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ABSTRACT Person Re-Identification (ReID) is an important yet challenging task in computer vision.
Background clutter is one of the greatest challenges to overcome. In this paper, we propose a Mask-pooling
model with local-level triplet loss (MPM-LTL) to tackle this problem and improve person RelD performance.
Specifically, we present a novel pooling method, called mask pooling (MP), to gradually remove background
features in feature maps through deep convolutional network. With mask pooling, the network can learn the
most crucial person features. Moreover, we raise a novel local-level triplet loss for discriminative feature
training. Furthermore, we propose a new hard triplets selection algorithm named Mask-guided TriHard. The
method is based on human outline information, which is, to our best knowledge, employed for the first
time for hard triplets selection. We achieve the state-of-the-art results on three benchmark person datasets
Market-1501 [1], CUHKO3 [2] and DukeMTMC-reID [3], [4].

INDEX TERMS Person re-identification, mask-pooling, hard triplets selection, local-level triplet loss.

I. INTRODUCTION

Person re-identification (RelD), which aims at identifying the
same person among different cameras, has drawn increasing
attention in computer vision since it plays a critical role
in pedestrian retrieval, public security and criminal investi-
gation [5]. It is a challenging problem due to large varia-
tions in person pose, illumination and viewpoint of cameras,
occlusion, low image resolution and cluttered backgrounds,
as illustrated in Fig. 1.

@

In the past few years, a variety of approaches have been
proposed to address these difficulties. When learning fea-
tures, most of these methods make use of the advantages of
various deep neural networks and obtain better results than
traditional image processing methods [6]-[11]. However,
they tend to focus on the features of the entire image, which
include not only the whole body of the person but also the
cluttered background. Only until recently have local fea-
tures, such as body regions and joints [12]-[14], been used

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Remagnino

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 1. Challenges in Person RelD: (a) variant person poses,

(b) variant illumination, (c) variant camera viewpoints, (d) occlusions,
(e) low image resolutions, (f) cluttered background. All images are from
dataset Market-1501. Best viewed in color.

and proved to be more discriminative than global features.
However, these local features are obtained either by hor-
izontally segmenting the entire image or by dividing the
whole image according to the body parts of the person
[15]-[19], which still contain large amounts of background
information, as shown in Fig.2 (a)-(c). One of our intu-
itions is that, background information may, to some extent,
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FIGURE 2. (a) - (c) are partition methods in part feature learning, which
still contain large amounts of background information: (a) horizontally
segmentation [16], [20], (b) key points and part regions [13], (c) body
regions and joints [12]. (d) illustrates the motivation of our method: to
remove the extra background using mask information. Best viewed in
color.

be a barrier to human feature extraction. To verify this intu-
ition, we use the mask information, which is transformed into
a new channel (mask channel) of the images, to remove the
extra background, as shown in Fig.2 (d). In our model, this
mask channel, which reflects whether each pixel in the image
belongs to background or non-background (0 for background
while 1 for non-background), is taken together with the nor-
mal RGB channels as input. Background information is not
removed at the very beginning, but gradually removed during
the feature extraction process of the network. For this mask
channel, we do not apply the convolution operation like the
other three channels because the mask channel corresponds to
the foreground/background information, which can be used to
guide the network to better focus on the most important fore-
ground information. In addition, other resize methods, such as
linear interpolation, may blur the edges of the mask’s contour.
Therefore, we propose a new operation, called mask pooling,
to highlight the role of mask in the network. Mask pooling
differs from other traditional pooling methods in that, instead
of simply downsampling based on mean or maximum value,
it selectively downsamples according to background or non-
background information, which can greatly retain meaningful
information for feature extraction.

Various loss methods are applied to guide training. Since
most work only focus on global features of the whole
image, the loss methods they adopt are limited to global loss
only, regardless of whether they use Contrastive loss [21],
Triplet loss [9], [11], [15], [22]-[24], TriHard loss [8], [25]
or Quadruplet loss [26]. Even in studies that learn part fea-
tures, most of them still aggregate part features into a whole
one and train it with a global identification loss. Unlike them,
we divide the features extracted into several parts, design a
classifier for each part, and introduce a local-level triplet loss
to help training. It is worth mentioning that, while commonly
used triplet loss is applied to global features, the triplet loss
we propose is at local level.

