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ABSTRACT To realize high-quality transit-time ultrasonic flow measurements, accurate and precise
estimates of the transit-time difference are essential. In this study, we propose deep learning-based neural
network (NN) models to measure the transit-time difference in an ultrasonic flowmeter using a linear array
transducer. Three approaches to compute the transit-time difference are presented: the cross-correlation with
phase zero-crossing (XCorr), fully connected NN, and recurrent neural network (RNN) with long short-term
memory (LSTM). The training data for the NN were generated by simulating target time differences by
utilizing the experimental data acquired in the pipe system. To evaluate the performance of the proposed
methods, linear regression, the Bland–Altman plot, and the root mean squared error (RMSE) were analyzed
using testing data from the experiment. The results of this study show that the RNN-based approach yielded
improved performance with an accuracy of up to 94% and a 33.48% reduction in the RMSE, compared to the
XCorr method. In addition to the time difference estimation, our proposed RNN-based model can replace the
entire flow rate estimation process, including interpolation, velocity correction, and zero-flow calibration.
This study demonstrates the feasibility of an intelligent ultrasonic flowmeter employing the RNN-based
model with potential in industrial applications.

INDEX TERMS Deep learning, recurrent neural network, transit-time estimation, ultrasonic flowmeter.

I. INTRODUCTION
The ultrasonic flowmeter has been employed for liquid flow
rate measurements in industrial and medical fields, such as
in pump stations to ensure the energy efficiency of build-
ing management systems and in wrist sensors for blood
flow monitoring, respectively, owing to its high sensitiv-
ity to flow changes [1]–[5]. The transit-time method has
widespread applicability for the non-invasive measurement
of the flow of particle-free fluids through pipes [6]–[8].
The transit-time ultrasonic flowmeter obtains the fluid flow
rate from the transit-time difference of ultrasonic signals
between the downstream and upstream of the flow. Ultra-
sonic signals originate from reflections arising due to the
impedance mismatch between the pipe walls and the fluid.
Various factors can degrade the performance of the transit-
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time ultrasonic flowmeter, such as a misalignment of ultra-
sonic sensors, irregular pipe surface conditions, and errors
in the transit-time difference estimation. The accuracy of the
ultrasound flowmeter can be improved by reducing errors in
the transit-time estimation.

Our previous study [9] demonstrated the feasibility of a
transit-time ultrasonic flowmeter employing an ultrasonic
linear array transducer in a designed pipe system. The transit-
time difference was estimated by the cross-correlation with
phase zero-crossing (XCorr) method. The accuracy of the
flowmeter was enhanced by exploiting the properties of
ultrasonic array sensors. However, the ultrasonic flowmeter
requires further improvement in the transit-time difference
estimation, especially when the data acquisition system suf-
fers from a sampling rate limitation.

Previous studies [10]–[17] employed several approaches to
achieve higher accuracies in the ultrasonic flowmeter. One
study reported that computing the phase difference using a
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least-squared-sine-fitting algorithm could reduce the mea-
surement error of the transit-time [10]. Another group studied
an auto-adaptive impulse response function estimation tech-
nique to avoid false peaks in the correlation method [11].
They also reported that a higher sampling rate is capable of
improving the flow measurement performance. In addition to
the signal processing approaches, a study employed pattern
recognition algorithms, which classified the flow velocity
profile in a pipe, to reduce the uncertainty in ultrasonic flow
measurements [12]. In recent years, deep learning approaches
based on neural networks (NNs) have undergone rapid devel-
opments to solve prediction and classification problems in
various fields [18]–[21]. Furthermore, these approaches are
useful for signal and image processing, pattern recognition,
and forecasting. Concepts of the NN were likewise applied to
improve ultrasonic flowmeters in previous studies [14]–[17].
By employing a NN model consisting of a single-layer NN
and a two-layer perceptron network, a previous study demon-
strated the interpolation of flow velocity profiles and weight
calculation for different ultrasound paths [14]. Their results
indicate reduced errors in the ultrasonic flowmeter measure-
ments. However, the flowmeter performance was limited due
to the adoption of a simple NNmodel. Another study utilized
a three-layer NN (including one hidden layer) to acquire the
weight factor for a multi-path ultrasonic flowmeter, in order
to reduce errors in flow distortion [15]. The accuracy of
the multi-path ultrasonic flowmeter was further improved by
using the generalized inverse of matrix [13], the extreme
learning machine method [16], and NNs based on the genetic
algorithm [17].

