and S. Matsuoka, ‘‘Designing and accelerating spiking
neural networks using OpenCL for FPGAs,’’ in Proc. Int. Conf. Field
Program. Technol. (ICFPT), Dec. 2017, pp. 255–258.

[15] T. Miyamori and K. Olukotun, ‘‘REMARC: Reconfigurable multimedia
array coprocessor,’’ IEICE Trans. Inf. Syst., vol. 82, no. 2, pp. 389–397,
1999.

[16] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee, V. Sarkar,
D. Srikrishna, and M. Taylor, ‘‘The raw compiler project,’’ in Proc. 2nd
SUIF Compiler Workshop, 1997, pp. 1–7.

[17] J. R. Hauser and J. Wawrzynek, ‘‘Garp: A MIPS processor with a
reconfigurable coprocessor,’’ in Proc. 5th Annu. IEEE Symp. Field-
Program. Custom Comput. Mach., 200, pp. 12–21.

[18] S. Ahmad, S. Subramanian, V. Boppana, S. Lakka, F.-H. Ho, T. Knopp,
J. Noguera, G. Singh, and R. Wittig, ‘‘Xilinx first 7nm device: Versal AI
core (VC1902),’’ in Proc. (HCS), Aug. 2019, pp. 1–28.

[19] K. E. Fleming, K. D. Glossop, and S. C. Steely, ‘‘Apparatus,
methods, and systems with a configurable spatial accelerator,’’
U.S. Patent 10 445 250, Oct. 15, 2019,

[20] S. Brown, ‘‘FPGA architectural research: A survey,’’ IEEE Des. Test.
Comput., vol. 13, no. 4, pp. 9–15, Oct. 1996.

[21] P. H. Wang, S. Steibl, H. Wang, J. D. Collins, C. T. Weaver,
B. Kuttanna, S. Salamian, G. N. Chinya, E. Schuchman, O. Schilling,
and T. Doil, ‘‘Intel atom processor core made FPGA-synthesizable,’’
in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2009,
pp. 209–218.

[22] H. Amano, ‘‘A survey on dynamically reconfigurable processors,’’
IEICE Trans. Commun., vols. E89–B, no. 12, pp. 3179–3187, Dec. 2006.

[23] V. Tehre and R. Kshirsagar, ‘‘Survey on coarse grained reconfigurable
architectures,’’ Int. J. Comput. Appl., vol. 48, no. 16, pp. 1–7, Jun. 2012.

[24] R. Hartenstein, ‘‘A decade of reconfigurable computing: A visionary
retrospective,’’ in Proc. Design, Autom. Test Europe. Conf. Exhib., 2001,
pp. 642–649.

[25] G. Theodoridis, D. Soudris, and S. Vassiliadis, ‘‘A survey of coarse-grain
reconfigurable architectures and cad tools,’’ in Fine-and Coarse-Grain
Reconfigurable Computer. Dordrecht, The Netherlands: Springer, 2007,
pp. 89–149. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-1-4020-6505-7_2

[26] M. Wijtvliet, L. Waeijen, and H. Corporaal, ‘‘Coarse grained reconfig-
urable architectures in the past 25 years: Overview and classification,’’
in Proc. Int. Conf. Embedded Comput. Syst., Jul. 2016, pp. 235–244.

[27] L. Liu, J. Zhu, Z. Li, Y. Lu, Y.Deng, J. Han, S. Yin, and S.Wei, ‘‘A survey
of coarse-grained reconfigurable architecture and design: Taxonomy,
challenges, and applications,’’ACMComput. Surv., vol. 52, no. 6, p. 118,
2019.

[28] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett,
and J. Gill, ‘‘MIPS: A microprocessor architecture,’’ ACM SIGMICRO
Newslett., vol. 13, no. 4, pp. 17–22, 1982.

[29] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, ‘‘The garp architecture
and c compiler,’’ Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000.

[30] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings,
‘‘A reconfigurable arithmetic array for multimedia applications,’’ in
Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, vol. 99,
1999, pp. 135–143.

[31] T. Stansfield, ‘‘Using multiplexers for control and data in D-fabrix,’’ in
Proc. Int. Conf. Field Program. Logic Appl., 2003, pp. 416–425.

[32] E. W. Michael, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, S. Devabhaktuni, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal, ‘‘Baring it all to software: The raw machine,’’ IEEE Com-
put., vol. 30, no. 9, pp. 86–93, 1997, doi: 10.1109/2.612254.

[33] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee,W. Lee, A.Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
‘‘The raw microprocessor: A computational fabric for software circuits
and general-purpose programs,’’ IEEE Micro, vol. 22, no. 2, pp. 25–35,
Mar. 2002.

146738 VOLUME 8, 2020

http://dx.doi.org/10.1109/2.612254


A. Podobas et al.: Survey on CGRAs From a Performance Perspective

[34] M. B. Taylor, ‘‘Evaluation of the raw microprocessor:An exposed-
wire-delay architecture for ILP and streams,’’ ACM SIGARCH Comput.
Archit., vol. 32, no. 2, p. 2, 2004.

[35] S. Bell, ‘‘TILE64-processor: A 64-core SoC with mesh interconnect,’’
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Dec. 2008, pp. 88–598.

[36] T. Miyamori and U. Olukotun, ‘‘A quantitative analysis of reconfig-
urable coprocessors for multimedia applications,’’ in Proc. IEEE Symp.
FPGAs Custom Comput. Mach., 1998, pp. 2–11.

[37] E. Mirsky, ‘‘MATRIX: A reconfigurable computing architecture with
configurable instruction distribution and deployable resources,’’ inProc.
FCCM, vol. 96, 1996, pp. 17–19.

[38] G. Lu, H. Singh, M.-H. Lee, N. Bagherzadeh, F. Kurdahi, and
M. E. Filho, ‘‘The morphoSys parallel reconfigurable system,’’ in Proc.
Eur. Conf. Parallel Process., 1999, pp. 727–734.

[39] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. C. Filho, ‘‘MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,’’ IEEE Trans.
Comput., vol. 49, no. 5, pp. 465–481, May 2000.