In addition, since easy triplets contribute little to training,
it is crucial and challenging to select hard triplets that are
more instructive. With the aid of the extracted segmentation
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mask, we carefully select hard images to form triplets for
local-level triplet loss, which improves the performance.
Specifically, we make the following three contributions:

« We propose a new pooling method called mask pooling.
After moderate mask is extracted and transformed into
a mask channel, mask pooling is employed to gradually
remove background features in feature maps during the
process of feature extraction and downsampling. With
mask information and mask pooling, the network can
learn the most crucial person features.

o« We propose a local-level triplet loss for the train-
ing of each part of the extracted features. Different
from usual triplet loss, which is always applied to the
whole feature of an image, the proposed local-level
triplet loss is applied to the corresponding parts of the
triplet and proved to be better for discriminative feature
training.

o We present a new hard triplets selection algorithm called
Mask-guided TriHard for local-level triplet loss, which
is better for network training. In addition to feature
similarity, human outline information in the mask are
taken into account when selecting hard triplets. The cal-
culation of the mask intersection can guide the network
to avoid selecting totally irrelevant body parts, which
facilitates the alignment of the partitioned images and
thus is beneficial to local-level triplet training.

Il. RELATED WORK

A. DEEP LEARNING METHODS

Deep learning methods have been widely used in Person
RelD since 2014 [2], [27]. These methods have shown to
be more effective than traditional image processing methods.
A recent trend is to design a deep neural network to learn
features and metrics simultaneously. In addition to the most
frequently used CNN [5]-[12], [16], [28], RNN and its vari-
ants (LSTM, GRU, etc.) [20], [29] are also used to extract
temporal features, especially in video-based Person RelD.

B. PART FEATURE LEARNING

Among deeply learned features, part features draw increas-
ing attention and have been proved to be more discrimina-
tive [18], [30], [32], [33]. For instance, [14], [32], [34], [35]
employ pose information to help part feature learning,
and [13], [15]-[20] partition pedestrians into several parts
(horizontal stripes, rectangle blocks, etc.) to extract part fea-
tures. The most challenging problem of the above pose-driven
methods and partition methods lies in body part misalign-
ment [36]. Body joints [12], pose boxes [34], keypoints [13]
and semantic features of different body regions [12], [14] are
effective means to address this problem. Inspired by these
methods, we propose a novel model that divides pedestrian
into several parts. Instead of aggregating the feature of each
part into a whole feature and training it with a whole loss,
for each part, we design a classifier and train it by a multi-
classification loss.
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FIGURE 3. The proposed MPM-LTL model. The network takes synthetic images which contain mask information as inputs. After going through a
Mask-pooling model, extracted part features are trained by local-level triplet loss and identification loss. Best viewed in color.

C. MASK-BASED FEATURE LEARNING

With the rapid development of deep learning based image
segmentation methods including FCN [37] and Mask
R-CNN [38], segmentation mask of the objects in an image
can be well extracted and utilized in feature learning.
DyeNet [39] contributes an mask-based approach, which is
robust to distractors not belonging to the target segment,
to perform person tracking in videos. CNN+MGTS [40]
generates segmentation mask to emphasize foreground infor-
mation, with the motivation that foreground information
are more vital to re-identify a person. NWAPI [41] pro-
poses an end-to-end noise weakened person RelD system
by first suppress the background noise using Mask R-CNN.
MGCAM [42] also designs a mask-guided contrastive atten-
tion model to learn features separately from the body and
background regions. Different from NWAPI which combines
panoramic features and foreground features, and MGCAM
which directly adds the extracted foreground information into
the images and carries out the ordinary convolution operation,
we propose mask pooling, a special pooling operation only
for the mask channel, to make full use of the mask to learn
the most discriminate non-background features, and achieve
much better results than NWAPI and MGCAM.