Although previous studies have demonstrated the potential
of NNs in improving the performance of ultrasonic flow
measurements, a majority of these studies were conducted
during the early stages of the development of NNs. Thus,
the applicability of these studies is limited, as only part of
the problem of ultrasonic flowmeters was solved. This study
proposes an intelligent ultrasonic flowmeter. To the best of
our knowledge, this is the first implementation of the com-
plete process of flow rate estimation using a single deep NN
model. First, we introduce the complete flow rate estimation
process of the ultrasonic flowmeter. Thereafter, to enhance
the accuracy of flow estimation, an intelligent ultrasound
flowmeter was designed utilizing two NN models, namely
the fully connected NN and the recurrent neural network
(RNN)-based model with long short-term memory (LSTM)
[18], [22]–[28]. The NNmodels were trained using simulated
and experimental ultrasonic data. Finally, the performance of
the proposed intelligent ultrasonic flowmeter was evaluated
using the experimental data acquired from the pipe system
for various flow rates.

II. MATERIALS AND METHODS
A. DATA ACQUISITION
The experimental setup of the pipe (SUS304) system with
the water flow is presented in Fig. 1. The outer diameter,
inner diameter, and thickness of the pipes were 34, 27.6,

FIGURE 1. Experimental setup for liquid flow measurements.

FIGURE 2. RF signals received from upstream and downstream of flow.

and 3.2 mm, respectively. Ultrasonic radio frequency (RF)
data from the single path were collected at various flow rates
between 0 L/min and 50 L/min (approximately at 0, 7, 10,
15, 20, 25, 35, and 50 L/min). The reference flow rates were
recorded in real-time through the pipe system by using an
electromagnetic flowmeter (FMAG550G, Flos Korea Inc.,
Seoul, Korea). Ultrasonic plane waves for both the upstream
and downstream of the liquid were transmitted and received
via the ultrasound imaging system (Vantage 32LETM, Vera-
sonics Inc., Kirkland, USA) and the linear array transducer
(ATL L7-4, ATL Ultrasound Inc., Bothell, USA). The trans-
mission frequency of the transducer was 5.2 MHz, and the
data acquisition sampling rate was 20.8 MHz. Based on the
angles of the transmitted plane waves, the received ultrasound
RF signals of the matching transmitter and receiver elements
for the single path were selected for the flow rate estimation
(Table 1 in [9]). The transmission angle used in this study was
in the range of 19.88◦–20.38◦.

Fig. 2 presents an example of the received ultrasound RF
signals from the upstream and downstream of the fluid. The
signals in the region-of-interest (ROI) within the box were
used for transit-time estimation. The start position of the
ROI (T0) was calculated based on the traveling time of the
ultrasound signal in the pipe. In this study, the length M of
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FIGURE 3. Block diagram of flow rate estimation using the XCorr method.

the ROI was fixed to 33 samples, which corresponds to a
duration of 1.5841 µs. A total of 106 ultrasound examples
acquired from the experiment were utilized to determine the
flowrates.

B. FLOW RATE ESTIMATION
For a pipe with diameter D, the upstream transit-time tup and
downstream transit-time tdown are described as

tup =
L

c− Vsin (θ)
(1)

tdown =
L

c+ Vsin (θ)
, (2)

respectively, where L is the ultrasonic path length, c is the
speed of sound in the fluid, V is the average flow velocity,
and θ is the incident angle of the ultrasonic wave. As the fluid
flow velocity is significantly lower than the speed of sound
(V � c), the flow rate (Q) can be calculated as follows:

Q = K
πD2c2

8Lsinθ

(
tup − tdown

)
= K

πD2c2

8Lsinθ
τ, (3)

where K is the correction factor denoting the ratio of the
average velocity in the pipe and the velocity measured along
the ultrasonic beam, and τ is the transit-time difference in the
single path [6]–[8].