[40] M. Jo, D. Lee, and K. Choi, ‘‘Chip implementation of a coarse-grained
reconfigurable architecture supporting floating-point operations,’’ in
Proc. Int. SoC Des. Conf., vol. 3, 2008, p. 29.

[41] C. Ebeling, D. C. Cronquist, and P. Franklin, ‘‘RaPiD—Reconfigurable
pipelined datapath,’’ in Proc. Int. Workshop Field Program. Logic Appl.,
1996, pp. 126–135.

[42] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg,
‘‘Mapping applications to the RaPiD configurable architecture,’’ in
Proc. 5th Annu. IEEE Symp. Field-Program. Custom Comput. Mach.,
1997, pp. 106–115.

[43] R. W. Hartenstein, R. Kress, and H. Reinig, ‘‘A new FPGA architecture
for word-oriented datapaths,’’ in Proc. Int. Workshop Field Program.
Logic Appl. 1994, pp. 144–155.

[44] R. W. Hartenstein, R. Kress, and H. Reinig, ‘‘A reconfigurable data-
driven ALU for xputers,’’ in Proc. IEEE Workshop FPGAs for Custom
Comput. Mach., 1994, pp. 139–146.

[45] R. W. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, ‘‘Using
the Kress array for reconfigurable computing,’’ in Proc. Configurable
Comput., Oct. 1998, pp. 150–161.

[46] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, ‘‘CHIMAERA:
A high-performance architecture with a tightly-coupled reconfigurable
functional unit,’’ ACM SIGARCH Comput. Archit., vol. 28, no. 2,
pp. 225–235, 2000.

[47] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, ‘‘MediaBench:
A tool for evaluating and synthesizing multimedia and communica-
tions systems,’’ in Proc. 30th Annu. Int. Symp. Microarchitecture, 1997,
pp. 330–335.

[48] S. Kumar, L. Pires, S. Ponnuswamy, C. Nanavati, J. Golusky, M. Vojta,
S. Wadi, D. Pandalai, and H. Spaanenberg, ‘‘A benchmark suite for eval-
uating configurable computing systems–status, reflections, and future
directions,’’ in Proc. ACM/SIGDA 8th Int. Symp. Field Program. Gate
Arrays, 2000, pp. 126–134.

[49] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, ‘‘PipeRench: A reconfigurable architecture and compiler,’’
Computer, vol. 33, no. 4, pp. 70–77, Apr. 2000.

[50] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor,
‘‘PipeRench: A virtualized programmable datapath in 0.18 micron
technology,’’ in Proc. IEEE Custom Integr. Circuits Conf., Oct. 2002,
pp. 63–66.

[51] J. Becker, M. Glesner, A. Alsolaim, and J. A. Starzyk, ‘‘Fast communi-
cation mechanisms in coarse-grained dynamically reconfigurable array
architectures,’’ in Proc. PDPTA 2000, pp. 1–7.

[52] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas,
P. R. Mattson, and J. D. Owens, ‘‘A bandwidth-efficient architecture for
media processing,’’ in Proc. 31st Annu. ACM/IEEE Int. Symp. Microar-
chitecture, 1998, pp. 3–13.

[53] J. Ho Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, ‘‘Eval-
uating the imagine stream architecture,’’ in Proc. 31st Annu. Int. Symp.
Comput. Archit., 2002, pp. 14–25.

[54] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
‘‘ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,’’ in Proc. Int. Conf. Field Pro-
gram. Logic Appl. 2003, pp. 61–70.

[55] B. Mei, A. Lambrechts, D. Verkest, J. Mignolet, and R. Lauwereins,
‘‘Architecture exploration for a reconfigurable architecture template,’’
IEEE Design Test Comput., vol. 22, no. 2, pp. 90–101, Feb. 2005.

[56] J. A. Fisher, ‘‘Very long instruction word architectures and the
ELI-512,’’ in Proc. 10th Annu. Int. Symp. Comput. Archit., 1983,
pp. 140–150.

[57] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
‘‘DRESC: A retargetable compiler for coarse-grained reconfigurable
architectures,’’ in Proc. IEEE Int. Conf. Field-Program. Technol. (FPT),
2002, pp. 166–173.

[58] K. Wu, A. Kanstein, J. Madsen, and M. Berekovic, ‘‘MT-ADRES:
Multithreading on coarse-grained reconfigurable architecture,’’ in Proc.
Int. Workshop Appl. Reconfigurable Comput., 2007, pp. 26–38.

[59] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, ‘‘Architec-
tural exploration of the ADRES coarse-grained reconfigurable array,’’
in Proc. Int. Workshop Appl. Reconfigurable Comput., 2007, pp. 1–13.

[60] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, ‘‘HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,’’ in
Proc. 54th Annu. Des. Autom. Conf., Jun. 2017, pp. 1–6.

[61] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and
J. Anderson, ‘‘CGRA-ME: A unified framework for CGRA modelling
and exploration,’’ in Proc. IEEE 28th Int. Conf. Appl.-Specific Syst.,
Archit. Processors (ASAP), Jul. 2017, pp. 184–189.

[62] M. J. P.Walker and J. H. Anderson, ‘‘Generic connectivity-based CGRA
mapping via integer linear programming,’’ in Proc. IEEE 27th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2019,
pp. 65–73.

[63] C. Kim,M. Chung, Y. Cho,M.Konijnenburg, S. Ryu, and J. Kim, ‘‘ULP-
SRP: Ultra low power samsung reconfigurable processor for biomed-
ical applications,’’ in Proc. Int. Conf. Field-Programmable Technol.,
Dec. 2012, pp. 329–334.

[64] J.-e. Lee, K. Choi, and N. D. Dutt, ‘‘Compilation approach for coarse-
grained reconfigurable architectures,’’ IEEE Des. Test. Comput., vol. 20,
no. 1, pp. 26–33, Jan. 2003.