D. LOSS METHODS

The commonly used loss methods for metric learning include
Contrastive loss [21], Triplet loss [9], [11], [15], [22]-[24],
TriHard loss [8], [25], Quadruplet loss [26], and Margin sam-
ple mining loss [43]. Besides these global-level loss meth-
ods, part loss [30] is also adopted for training part features.
The using of triplet loss is not novel in Person RelD task.
However, all the triplet loss methods mentioned above are
in global level, which compute triplet loss based on the
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characteristics of the entire feature maps. Unlike them,
the triplet loss our model adopts is in local level, which pays
more attention to local information aligned in the feature
maps. More specifically, we use a local-level triplet loss to
pull close the distance between parts in positive pairs of
pedestrians and push away the distance between parts in
negative pairs of pedestrians.

Ill. OUR APPROACH

A. OVERALL ARCHITECTURE

As shown in Fig.3, in our MPM-LTL model, a triplet of input
images (marked as Positive, Anchor and Negative respec-
tively) are sent into the branch network, called Mask-pooling
model (MPM). These inputs contain not only the original
images but also the corresponding masks, which are good
for extracting non-background information. The network is
deliberately designed to make full use of the masks (to be
detailed in Section III-C). Extracted by MPM, each 3D fea-
ture tensor, Ty, T, and Ty, is divided into k parts of the same
size. An average pooling is performed to every part of the
feature map of each channel, turning 7),, T, and 7}, into G,
G, and G,, with k vectors respectively. Then, k 1 x 1 convolu-
tional layers are employed for dimension reducing. So finally
we get H, = {hm,h,,z,...,hpk}, H, = {hal,haz,...,hak}
and H, = {hy,, hn,, ..., hy, } as the final feature descriptors.
Since part feature training has been proven to be very effec-
tive in [18], we associate each hp,, hy, and hy, (1 < i < k)
with a classifier. During training, each classifier predicts
the identity of the corresponding part and is supervised by
Cross-Entropy loss. Different from [18], corresponding to the
triplet of inputs, we design a triplet of identification loss,
i.e., id_loss_p, id_loss_a and id_loss_n, and define the final
identification loss, id_loss, as the average of the three.
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In order to fully utilize local features, we design a local-
level triplet loss named local_level_triplet_loss to train the
similarity between every part in the feature map of the triplet
of images. In other words, each triplet of A, h,; and hy,
(1 <i < k), is trained by local_level_triplet_loss.

Therefore, the total loss consists of two parts: while id_loss
is responsible for the training of each part of the image itself,
supervised by the label of the image, local_level_triplet_loss
is in charge of the learning of the corresponding part in
anchor, positive and negative images, which aims to pull close
the distance between the positive image pairs and push away
the distance between the negative image pairs.

Details of id_loss and local_level _triplet _loss will be dis-
cussed in Section III-F and Section III-D respectively.

B. MASK EXTRACTION
Although Mask R-CNN [38] is effective for mask extrac-
tion on ordinary image datasets, it does not quite apply to
Person RelD datasets, since images in Person RelD datasets
are already cut by bounding boxes generated by hand label-
ing or detectors.

To better extract person mask from Person RelD images,
we deal with the original datasets as follows:

« Firstly, since Person RelD images are all with low res-
olutions, we expand every original image by padding
0 around it (with the original image in the center). The
expanded image has 3 times the width and height of the
original image.

o Then, we perform mask extraction using a modified
Mask R-CNN, with anchor areas of {322, 642} and
aspect ratios of {1:2, 1:1, 2:1}.

« Finally, in order to avoid loss of foreground edge due
to low image resolution, we extend the mask contour by
3 pixels.

C. MASK-POOLING MODEL

Our model can take any deep convolutional neural network as
backbone network. In this paper, we employ ResNet50 [44]
with the consideration that it has competitive performance
and relatively concise architecture.

Since the extracted mask is binary information, it can
well reflect whether each pixel in the image belongs to
background or non-background (0 for background while
1 for non-background). We transform this binary informa-
tion into a mask channel. Unlike normal networks, which
receive 3-channel images (RGB) as input, our network takes
4-channel images as input (RGB + Mask).