Fig. 3 illustrates a block diagram of the flow rate estima-
tion process for a fluid flowing in the pipe system. First,
the ultrasonic RF data from the upstream and downstream
(Fig. 2) were acquired at varying flow rates and also when
there was no flow in the pipe. The data acquired in the
no-flow condition was used for zero-flow calibration, which
compensated the time-shift offsets arising due to the phys-
ical conditions of the pipe and sensors [9]. In our previous
study, the transit-time difference estimation was performed
using the XCorr method [9]. In the transit-time estimation
process, the acquired RF data were transformed into ana-
lytic signals via the Hilbert transform. Thereafter, the time
difference in the sampling interval was estimated from the
cross-correlation peak. After cross-correlation, the phases of
the cross-correlation were linearly interpolated by a factor

of 100 near the peak. To achieve the sub-sample level time
difference, the time required to cross the zero phasewas deter-
mined [29], [30]. Hence, the transit-time differences (τ1 with
flow and τ0 without flow) were acquired by the summation
of the time differences obtained via the XCorr method. After
the zero-flow calibration (1τ = τ1− τ0), velocity correction
was applied to the estimated transit-time difference (1τ ).
In this study, the velocity correction factor K was 0.93–0.94,
depending on the flow rate [9], [31]. Finally, the fluid flow
rate of the pipe system was determined using (3).

C. NN BASED APPROACHES
1) DATA GENERATION
The training data for the NN were generated using 50 exper-
imental RF signals acquired from the pipe system. Although
the transit-time difference (i.e., τ in (3)) exhibits a continuous
nature of the flow, the experimental data cannot be collected
under all possible transit-time differences. To overcome this
limitation, training data with varying transit-time differences
were generated by randomly shifting the RF signals acquired
during the experiment. Prior to data generation, the amplitude
of the experimental signals was normalized in the range of
–1 to +1 to avoid signal scale variation. By denoting one
of the acquired RF signals from the experiment as s1(t),
where t is the time, the signals from the upstream (u1(t)) and
downstream (d1(t)) of the flow were generated as

u1 (t) = s1 (t)+ n1 (t) (4)

d1 (t) = s1 (t − τ1)+ n2 (t) , (5)

respectively, where τ1 is the transit-time difference between
the RF signals from the upstream and downstream of the
flow, and n1 and n2 are the additive Gaussian random noises
for data augmentation using a randomized standard devia-
tion within the range of 0 to 0.1. One thousand transit-time
differences (τ1) were randomly generated between –1.5 to
1.5 samples (i.e., –0.072 µs to 0.072 µs) using experimental
data. Thus, a total of 50,000 training data sets, with M× 2
ultrasonic RF data sample points per data set, were generated
for the fully connected NN model.
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FIGURE 4. Flow estimation block diagram in fully connected NN.

For the fully connected NN, the same training data sets
were utilized to train the network for both flow and no-flow
cases. However, for the RNN-based model, the training data
sets were generated separately for the flow and no-flow
cases. The training data including flow from the upstream
and downstream (u1(t) and d1(t)) were generated using (4)
and (5), respectively. Further, the training data at the no-flow
condition (u0(t) and d0(t)) were generated using the acquired
RF signal s0(t), as follows:

u0 (t) = s0 (t)+ n3 (t) (6)

d0 (t) = s0 (t − τ0)+ n4 (t) , (7)

where n3 and n4 are the additive Gaussian random noises
for data augmentation using a randomly selected standard
deviation between 0 to 0.1. From 50 experimental RF signals,
100 combinations of flow and no-flow data were generated.
For each combination, 1000 transit-time differences after
zero-flow calibration and velocity correction (i.e.,1τc) were
randomly generated between 0 to 0.8170 samples, which
correspond to flow rates from 0L/min to 70 L/min. Therefore,
a total of 100,000 training data sets, with M× 4 ultrasonic
RF data sample points per data set, were generated for the
RNN-based model.

To estimate the generalization error during training, vali-
dation data sets were also generated using the same method
as the training data sets. A total of 1000 validation data sets
were generated from the experimental data. The validation
data were used for evaluating the fully connected NN and the
RNN-based models during the training of the NNs. Finally,
the RF ultrasound data acquired from the experiment in the
pipe system were used as the testing data. The experimental
ultrasound examples were randomly split into training and
testing data. The testing data comprised 56 experimental
examples after excluding the 50 examples that were used for
the generation of training and validation data. The amplitudes
of the testing data were normalized in the range from –1 to 1.