[65] J.-e. Lee, K. Choi, and N. D. Dutt, ‘‘Evaluating memory architectures
for media applications on coarse-grained reconfigurable architectures,’’
in Proc. IEEE Int. Conf. Appl.-Specific Syst., Archit., Processors., 2003,
pp. 172–182.

[66] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R.Moore, J. Burrill, R. G.McDonald, andW. Yoder, ‘‘Scaling
to the end of silicon with EDGE architectures,’’Computer, vol. 37, no. 7,
pp. 44–55, Jul. 2004.

[67] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDonald, and
C. R. Moore, ‘‘TRIPS: A polymorphous architecture for exploiting
ILP, TLP, and DLP,’’ ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 62–93, 2004.

[68] K. Sankaralingam, V. Ajay Singh, S. W. Keckler, and D. Burger,
‘‘Routed inter-ALU networks for ILP scalability and performance,’’ in
Proc. 21st Int. Conf. Comput. Des., 2003, pp. 170–177.

[69] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger,
K. S. McKinle, and J. Burrill, ‘‘Compiling for EDGE architectures,’’ in
Proc. Int. Symp. Code Gener. Optim., 2006, p. 11.

[70] B. Yoder, ‘‘Software infrastructure and tools for the TRIPS proto-
type,’’ inProc.Workshop onModeling, Benchmarking Simulation, 2007,
pp. 1–7.

[71] R. McDonald, D. Burger, and S. Keckler, ‘‘The design and implemen-
tation of the TRIPS prototype chip,’’ in Proc. IEEE Hot Chips Symp.
(HCS), Aug. 2005, pp. 1–24.

[72] M. Gebhart, ‘‘An evaluation of the TRIPS computer system,’’
ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 1–12,
2009.

[73] J. Gray and A. Smith, ‘‘Towards an area-efficient implementation of
a high ILP EDGE soft processor,’’ 2018, arXiv:1803.06617. [Online].
Available: http://arxiv.org/abs/1803.06617

[74] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, ‘‘DySER: Unifying functionality and
parallelism specialization for energy-efficient computing,’’ IEEEMicro,
vol. 32, no. 5, pp. 38–51, Sep. 2012.

[75] I. Parulkar, A. Wood, J. C. Hoe, B. Falsafi, S. V. Adve, J. Torrellas,
and S. Mitra, ‘‘OpenSPARC: An open platform for hardware reliability
experimentation,’’ in Proc. 4th Workshop Silicon Errors Logic-Syst.
Effects 2008, pp. 1–6.

VOLUME 8, 2020 146739



A. Podobas et al.: Survey on CGRAs From a Performance Perspective

[76] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam, ‘‘Design, integration and imple-
mentation of the DySER hardware accelerator into OpenSPARC,’’ in
Proc. IEEE Int. Symp. High-Perform. CompArchit., Feb. 2012, pp. 1–12.

[77] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, ‘‘The m5 simulator: Modeling networked systems,’’
IEEE Micro, vol. 26, no. 4, pp. 52–60, Jul. 2006.

[78] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. 17th Int.
Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[79] J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, ‘‘Towards a
dynamic and reconfigurable multicore heterogeneous system,’’ in Proc.
Brazilian Symp. Comput. Syst. Eng., Nov. 2014, pp. 73–78.

[80] J. D. Souza, L. Carro, M. Beck Rutzig, and A. C. S. Beck, ‘‘A recon-
figurable heterogeneous multicore with a homogeneous ISA,’’ in Proc.
Des., Autom. Test Eur. Conf. Exhib. (DATE), 2016, pp. 1598–1603.

[81] F. Carlos Junior, I. Silva, and R. Jacobi, ‘‘A partially shared thin recon-
figurable array for multicore processor,’’ in Proc. Anais Estendidos
do Simpósio Brasileiro de Engenharia de Sistemas Computacionais
(SBESC), Nov. 2019, pp. 113–118.

[82] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas, ‘‘Bulldozer: An
approach to multithreaded compute performance,’’ IEEEMicro, vol. 31,
no. 2, pp. 6–15, Mar. 2011.

[83] D. L.Wolf, L. J. Jung, T. Ruschke, C. Li, and C. Hochberger, ‘‘AMIDAR
project: Lessons learned in 15 years of researching adaptive proces-
sors,’’ in Proc. 13th Int. Symp. Reconfigurable Commun. Syst. Chip
(ReCoSoC), Jul. 2018, pp. 1–8.

[84] J. D. Lopes and J. T. de Sousa, ‘‘Versat, a minimal coarse-grain reconfig-
urable array,’’ in Proc. 4th Workshop Silicon Errors Logic-Syst. Effects
2016, pp. 174–187.

[85] S. R. Chalamalasetti, S. Purohit, M. Margala, and W. Vanderbauwhede,
‘‘MORA–An architecture and programming model for a resource effi-
cient coarse grained reconfigurable processor,’’ in Proc. NASA/ESA
Conf. Adapt. Hardw. Syst., Jul. 2009, pp. 389–396.

[86] W. Vanderbauwhede, M. Margala, S. R. Chalamalasetti, and S. Purohit,
‘‘A C + +−embedded domain-specific language for programming the
MORA soft processor array,’’ in Proc. 21st IEEE Int. Conf. Appl.-
Specific Syst., Archit. Processors, Jul. 2010, pp. 141–148.

[87] Y. Park, H. Park, and S. Mahlke, ‘‘CGRA express: Accelerating exe-
cution using dynamic operation fusion,’’ in Proc. Int. Conf. Compil.,
Archit., Synth. Embedded Syst., 2009, pp. 271–280.

[88] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa,
V. Manohararajah, I. Milton, T. Vanderhoek, and J. Van Dyken, ‘‘The
Stratix 10 highly pipelined FPGA architecture,’’ in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, 2016, pp. 159–168.

[89] H. Park, Y. Park, and S.Mahlke, ‘‘Polymorphic pipeline array: A flexible
multicore accelerator with virtualized execution for mobile multimedia
applications,’’ in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchi-
tecture, 2009, pp. 370–380.