To highlight the role of mask in the network, we make
the following modifications to ResNet50, as can be seen
in Fig. 4:

o For convl layer in ResNet50, while the first 3 channels
(RGB) perform normal convolution (7 x 7 convolu-
tion, stride 2, 63 kernels), BatchNorm normalization
and ReLU activation, the 4" channel (mask channel)
performs a 7 x 7 pooling. It is not an ordinary average
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FIGURE 4. lllustration of mask pooling. If the proportion of
non-background pixels in each pooling region exceeds a certain
threshold (take threshold = 0.6 for example), then the pooling region will
be pooled as non-background. Note that the mask pooling is performed
in a single channel, while the 7 x 7 convolution and the 3 x 3 max pooling
are performed with 63 kernels, which results in 63 channels, and they
add up to 64 channels. Best viewed in color.

pooling or maximum pooling, but a special pooling
(we name it mask pooling) based on whether the pixel
values of the current pooling region (7 x 7) represent
background or non-background. In this mask pooling,
the proportion of non-background pixels (that is, the
proportion of ones in the mask channel) in each 7 x 7
pooling region is calculated. We believe that if this
proportion exceeds a certain threshold, it is likely that
this pooling region represents non-background infor-
mation and should be pooled as non-background. Our
intuition is that, too large threshold can lead to loss of
pedestrian information, while too small threshold may
bring about too much background information, which
may cause interference. Multiple experiments suggest
that 0.4-0.7 (40%-70%) are moderate threshold, which is
consistent with our intuition. (Details will be discussed
in Section IV-B.)

« For the pooling part in conv2_x layer in ResNet50, while
the first 63 channels perform a normal 3 x 3 max pooling,
the 64 channel performs a 3 x 3 mask pooling.

Fig.5 illustrates the feature maps extracted after mask pool-
ing in the modified ResNet50. It is obvious that after mask
pooling in conv2_x layer, the contour features of pedestrians
are already well preserved, and most of the cluttered back-
ground is effectively removed. Therefore, there is no need to
perform the mask pooling operation for the subsequent layers.
So the 64 channels stack up again and are fed into the rest of
the ResNet50 network.

D. LOCAL-LEVEL TRIPLET LOSS

Triplet loss [22], [23] is a widely used loss method for metric
learning. In Person RelD, it is common that images with
different IDs are very similar, while images with the same
ID differ greatly due to variant person poses, illumination
and viewpoints of cameras. Triplet loss takes into account
both the distance between positive image pairs and between
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FIGURE 5. Illustration of the feature maps extracted after mask pooling.
Line (a) are the original images in Market-1501. Line (b) are their
extracted masks. Line (c) are images obtained by incorporating the masks
into the fourth channel of the original images. Line (d) are the feature
maps extracted after mask pooling in conv1 layer in the modified
ResNet5. Line (e) are the feature maps extracted after mask pooling in
conv2_x layer in the modified ResNet50. It can be seen that the
information extracted is almost the information of pedestrians. Best
viewed in color.

negative image pairs, so it is better to solve the problem. Also,
constructing triplets is a way of data enhancement, which
can effectively alleviate overfitting. Triplet loss requires three
input images, including a pair of positive images and a pair
of negative images. The three images are respectively named
Anchor (a), Positive (p) and Negative (n), where image a and
image p form a pair of positive images, and image a and image
n form a pair of negative images. Triplet loss can be defined as

Ltriplet = (da,p - da,n + O[)+ (D

where d,, ;, and d,; , are the distance between positive image
pairs and the distance between negative image pairs respec-
tively, « is a distance margin between different identities.
Training by triplet loss, the network will learn to pull close
the distance between positive image pairs and push away the
distance between negative image pairs.

In the proposed network, after dividing the feature map
into k parts, we do not directly calculate the triplet loss of
the whole feature map. Instead, we calculate the triplet loss
of each part, and take the average to represent the whole
triplet loss. In other words, we define local-level triplet loss
local_level _triplet_loss as:

k
1 . .
Llocal_level_triplet_loss = zZ(le,p - d;,n + Ol)+ 2)

i=1
where k is the number of parts, dé’ » is the distance between

the i part of the positive image pair and dcim is the distance
between the i part of the negative image pair, respectively.
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It is worth mentioning that some triplets, for example,
triplets with similar positive/negative image pairs, are not
contributing to training and will result in slower convergence.
Therefore, it is crucial to select hard triplets that are helpful
for training. The following subsection discusses the approach
we use for hard triplets selection.