2) FULLY CONNECTED NN-BASED APPROACH
The flow rate estimation process using the fully connected
NN model is presented in Fig. 4. For the transit-time dif-
ference estimation, the signal processing blocks (i.e., Hilbert
transform, cross-correlation, and phase zero-crossing) were
replaced by the fully connected NN block. The training data
(u1 and d1; M × 2 array) were interpolated by a factor of
100. Subsequently, the interpolated data were fed into the
flatten layer to reshape the data to one dimension for the
fully connected layer. The size of the data after the flatten
layer was 200M (i.e., 6600 samples). The flatten layer was
followed by four hidden fully connected layers with a dif-
ferent number of neurons. The dimensionalities N1, N2, N3,
and N4 of the hidden layers were 1300, 660, 330, and 165,
respectively. The output of the two fully connectedNN blocks
comprised the transit-time differences τc1 and τc0. Similar to
our previous method, shown in Fig. 3, zero-flow calibration
was applied to obtain the time difference 1τc. Velocity cor-
rection was applied to the target output for training the fully
connected NN. Thus, the flow rate was calculated from the
time difference 1τc without the velocity correction process.
The activation in the fully connected layer is computed by the
following formula:

Y = f
(
W TX + b

)
, (8)

where X is the input vector, Y is the output vector, W is
the weight matrix between the input and output, b is the
bias vector, and f is the activation function. In our model,
four hidden layers were activated by the rectified linear
unit (ReLU) function. The activation of the output layer is
the linear activation function because the output of the fully
connected NN model is the time difference in the range of
–1.5 to 1.5 samples.

The network was implemented using the Keras module
of TensorFlow [32]. Keras is a high-level deep learning NN
application program interface [33]. Themodel was created by
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TABLE 1. Hyperparameters of neural networks.

sequential constructor Keras models. The stochastic gradient
descent (SGD) optimizer [23] was used with a learning rate
of 0.001. The mean squared error (MSE) cost function was
applied to calculate the error between the target time differ-
ence after performing velocity correction and predicting the
time difference (τc1 and τc0) from the training and validation
data. Table 1 summarizes the hyperparameters used in the
fully connected NN.

3) RNN-BASED APPROACH
The LSTM is a type of RNN model used to solve
the vanishing gradient problem of the conventional RNN
model [23]–[28]. It is capable of learning long-term depen-
dencies in data [23]. A typical LSTM cell comprises an input
gate, an output gate, and a forget gate. The input gate controls
the input flow entering the cell, whereas the output gate
controls the output flow of the cell. The forget gate determines
the data that should be erased for the LSTM cell. For an
LSTM network with an input sequence x = (x1, . . . , xn) and
an output sequence y = (y1, . . . , yn), LSTM’s computation
employs the following equations iteratively with t ranging
from 1 to n [23]:

i(t) = σ (WT
xi.x(t) +W

T
hi.h(t−1) + bi) (9)

f(t) = σ (WT
xf.x(t) +W

T
hf.h(t−1) + bf) (10)

o(t) = σ (WT
xo.x(t) +W

T
ho.h(t−1) + bo) (11)

g(t) = tanh(WT
xg.x(t) +W

T
hg.h(t−1) + bg) (12)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (13)

y(t) = h(t) = o(t) ⊗ tanh
(
c(t)
)
, (14)

where x(t) is the current input vector of the LSTM cell; h(t−1)
is the previous short-term state vector; i(t), f(t),o(t), and g(t)
are the input gate, forget gate, output gate, and cell state
gate, respectively; c(t) is the long-term state vector; h(t) is
the short-term state vector; Wxi, Wxf, Wxo, and Wxg are the
connection weight matrices to the input vector x(t);Whi,Whf,
Who, and Whg are the connection weight matrices to the
previous short-term state vector h(t−1); and bi, bf, bo, and bg
are the bias terms. In this study, we employed the RNN-based
model with LSTM [24].

Fig. 5 presents the flow rate estimation process using
LSTM. The dimension of the training data for the LSTM
was M× 4, because the data includes both flow and no-flow
cases. In this model, each row of the input data was used as
a sequence, such that the input data hadM sequences, which

are denoted by x1, x2, . . .xM. The output of each LSTM cell
was H (in this study, H = 128). Thus, the size of the output
from the first LSTM layer was M×H . In the second LSTM
layer, a single output was selected by neglecting all outputs
except for the last one (i.e., sequence to vector). Hence, the
output of the second LSTM layer had a size of H. Both LSTM
layers employed the hyperbolic tangent (tanh) function as the
activation function. After each LSTM layer, a dropout layer
was added to avoid overfitting. The dropout layer dropped the
inputs and the neurons of the model, while maintaining the
dimension of the output. The drop rates of the first and second
dropout layers were set to 0.2 and 0.1, respectively. The
final layer of the RNN-based model was the output layer for
predicting the output, i.e., the time difference. Similar to the
fully connectedNN, the activation function of the output layer
was a linear function. The target output of the RNN-based
model (i.e., the time difference1τc) can be predicted without
zero-flow calibration and velocity correction. Therefore, the
predicted flow rate could be directly calculated from the
predicted time difference 1τc.
Similar to the fully connected NN model, the RNN-based