[90] Y. Kim, J. Lee, J. Lee, T. X. Mai, I. Heo, and Y. Paek, ‘‘Exploit-
ing both pipelining and data parallelism with SIMD reconfigurable
architecture,’’ in Proc. Int. Symp. Appl. Reconfigurable Comput. 2012,
pp. 40–52.

[91] C. Liang and X. Huang, ‘‘SmartCell: An energy efficient coarse-grained
reconfigurable architecture for stream-based applications,’’ EURASIP
J. Embedded Syst., vol. 2009, no. 1, Dec. 2009, Art. no. 518659.

[92] C. Brunelli, F. Garzia, and J. Nurmi, ‘‘A coarse-grain reconfigurable
architecture for multimedia applications featuring subword computation
capabilities,’’ J. Real-Time Image Process., vol. 3, nos. 1–2, pp. 21–32,
Mar. 2008.

[93] O. Atak and A. Atalar, ‘‘BilRC: An execution triggered coarse grained
reconfigurable architecture,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 21, no. 7, pp. 1285–1298, Jul. 2013.

[94] D. Lee, M. Jo, K. Han, and K. Choi, ‘‘FloRA: Coarse-grained recon-
figurable architecture with floating-point operation capability,’’ in Proc.
Int. Conf. Field-Program. Technol., Dec. 2009, pp. 376–379.

[95] F. Feng, L. Li, K. Wang, F. Han, B. Zhang, and G. He, ‘‘Floating-
point operation based reconfigurable architecture for radar processing,’’
IEICE Electron. Express, vol. 2016, Oct. 2016, Art. no. 20160893.

[96] R. Prasad, S. Das, K. Martin, G. Tagliavini, P. Coussy, L. Benini, and
D. Rossi, ‘‘TRANSPIRE: An energy-efficient TRANSprecision
floating-point Programmable archItectuRE,’’ in Proc. Des., Automat.
Test Eur. Conf., 2020, pp. 1–7.

[97] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini,
‘‘A transprecision floating-point architecture for energy-efficient
embedded computing,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2018, pp. 1–5.

[98] K. Asanovi and D. A. Patterson, ‘‘Instruction sets should be free:
The case For RISC-V,’’ EECS Dept., Univ. California, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2014-146, Aug. 2014. [Online]. Avail-
able: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
146.html

[99] H. Siqueira and M. Kreutz, ‘‘A coarse-grained reconfigurable architec-
ture for a PRET machine,’’ in Proc. VIII Brazilian Symp. Comput. Syst.
Eng. (SBESC), Nov. 2018, pp. 237–242.

[100] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, ‘‘Towards general pur-
pose acceleration by exploiting common data-dependence forms,’’ in
Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2019,
pp. 924–939.

[101] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
‘‘Stream-dataflow acceleration,’’ inProc. 44th Annu. Int. Symp. Comput.
Archit., Jun. 2017, pp. 416–429.

[102] B. Salefski and L. Caglar, ‘‘Re-configurable computing in wireless,’’ in
Proc. 38th Conf. Design Autom., 2001, pp. 178–183.

[103] A. Hemani, N. Farahini, S. M. Jafri, H. Sohofi, S. Li, and K. Paul,
‘‘The siLago solution: Architecture and design methods for a het-
erogeneous dark silicon aware coarse grain reconfigurable fabric,’’
in The Dark Side Silicon. Springer, 2017, pp. 47–94. [Online].
Available: https://link.springer.com/book/10.1007/978-3-319-31596-6,
doi: 10.1007/978-3-319-31596-6.

[104] M. A. Shami, ‘‘Dynamically reconfigurable resource array,’’ Ph.D. dis-
sertation, Dept. Elect. Energy Eng., KTH, Stockholm, Sweden, 2012.

[105] M. Martina, A. Hemani, and G. Baccelli, ‘‘Design of a coarse grain
reconfigurable array for neural networks,’’ M.S. thesis, Dept. Elec-
tron. Telecommun., Politecnico Di Torino, Turin, Italy, 2019. [Online].
Available: http://webthesis.biblio.polito.it/id/eprint/12501

[106] D. Stathis, C. Sudarshan, Y. Yang, M. Jung, S. A. M. H. Jafri, C. Weis,
A. Hemani, A. Lansner, and N. Wehn, ‘‘EBrainII: A 3 kW realtime
custom 3D DRAM integrated ASIC implementation of a biologically
plausible model of a human scale cortex,’’ 2019, arXiv:1911.00889.
[Online]. Available: http://arxiv.org/abs/1911.00889

[107] Y. Yang, D. Stathis, P. Sharma, K. Paul, A. Hemani, M. Grabherr, and
R. Ahmad, ‘‘RiBoSOM: Rapid bacterial genome identification using
self-organizing map implemented on the synchoros SiLago platform,’’
in Proc. 18th Int. Conf. Embedded Comput. Syst. Archit., Modeling,
Simulation, 2018, pp. 105–114.

[108] L.Wu, A. Lottarini, T. K. Paine,M. A. Kim, andK. A. Ross, ‘‘Q100: The
architecture and design of a database processing unit,’’ ACM SIGARCH
Comput. Archit. News, vol. 42, no. 1, pp. 255–268, Apr. 2014.

[109] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and
M. Weinhardt, ‘‘PACT XPP—A Self-reconfigurable data processing
architecture,’’ J. Supercomput., vol. 26, no. 2, pp. 167–184, 2003.

[110] P. S. Kasgen, M. Weinhardt, and C. Hochberger, ‘‘A coarse-grained
reconfigurable array for high-performance computing applications,’’ in
Proc. Int. Conf. ReConFigurable Comput., Dec. 2018, pp. 1–4.

[111] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, ‘‘WaveScalar,’’
in Proc. 22nd Digit. Avionics Syst. Conf. Process., 2003, pp. 291–302.

[112] A. Putnam, S. Swanson, M. Mercaldi, K. Michelson, A. Petersen,
A. Schwerin, M. Oskin, and S. Eggers, ‘‘The microarchitecture of a
pipelined wave scalar processor: An RTL-based study,’’ Dept. Comput.
Sci. Eng., Univ.Washington, Seattle, WA, USA, Tech. Rep. 2004-11-02,
2005.