E. HARD TRIPLETS SELECTION FOR TRIPLET LOSS

To construct promising triplets, for each image in training set
(anchor), we raise an algorithm called Mask-guided TriHard,
which selects the corresponding positive and negative images
depending on not only the distance between feature maps, but
also their mask information.

Take positive image pairs for example. Generally speaking,
less close positive image pairs are more valuable for training.
However, if the two images in a pair present completely
different body parts, the training is of little significance. This
is also true for negative image pairs. So we use Euclidean
distance and mask intersection to help sieving images. On the
one hand, positive image pairs with larger Euclidean distance
are obviously more helpful for training. On the other hand,
training two completely different body parts as if they were
the same would interfere with the network’s ability to learn.
Therefore, to avoid this situation, when selecting hard triplets,
we use the mask information to exclude pairs of images with
too little mask intersection.

The steps of the algorithm are as follows. For an anchor
image, we first construct candidate positive and negative
image set. Positive image set include images that have the
same identity of a person with the anchor image but are in
different cameras, while negative image set include images
that have different identity with the anchor image but are in
the same camera. Then, the top 10 images with the furthest
and nearest European distance to the feature map of anchor
image are left in the positive image set and negative image
set respectively, while the others are removed. Further, mask
intersection are calculated and images with the top 5 largest
mask intersection with the anchor image are left for both the
positive image set and negative image set. Finally, the positive
and negative image which make the distance between the
positive and negative image pairs closest are selected to form
a triplet with the anchor image.

Details of Mask-guided TriHard are shown in Algorithm 1.

F. IDENTIFICATION LOSS

We design an identification loss for the training of every
anchor, positive and negative image in each triplet based on
Tensor H. The identification loss is a Cross-Entropy loss.
Take identification loss for anchor image id_loss_a for exam-
ple, it can be calculated as:

k  ng
1 ,
Lid_toss.a = =7 Y ) Hajlogp(a)) 3)

i=1 j=1

where k is the number of parts, n, is the number of anchor
images, a} is the i part of the anchor image aj, I(-) is the
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Algorithm 1 Mask-Guided TriHard: A Hard Triplets
Selection Algorithm for Triplet Loss
Input: The training set Sy,
Output: Hard triplet set 7
begin
P =[] //candidate positive image set
N =[] //candidate negative image set
for a € Syuin do
// subscript id stands for the identity of a person

/I subscript cam stands for the camera of an image

P = {plpia = aia, Pcam # Acam}

N = {n|nig # ajq, ncam = dcam}

// calculate the Euclidean distance between the feature
map of a and p, a and n:

Dyp = {daplp € P}

D,y = {da,n|n € N}

update P = PN {plTop_lO_largest(Da, p)}

update N = N N {n|Top_10_smallest(Dq,n)}

// calculate mask intersection of a and p, a and n:

Mgp = Zi,j(a Op)ij

Mgy = Ziyj(a o n)jj

My p = {ma,p|p € P}

Mg n = {man|n € N}

update P = PN {plTop_S_largest(Ma, p)}

update N = N N {n|Top_5_largest(Ma,N)}

// calculate the absolute value of (dy,, — dq,p)

ABSqpn = {abs(dyn — dap)lp € P,n € N}

(p, n) = argmin(ABS, p )

(p,n)
triplet ¢, = (a, p, n)
end for
return T = {t,;|a € Siain}
end

label of the image, and p(-) is the predicted value of the part
of the image.

The final identification loss L;; .5 1S the average of
Lig_ioss_a» Lid_loss p and Lig_jogs_n:

k Ng np

1 . .