model with LSTM was implemented using the Keras module
of TensorFlow [32]. The optimizer was SGD with a learning
rate of 0.01, and the MSE cost function was likewise applied.
The hyperparameters used in the LSTM are summarized in
Table 1.

D. PERFORMANCE EVALUATION
The flow rates for the 56 testing data sets were estimated
to evaluate the performance of the XCorr, fully connected
NN, and RNN-based model with LSTM methods. While the
flow rates in the XCorr method were calculated using the
algorithm, as shown in Fig. 3, the flow rates obtained using
the NN approaches were predicted by the trained models of
fully connected NN and RNN, as shown in Fig. 4 and 5,
respectively. For each approach, linear regression using the
least-squares method was employed between the reference
and the estimated flow rates. Furthermore, the root mean
squared error (RMSE) between the reference and estimated
flow rates was computed according to the following formula:

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)

2 (15)

where yi denotes the reference flow rate, and ŷi is the flow rate
estimated from our approaches. Moreover, the Bland–Altman
(BA) plot [34] was constructed by plotting the differences
(yi − ŷi) and averages between the reference and estimated
flow rates.

To estimate the inherent error of the NN model, identical
upstream and downstream data sets were used as the testing
data sets for both flow and no-flow cases. Using this manip-
ulated zero-flow case, the inherent error between zero (i.e.,
expected flow rate) and the predicted flow rate was calculated
using the proposed NN model. All 56 experimental data sets
at various flow rate levels were used to calculate the inherent
error.
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FIGURE 5. Flow estimation block diagram for the RNN-based model with LSTM.

III. RESULTS
A. XCORR-BASED FLOW RATE ESTIMATION
Fig. 6(a) presents the estimated flow rates obtained via the
XCorr method for the transit-time estimation with the refer-
ence flow rates. The regression coefficient and the intercept
were 0.79 and 1.54, respectively. The RMSE between the
reference and estimated flow rates of this method was 4.40.
Fig. 6(b) illustrates the BA plot of the estimated and reference
flow rates. The 95% confidence interval of this method ranges
from –4.42 to 9.63. The BA plot indicates an overestimation
of the flow rates near the 10 L/min average flow rate and an
underestimation above the 15 L/min average flow rate.

B. FULLY CONNECTED NN-BASED FLOW RATE
ESTIMATION
Fig. 7(a) illustrates the estimated flow rates obtained by the
fully connected NN. The regression coefficient and inter-
cept were 0.91 and 1.58, respectively. Thus, the regression
coefficient was improved by 15.19% in comparison to the
ultrasonic flowmeter using the XCorr method. The RMSE
of this flow measurement was 4.34, which represents a
1.37% decrease relative to the XCorr method. The BA plot
between the reference and estimated flow rates of the flow
estimation via the fully connected NN method is shown in
Fig. 7(b). The results indicate a confidence interval ranging
from –8.46 to 8.71. The confidence interval of the flowme-
ter using the fully connected NN (i.e., 17.17) was 22.21%
higher than the flow estimation utilizing the XCorr method
(i.e., 14.05). The underestimation at higher flow rates was
improved, as indicated by a 9.55% reduction in the confi-
dence limit of the fully connected NN (8.71) relative to that
of the XCorr method (9.63). Overall, the flow rate estimation
using the fully connected NN exhibited higher variations than
the XCorr method. Although various hyperparameters were
tested, the performance of the fully connected NN was not
sufficient to replace the XCorr method for the estimation of
flow rates.

C. RNN-BASED FLOW RATE ESTIMATION
Fig. 8 presents the training and validation losses of the
RNN-based model during the 400 training epochs. Overall,
the training and validation loss decreased during training.
The loss decreased significantly from epoch 100 to 150.
After 400 epochs, the training and validation losses were
0.0022 and 0.0019, respectively. The validation loss of the
RNN-based model was lower than that of the fully connected
NN (i.e., 0.0019 and 0.0024, respectively).