[113] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. J. Eggers, ‘‘The WaveScalar architec-
ture,’’ ACM Trans. Comput. Syst., vol. 25, no. 2, pp. 1–54, May 2007.

[114] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani,
S. C. Goldstein, and M. Budiu, ‘‘Tartan: Evaluating spatial computation
for whole program execution,’’ ACM SIGARCH Comput. Archit. News,
vol. 34, no. 5, pp. 163–174, Oct. 2006.

[115] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’ ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[116] G. Ansaloni, P. Bonzini, and L. Pozzi, ‘‘EGRA: A coarse grained
reconfigurable architectural template,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 19, no. 6, pp. 1062–1074, Jun. 2011.

[117] T. Austin, E. Larson, and D. Ernst, ‘‘SimpleScalar: An infrastructure for
computer system modeling,’’ Computer, vol. 35, no. 2, pp. 59–67, 2002.

146740 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-31596-6


A. Podobas et al.: Survey on CGRAs From a Performance Perspective

[118] D. Voitsechov and Y. Etsion, ‘‘Single-graph multiple flows: Energy
efficient design alternative for GPGPUs,’’ ACM SIGARCH Comput.
Archit. News, vol. 42, no. 3. IEEE, 2014, pp. 205–216.

[119] D. Voitsechov, O. Port, and Y. Etsion, ‘‘Inter-thread communication
in multithreaded, reconfigurable coarse-grain arrays,’’ in Proc. 51st
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2018,
pp. 42–54.

[120] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, ‘‘NVIDIA tesla:
A unified graphics and computing architecture,’’ IEEE Micro, vol. 28,
no. 2, pp. 39–55, Mar. 2008.

[121] D. Kirk, ‘‘Nvidia CUDA software and GPU parallel computing archi-
tecture,’’ in Proc. ISMM, vol. 7, 2007, pp. 103–104.

[122] A. Munshi, ‘‘The OpenCL specification,’’ in Proc. (HCS), Aug. 2009,
pp. 1–314.

[123] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, ‘‘Fermi GF100 GPU
architecture,’’ IEEE Micro, vol. 31, no. 2, pp. 50–59, Mar. 2011.

[124] M. Zhu, L. Liu, S. Yin, Y. Wang, W. Wang, and S. Wei, ‘‘A reconfig-
urable multi-processor SoC for media applications,’’ in Proc. IEEE Int.
Symp. Circuits Syst., May 2010, pp. 2011–2014.

[125] M. Suzuki, ‘‘Stream applications on the dynamically reconfigurable
processor,’’ inProc. IEEE Int. Conf. Field-Program. Technol.Dec. 2004,
pp. 137–144.

[126] T. Sato, ‘‘DAPDNA-2 a dynamically reconfigurable processor with 376
32-bit processing elements,’’ in Proc. IEEE Hot Chips XVII Symp.
(HCS), Aug. 2005, pp. 1–24.

[127] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson,
G. Landge,M. J.Meeuwsen, C.Watnik, A. T. Tran, Z. Xiao, E. W. Work,
J. W. Webb, P. V. Mejia, and B. M. Baas, ‘‘A 167-processor computa-
tional platform in 65 nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 44,
no. 4, pp. 1130–1144, Apr. 2009.

[128] D.M. Chapiro, ‘‘Globally-asynchronous locally-synchronous systems,’’
Dept. Comp. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep.
STAN-CS-84-1026, 1984.

[129] S. Kyo and S. Okazaki, ‘‘IMAPCAR: A 100 GOPS in-vehicle vision
processor based on 128 ring connected four-way VLIW process-
ing elements,’’ J. Signal Process. Syst., vol. 62, no. 1, pp. 5–16,
Jan. 2011.

[130] S. Kyo, T. Koga, and S. Okazaki, ‘‘IMAP-CE: A 51.2 GOPS video rate
image processor with 128 VLIW processing elements,’’ in Proc. Int.
Conf. Image Process., vol. 3, 2001, pp. 294–297.

[131] S. Das, N. Sivanandan, K. T. Madhu, S. K. Nandy, and R. Narayan,
‘‘RHyMe: REDEFINE hyper cell multicore for accelerating
HPC kernels,’’ in Proc. 29th Int. Conf. VLSI Des., Jan. 2016,
pp. 601–602.

[132] K. T. Madhu, S. Das, N. S., S. K. Nandy, and R. Narayan, ‘‘Compiling
HPC kernels for the REDEFINE CGRA,’’ in Proc. 17th Int. Conf. High
Perform. Comput. Commun., Aug. 2015, pp. 405–410.

[133] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, ‘‘Plasticine: A reconfig-
urable architecture for parallel paterns,’’ in Proc. 44th Annu. Int. Symp.
Comput. Archit., Jun. 2017, pp. 389–402.

[134] D. Koeplinger, C. Kozyrakis, K. Olukotun, M. Feldman, R. Prabhakar,
Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao, L. Nardi, and A. Pedram,
‘‘Spatial: A language and compiler for application accelerators,’’ in
Proc. 39th ACM SIGPLAN Conf. Program. Lang. Design Implement.,
2018, pp. 296–311.

[135] A. Podobas, K. Sano, and S. Matsuoka, ‘‘A template-based framework
for exploring coarse-grained reconfigurable architectures,’’ in Proc.
IEEE 31st Int. Conf. Appl.-Specific Syst., Architectures Processors
(ASAP), 2020, pp. 1–8.

[136] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, ‘‘DRAM-
sim3: A cycle-accurate, thermal-capable DRAM simulator,’’ IEEE
Comput. Archit. Lett., early access, Feb. 14, 2020, doi: 10.1109/
LCA.2020.2973991.

[137] Cerebras Systems. (2019).Wafer-Scale Deep Learning. [Online]. Avail-
able: https://www.hotchips.org/hc31/HC31_1.13_Cerebras.SeanLie.
v02.pdf

[138] N. Clark, A. Hormati, and S. Mahlke, ‘‘VEAL: Virtualized execution
accelerator for loops,’’ in Proc. Int. Symp. Comput. Archit., Jun. 2008,
pp. 389–400.

[139] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, ‘‘A fully pipelined and
dynamically composable architecture of CGRA,’’ in Proc. IEEE 22nd
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2014,
pp. 9–16.

[140] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, ‘‘Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,’’ in Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchitecture,
2011, pp. 12–23.

[141] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, ‘‘Exploring the
potential of heterogeneous von neumann/dataflow execution models,’’
ACM SIGARCH Comput. Archit. News, vol. 43, no. 3S, pp. 298–310,
Jan. 2016.

[142] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[143] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Training deep neural
networks with low precision multiplications,’’ 2014, arXiv:1412.7024.
[Online]. Available: http://arxiv.org/abs/1412.7024

[144] X. Fan, H. Li, W. Cao, and L. Wang, ‘‘DT-CGRA: Dual-track coarse-
grained reconfigurable architecture for stream applications,’’ in Proc.
26th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2016, pp. 1–9.

[145] X. Fan, D.Wu,W. Cao, W. Luk, and L. Wang, ‘‘Stream processing dual-
track CGRA for object inference,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 6, pp. 1098–1111, Jun. 2018.

[146] A. Parashar, ‘‘SCNN: An accelerator for compressed-sparse convolu-
tional neural networks,’’ SIGARCHComput. Archit. News, vol. 45, no. 2,
pp. 27–40, 2017.

[147] M. Liang, M. Chen, Z. Wang, and J. Sun, ‘‘A CGRA based neural net-
work inference engine for deep reinforcement learning,’’ in Proc. IEEE
Asia Pacific Conf. Circuits Syst. (APCCAS), Oct. 2018, pp. 540–543.

[148] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[149] Y.-H. Chen, T.-J. Yang, J. S. Emer, and V. Sze, ‘‘Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,’’
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,
Jun. 2019.

[150] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, ‘‘Xilinx adap-
tive compute acceleration platform: Versal–architecture,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2019, pp. 84–93.

[151] K. Vissers, ‘‘Versal: The Xilinx adaptive compute acceleration platform
(ACAP),’’ inProc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
2019, p. 83.

[152] N. Ando, K. Masuyama, H. Okuhara, and H. Amano, ‘‘Variable pipeline
structure for coarse grained reconfigurable array CMA,’’ in Proc. Int.
Conf. Field-Program. Technol. (FPT), Dec. 2016, pp. 217–220.

[153] N. Ozaki, Y. Yoshihiro, Y. Saito, D. Ikebuchi, M. Kimura, H. Amano,
H. Nakamura, K. Usami, M. Namiki, andM. Kondo, ‘‘Cool mega-array:
A highly energy efficient reconfigurable accelerator,’’ in Proc. Int. Conf.
Field-Program. Technol., Dec. 2011, pp. 1–8.

[154] T. Kojima, N. Ando, Y. Matshushita, H. Okuhara, N. A. V. Doan, and
H. Amano, ‘‘Real chip evaluation of a low power CGRAwith optimized
application mapping,’’ in Proc. 9th Int. Symp. Highly-Efficient Accel.
Reconfigurable Technol., Jun. 2018, p. 13.

[155] K. Patel, S. McGettrick, and C. J. Bleakley, ‘‘SYSCORE: A coarse
grained reconfigurable array architecture for low energy biosignal pro-
cessing,’’ in Proc. IEEE 19th Annu. Int. Symp. Field-Program. Custom
Comput. Mach., May 2011, pp. 109–112.

[156] L. Duch, S. Basu, M. Peon-Quiros, G. Ansaloni, L. Pozzi, and
D. Atienza, ‘‘I-DPs CGRA: An interleaved-datapaths reconfigurable
accelerator for embedded bio-signal processing,’’ IEEE Embedded Syst.
Lett., vol. 11, no. 2, pp. 50–53, Jun. 2019.

[157] J. Lopes, D. Sousa, and J. C. Ferreira, ‘‘Evaluation of CGRA architecture
for real-time processing of biological signals on wearable devices,’’ in
Proc. Int. Conf. ReConFigurable Comput., Dec. 2017, pp. 1–7.

[158] L. Duch, S. Basu, R. Braojos, D. Atienza, G. Ansaloni, and L. Pozzi,
‘‘A multi-core reconfigurable architecture for ultra-low power bio-
signal analysis,’’ in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS),
Oct. 2016, pp. 416–419.

[159] S. Das, K. J. M. Martin, P. Coussy, and D. Rossi, ‘‘A heterogeneous
cluster with reconfigurable accelerator for energy efficient near-sensor
data analytics,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2018,
pp. 1–5.

[160] S. Das, D. Rossi, K. J. M. Martin, P. Coussy, and L. Benini,
‘‘A 142MOPS/mW integrated programmable array accelerator for smart
visual processing,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2017, pp. 1–4.

VOLUME 8, 2020 146741

http://dx.doi.org/10.1109/LCA.2020.2973991
http://dx.doi.org/10.1109/LCA.2020.2973991


A. Podobas et al.: Survey on CGRAs From a Performance Perspective

[161] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique,
‘‘X-CGRA: An energy-efficient approximate coarse-grained reconfig-
urable architecture,’’ IEEETrans. Comput.-AidedDesign Integr. Circuits
Syst., early access, Aug. 27, 2020, doi: 10.1109/TCAD.2019.2937738.

[162] M. Langhammer and B. Pasca, ‘‘Floating-point DSP block architecture
for FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2015, pp. 117–125.

[163] G. Stitt and J. Coole, ‘‘Intermediate fabrics: Virtual architectures for
near-instant FPGA compilation,’’ IEEE Embedded Syst. Lett., vol. 3,
no. 3, pp. 81–84, Sep. 2011.

[164] S. Shukla, N. W. Bergmann, and J. Becker, ‘‘QUKU: A two-level
reconfigurable architecture,’’ in Proc. IEEE Comput. Soc. Annu. Symp.
Emerg. VLSI Technol. Archit. (ISVLSI), Mar. 2006, p. 6.