Fig. 9 shows the flow rates predicted using the proposed
intelligent ultrasonic flowmeter employing the RNN-based
model with LSTM. The linear regression in Fig. 9(a) exhib-
ited a higher regression coefficient of 0.94 (increments of
3.30% and 18.99% compared to the fully connected NN and
XCorr, respectively) and a lower intercept of 0.84 (reduction
of 46.84% and 45.45% compared to the fully connected NN
and XCorr, respectively). Furthermore, the RMSE (2.93) was
lower than that of the fully connected NN (32.55% reduction)
and XCorr methods (33.48% reduction). Based on the BA
plot (Fig. 9(b)), the RNN-based approach had a narrower
confidence interval (–5.38 to 6.11), which was 18.22% and
33.08% lower than those of the XCorr and fully connected
NN methods, respectively. Nevertheless, there was an under-
estimation near the flow rate of 50 L/min; however, it was
significantly subsided compared to the BA plot of the XCorr
method. The linear regression, RMSE, and BA plots indicate
significant improvements in the ultrasound flow estimation
of the proposed RNN-based model with LSTM. Thus, it was
demonstrated that the intelligent ultrasonic flowmeter using
the LSTM yields higher accuracy and precision than the
XCorr and fully connected NN methods.

IV. DISCUSSION
The current study demonstrates the feasibility of intel-
ligent transit-time ultrasonic flow measurement using an
RNN-based approach. Table 2 summarizes the performance
of the ultrasonic flowmeter obtained via different approaches,
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FIGURE 6. Flow rates estimated using the XCorr method. (a) Linear regression; (b) Bland–Altman plot.

FIGURE 7. Estimated flow rates using the fully connected NN. (a) Linear Regression; (b) Bland-Altman plot.

including the XCorr, fully connected NN, and RNN-based
LSTM methods. The proposed RNN-based model with
LSTM (Fig. 5) improves the performance of the transit-time
difference estimation and is also capable of replacing the
entire process of flow rate estimation, including interpolation,
velocity correction, and zero-flow calibration. The required
input for the RNN-based model is the sequence of signals
from both cases with and without a flow. As the transit-time
differences after zero-flow compensation and velocity correc-
tion were used as the target output of the RNN-based model
during training, the output of the RNN-based model can be
used to directly calculate the flow rate. While the RNN-based
model was implemented without interpolation of the input
data, the fully connected NN required 100 times interpolation

for the input data to implement the deeper layer NN.Although
not included in this paper, the performance of the fully con-
nected NN model did not yield any improvement, even with
twice the training data, as compared to other approaches.
The possibility to improve the fully connected NN by using
different layers or hyperparameters still exists; however, the
RNN-based model is more suitable for the time series or
sequence data used in this study. Furthermore, the LSTM can
utilize long-term memory to improve the prediction accuracy
of the transit-time difference.

Because the low sampling rate of the flowmeter induces
errors in transit-time flow estimation, a sampling frequency
at least ten times the transducer transmission frequency is
required to achieve high accuracy and precision suitable for
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FIGURE 8. Loss curves of the RNN-based model.

TABLE 2. Performance evaluation of ultrasonic flowmeter.

industrial applications [11]. In this study, the sampling rate
of the ultrasonic flowmeter was four times the transducer
transmission frequency. While the XCorr method yielded
an accuracy of 79% and an RMSE of 4.40 (Fig. 6), the
RNN-based approach achieved an accuracy of 94% with
an RMSE of 2.93 (Fig. 9). Thus, the proposed RNN-based
ultrasonic flow measurement was capable of reducing the
performance degradation caused by the sampling rate limita-
tion. From the BA plots of the XCorr, fully connected NN,

and RNN-based approaches, underestimation (i.e., above
zero flow rate difference) was observed at high flow rates
(> 15 L/min for XCorr and> 40 L/min for both the fully con-
nected NN and the RNN-based approach).When the flow rate
increases, bubbles are generated in the fluid, which compro-
mises the quality of the ultrasonic signal [9]. Although bubble
generation in the liquid flow was unavoidable, we could
observe that the overestimation was significantly reduced in
the RNN-based approach. In addition to the RMSE error, the
relative error between the estimated and the reference flow
rates can also be calculated. The mean of the relative errors
for XCorr, fully connected NN, and RNN-based methods
were 12.99%, 22.24%, and 10.93%, respectively. The relative
error of the RNN-based approach was reduced by 15.86%,
as compared to that of the XCorr method. The overall relative
error is substantially high, as the current approach employs
non-invasive measurement with a single path in a minimized
pipe system (i.e., narrow and short pipe lengths). Although
this study compared the performance of different approaches,
future research should focus on further improvements involv-
ing the multi-path approach.