[165] N. W. Bergmann, S. K. Shukla, and J. Becker, ‘‘QUKU: A dual-layer
reconfigurable architecture,’’ ACM Trans. Embedded Comput. Syst.,
vol. 12, no. 1s, pp. 1–26, Mar. 2013.

[166] S. Shukla, N. W. Bergmann, and J. Becker, ‘‘QUKU: A FPGA based
flexible coarse grain architecture design paradigm using process net-
works,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2007,
pp. 1–7.

[167] Xilinx. (2016) MicroBlaze Processor Reference Guide (UG984).
[Online]. Available: https://www.xilinx.com/support/./ug984-vivado-
microblaze-ref.pdf

[168] A. Brant and G. G. Lemieux, ‘‘ZUMA: An open FPGA overlay architec-
ture,’’ in Proc. Int. Symp. Field-Program. Custom Comput. Mach., 2012,
pp. 93–96.

[169] R. Lysecky, K. Miller, F. Vahid, and K. Vissers, ‘‘Firm-core virtual
FPGA for just-in-time FPGA compilation (abstract only),’’ in Proc.
ACM/SIGDA 13th Int. Symp. Field-Program. Gate Arrays, 2005, p. 271.

[170] T. Myint, M. Amagasaki, Q. Zhao, and M. Iida, ‘‘A SLM-based overlay
architecture for fine-grained virtual FPGA,’’ IEICE Electron. Express,
vol. 2019, Feb. 2019, Art. no. 1620190610.

[171] F. Garzia, W. Hussain, and J. Nurmi, ‘‘CREMA: A coarse-grain recon-
figurable array with mapping adaptiveness,’’ in Proc. Int. Conf. Field
Program. Log. Appl., Aug. 2009, pp. 708–712.

[172] W. Hussain, F. Garzia, T. Ahonen, and J. Nurmi, ‘‘Designing fast
Fourier transform accelerators for orthogonal frequency-division mul-
tiplexing systems,’’ J. Signal Process. Syst., vol. 69, no. 2, pp. 161–171,
Nov. 2012.

[173] W. Hussain, T. Ahonen, and J. Nurmi, ‘‘Effects of scaling a coarse-grain
reconfigurable array on power and energy consumption,’’ in Proc. Int.
Symp. Syst. Chip (SoC), Oct. 2012, pp. 1–5.

[174] R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and L. Carro,
‘‘An FPGA-based heterogeneous coarse-grained dynamically reconfig-
urable architecture,’’ in Proc. 14th Int. Conf. Compil., Archit. Synth.
embedded Syst., 2011, pp. 195–204.

[175] A. Severance and G. G. F. Lemieux, ‘‘Embedded supercomputing in
FPGAs with the VectorBlox MXP matrix processor,’’ in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2013. p. 6.

[176] L. B. D. Silva, R. Ferreira, M. Canesche, M. M. Menezes, M. D. Vieira,
J. Penha, P. Jamieson, and J. A. M. Nacif, ‘‘READY: A fine-grained
multithreading overlay framework for modern CPU-FPGA dataflow
applications,’’ ACM Trans. Embedded Comput. Syst., vol. 18, no. 5,
p. 56, 2019.

[177] M. Allard, P. Grogan, Y. Savaria, and J.-P. David, ‘‘Two-level config-
uration for FPGA: A new design methodology based on a computing
fabric,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 265–268.

[178] D. Capalija and T. S. Abdelrahman, ‘‘Towards synthesis-free JIT com-
pilation to commodity FPGAs,’’ in Proc. IEEE 19th Annu. Int. Symp.
Field-Program. Custom Comput. Mach., May 2011, pp. 202–205.

[179] J. Ball, ‘‘The nios II family of configurable soft-core processors,’’ in
Proc. IEEE Hot Chips XVII Symp. (HCS), Aug. 2005, pp. 1–40.

[180] C. Feng and L. Yang, ‘‘Design and evaluation of a novel reconfigurable
ALU based on FPGA,’’ in Proc. Int. Conf. Mech. Sci., Electric Eng.
Comput. (MEC), Dec. 2013, pp. 2286–2290.

[181] K. Paul, C. Dash, and M. S. Moghaddam, ‘‘ReMORPH: A runtime
reconfigurable architecture,’’ in Proc. 15th Euromicro Conf. Digit. Syst.
Des., Sep. 2012, pp. 26–33.

[182] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, ‘‘DeCO:
A DSP block based FPGA accelerator overlay with low overhead inter-
connect,’’ in Proc. IEEE 24th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), May 2016, pp. 1–8.

[183] A. K. Jain, X. Li, S. A. Fahmy, and D. L.Maskell, ‘‘Adapting the DySER
Architecture with DSP Blocks as an Overlay for the Xilinx Zynq,’’ ACM
SIGARCH Comput. Archit. News, vol. 43, no. 4, pp. 28–33, 2016.

[184] C. Liu, H.-C. Ng, and H. Kwok-Hay So, ‘‘Automatic nested loop accel-
eration on FPGAs using soft CGRA overlay,’’ 2015, arXiv:1509.00042.
[Online]. Available: http://arxiv.org/abs/1509.00042

[185] C. Liu, H.-C. Ng, and H. K.-H. So, ‘‘QuickDough: A rapid FPGA loop
accelerator design framework using soft CGRA overlay,’’ in Proc. Int.
Conf. Field Program. Technol. (FPT), Dec. 2015, pp. 56–63.

[186] D. Capalija and T. S. Abdelrahman, ‘‘A high-performance overlay archi-
tecture for pipelined execution of data flow graphs,’’ in Proc. 23rd Int.
Conf. Field Program. Log. Appl., Sep. 2013, pp. 1–8.

[187] D. Mansur, ‘‘Stratix IV FPGA and HardCopy IV ASIC 40 nm,’’ in Proc.
IEEE Hot Chips 20 Symp. (HCS), Aug. 2008, pp. 1–22.

[188] K. Ovtcharov, I. Tili, and J. G. Steffan, ‘‘TILT: A multithreaded VLIW
soft processor family,’’ in Proc. 23rd Int. Conf. Field Program. Log.
Appl., Sep. 2013, pp. 1–4.

[189] R. Rashid, J. G. Steffan, and V. Betz, ‘‘Comparing performance, produc-
tivity and scalability of the TILT overlay processor to OpenCL HLS,’’ in
Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2014, pp. 20–27.

[190] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,
T. Vanderhoek, and H. Yu, ‘‘Architectural enhancements in StratixV,’’
in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2013,
pp. 147–156.

[191] Z. T. Aklah, ‘‘A hybrid partially reconfigurable overlay supporting just-
in-time assembly of custom accelerators on FPGAs,’’ Ph.D. dissertation,
Dept. Comput. Sci. Comput. Eng., Univ. Arkansas, Batesville, AR,
USA, 2017.

[192] D. Koch, Partial Reconfiguration FPGAs: Architectures, Tools Applica-
tion, vol. 153. NewYork, NY, USA: Springer, 2012. [Online]. Available:
https://www.springer.com/gp/book/9781461412243

[193] M. X. Yue, D. Koch, and G. G. F. Lemieux, ‘‘Rapid overlay builder for
xilinx FPGAs,’’ in Proc. IEEE 23rd Annu. Int. Symp. Field-Program.
Custom Comput. Mach., May 2015, pp. 17–20.

[194] R. Kisiel and Z. Szczepański, ‘‘Trends in assembling of advanced IC
packages,’’ in Proc. J. Telecommun. Inf. Technol., 2005, pp. 63–69.

[195] (Jan. 2020). Techpowerup. [Online]. Available: https://www.
techpowerup.com/

[196] NVIDIA. (2020). NVIDIA Cuda Programming Guides(s). [Online].
Available: https://developer.download.nvidia.com/./NVIDIA_CUDA
_ProgrammingGuide.pdf

[197] W.-C. Feng and K. Cameron, ‘‘The Green500 list: Encouraging sustain-
able supercomputing,’’Computer, vol. 40, no. 12, pp. 50–55, Dec. 2007.

[198] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, ‘‘Dark silicon and the end of multicore scaling,’’ in Proc.
38th Annu. Int. Symp. Comput. Archit., 2011, pp. 365–376.

[199] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and
J. McDonald, Parallel Programme OpenMP. Burlington, MA, USA:
Morgan Kaufmann, 2001.

[200] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, ‘‘OmpSs: A proposal for programming
heterogeneous multi-core architectures,’’ Parallel Process. Lett., vol. 21,
no. 02, pp. 173–193, Jun. 2011.

[201] RIKEN AICS. (2015). Fiber Miniapp Suite. [Online]. Available:
https://fiber-miniapp.github.io/

[202] ExaScale-Project. (2018). ECP Proxy Apps Suite. [Online]. Available:
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/

ARTUR PODOBAS received the Ph.D. degree
from the KTH Royal Institute of Technology,
in 2015. From 2015 to 2016, he was a Postdoctoral
Fellow of Denmark Technical University, DTU
Compute. From 2016 to 2018, hewas a Japan Soci-
ety for the Promotion of Science (JSPS) Fellow
of the Global Scientific Information and Com-
puting Center (GSIC), Tokyo Institute of Tech-
nology, Japan. He held a postdoctoral position at
the Processor Research Team, RIKEN Center for

Computational Science, Japan. He is a Researcher with the Department of
Computational Science and Technology, KTHRoyal Institute of Technology.
His research interests include both reconfigurable architectures (FPGAs and
CGRAs), neuromorphic computing, parallel architectures, and high-level
synthesis for high-performance systems (HPC).

146742 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCAD.2019.2937738


A. Podobas et al.: Survey on CGRAs From a Performance Perspective

KENTARO SANO received the Ph.D. degree
from the GSIS, Tohoku University, in 2000.
From 2000 to 2005, he was a Research Asso-
ciate with Tohoku University. From 2005 to 2018,
he was an Associate Professor with Tohoku
University. He was a Visiting Researcher with
the Department of Computing, Imperial Col-
lege London, in 2006, and Maxeler Corpora-
tion, in 2007. Since 2017, he has been a Team
Leader of the Processor Research Team with the

RIKEN Center for Computational Science (R-CCS). His research inter-
ests include FPGA-based high-performance reconfigurable computing sys-
tems, especially for scientific numerical simulations and machine learning,
high-level synthesis compilers and tools for reconfigurable custom comput-
ing machines, and system architectures for next-generation supercomputing
based on the data-flow computing model.

SATOSHI MATSUOKA received the Ph.D. degree
from The University of Tokyo, in 1993. He has
been a Full Professor with the Global Scientific
Information andComputing Center (GSIC), Tokyo
Institute of Technology, since 2000, and the Direc-
tor of the joint AIST-Tokyo Tech, the Real World
Big Data Computing Open Innovation Laboratory
(RWBC-OIL), since 2017, and the RIKEN Center
for Computational Science (R-CCS) along with
Specially Appointed Professor duty at Tokyo Tech,

since 2018. He is the leader of the TSUBAME series of supercomputers
that won world’s first in power-efficient computing. His various major
supercomputing research projects are in areas such as parallel algorithms
and programming, resilience, green computing, and the convergence of big
data/AI with the HPC. He has written over 500 articles and chaired numerous
ACM/IEEE conferences, including the Program Chair of the ACM/IEEE
Supercomputing Conference (SC), in 2013. As a Fellow of the ACM and
European ISC, he wonmany awards, including the JSPS Prize from the Japan
Society for the Promotion of Science, in 2006, presented by his Highness
Prince Akishino, the ACM Gordon Bell Prize, in 2011, the Commendation
for Science and Technology by the Ministry of Education, Culture, Sports,
Science, and Technology, in 2012, the 2014 IEEE-CS Sidney Fernbach
Memorial Award, the highest prestige in the field of HPC, and recently the
HPDC Achievement Award from the ACM, in 2018.

VOLUME 8, 2020 146743