Fig. 10(a) presents the distribution of the target flow
rates of 100,000 training data sets used for the proposed
RNN-based model, indicating that the target flow rates from
0 L/min to 70 L/min were uniformly distributed with frequen-
cies of 6000–7000. Fig. 10(b) presents the inherent error of
the RNN-based model. Overall, the inherent error of the pro-
posed RNN-based model is overestimated. The error between
the estimated flow rates and the zero-flow rates varied
from –6.40 L/min to 2.13 L/min. The inherent noise of the
proposedRNN-basedmodel (Fig. 10(b)) wasmostly overesti-
mated. As the target flow rates are positive numbers, as shown
in Fig. 10(a), the overestimation of the manipulated zero-flow
case was predictable. Although this manipulated case does
not occur during the actual flow measurement experiment,
this result indicates the limitation of the RNN-based model

FIGURE 9. Estimated flow rates using LSTM. (a) Linear Regression; (b) Bland–Altman plot.
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FIGURE 10. (a) Distribution of target flow rates of training data for LSTM. (b) Inherent error of the LSTM.

when absolutely no flow is expected. It should be noted
that zero-flow data are required as the input for training
the RNN-based model. These zero-flow data are simulated
to train the model. Subsequently, for flow measurements,
actual zero-flow data can be acquired when the flowmeter
is first installed or when the physical conditions of the pipe
are altered. Once the network had been trained, the stored
zero-flow data can be utilized for flow measurements.

Training data are essential to realize an intelligent ultra-
sound flowmeter based on deep learning, because their quan-
tity and quality determine the performance of the NN. In this
study, the training data were generated through a simula-
tion with a known transit-time difference using experimental
data. The results in this study demonstrated that this simu-
lated training data helped improve the training process and
reduced the error in prediction. Although we only considered
the average velocity through the ultrasonic travel path in
the pipe, training data considering the velocity profile in the
pipe can also be utilized for further improvements in flow
estimations [14], [15]. Using a single CPU (Intel i7-8700)
with 16 GB memory, the computational time required for
network training was 2.5 h and 27 h for the fully connected
NN and RNN-based model with LSTM, respectively. Once
the network training is completed, the computed network
requires only a few seconds to run. Thus, the trained network
can be embedded in the device for flow measurements.

From an industrial perspective, the proposed approach
could potentially be applied to the water pipes in pump
stations, where accurate flow measurements can help control
and manage the pump, thereby improving the energy effi-
ciency of buildings [5]. In industries, flow measurement is
applied to different pipe systems under various conditions.
Therefore, ultrasonic flowmeters must be adaptable to var-
ious pipe specifications. The intelligent ultrasonic flowme-
ter exploits the flexibility of the NN-based approach. The
RNN-based approach can be easily trained for various sit-
uations, provided the pipe specifications and experimental

data are given. Furthermore, our approach can be applied for
various fluids, as long as the particles in the fluid are smaller
than the wavelength of the ultrasound wave (< 300 µm
in this study). Moreover, the wavelength can be controlled
by varying the frequency of the ultrasound wave. Thus, the
proposed RNN-based flow estimation model shows potential
for industrial applications. In this study, we presented the fea-
sibility of using the RNN-based model for the entire process
of flow estimation utilizing one-dimensional data. As two-
dimensional data from the array transducer can also be uti-
lized effectively, our future research will involve designing
a NN model employing two-dimensional data, such as the
convolutional LSTMNN [35], [36], for further improvements
in intelligent ultrasonic flow estimation.

V. CONCLUSION
In order to improve the transit-time difference estimation
of ultrasonic flowmeter, this study demonstrates intelli-
gent ultrasonic fluid flow measurements by employing an
RNN-based model with LSTM. The RNN-based approach
includes the entire process of ultrasonic flow estimation in a
pipe system, which are interpolation, transit-time difference
estimation, zero-flow calibration, and velocity correction.
The proposed intelligent ultrasonic flowmeter yields superior
performance in the experimental study, with high accuracy
and low errors compared with the Xcorr and fully connected
NN approaches, thereby demonstrating its suitability for
industrial applications.
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