Lid_toss = =3 > O laplogp(al) + Y l(pplogp(p})
i=1 j=1 j=1

Ny

+ ) lnplogp(n)) — (4)

J=1

And the total loss is the sum of local_level_triplet_loss
and id_loss:

k n
1 ; ; 1 & .
L= E;((dcl[’p —dy,+ ) — 5(2 l(aj)logp(a/’-)

J=1

+ ) lpplogp(p)) + > lnplogp(n)))) ~ (5)

j=1 J=1
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IV. EXPERIMENTS

A. DATASETS AND SETTINGS

We evaluate our proposed method on three public per-
son RelD datasets: Market-1501 [1], CUHKO3 [2] and
DukeMTMC-relD [3], [4].

1) MARKET-1501

Market-1501 is collected in front of a supermarket in
Tsinghua University by 6 cameras. It contains 1, 501 iden-
tities and 32, 668 bounding boxes generated by a DPM
detector [45]. Within all these 1, 501 identities, 751 are used
for training and the rest 750 are used for testing. It also
provides false alarm detection results for training. We use the
evaluation packages provided by [1].

2) CUHKO3

CUHKO3 contains 1, 467 identities and 14, 096 person
images which are also captured by six surveillance cameras.
Misalignment, occlusions, body part missing, illumination
changes are quite common in this dataset. It offers both hand-
labeled and DPM-detected bounding boxes. We adopt both
the original training/testing protocol (20 random train/test
splits) [2] and the new protocol (767 identities for training
and the rest 700 for testing) [46].

3) DukeMTMC-relD

DukeMTMC-relD is a subset of DukeMTMC [3] cap-
tured by 8 cameras for multi-camera tracking. There are
1,404 identities appearing in more than two cameras. Hand-
drawn pedestrian bounding boxes are available. We adopt
the training/testing protocol in [4], which randomly select
702 identities as the training set and the remaining
702 identities as the testing set.

4) EVALUATION METRICS

We use the Cumulative Matching Characteristic (CMC) [47]
curve and Mean Average Precision (mAP) [1] to evaluate the
performance of the proposed methods.
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FIGURE 7. lllustration of the mAP and Rank-1 performances achieved by different thresholds on Market-1501,
DukeMTMC-relD and CUHKO3 (with both original protocol and new protocol). Best viewed in color.

B. IMPLEMENTATION DETAILS
1) TRAINING
We train the model in 3 stages:
« Stage 1. The Mask-pooling model (base network) is pre-

o The size of the input image is set 384 x 128.

o As described in Section III-C and Fig.4, during mask
pooling, the proportion of non-background pixels (that
is, the proportion of ones in the mask channel) in each

trained on ImageNet. After that, we set batch size to
64 and train the whole model with id_loss for 60 epochs.
The base learning rate is initialized at 0.01 for the base
network, and 0.1 for the rest convolutional layers and the
fully connection layer, and decays to 0.1x of the base
learning rate after 40 epochs.

Stage 2. Fix the weights of the whole network except
the fully connection layer and train the fully connec-
tion layer for 20 epochs. The learning rate is set to
0.001 without decay.

Stage 3. Train the whole model for 20 epochs with
learning rate set to be 0.001 for the base network and
the fully connection layer, and 0.01 for the rest of the
model.

7 x 7 or 3 x 3 pooling region is calculated. We believe
that if this proportion exceeds a certain threshold,
it is likely that this pooling region represents non-
background information and should be pooled as non-
background. Our intuition is that, too large threshold can
lead to loss of pedestrian information, while too small
threshold may bring about too much background infor-
mation, which may cause interference. We have done
multiple experiments to verify this intuition. Fig.7 illus-
trates the performances achieved by different thresh-
olds on Market-1501, DukeMTMC-reID and CUHKO03
(with both the original and new protocol). For simplic-
ity, the mAP and Rank-1 values here are the average
of the different query patterns (Single-Query, Multi-
Query, Single-Query + Re-ranking, Multi-Query + Re-

2) PARAMETERS SETTINGS
Crucial parameters of MPM-LTL are set as follows:
« As mentioned in Section III-A, extracted by MPM, each

ranking). As Fig.7 shows, performances achieve best
in threshold = 0.4 on Market-1501, in threshold =
0.5 on DukeMTMC-relD, in threshold = 0.5/0.6 on

3D feature tensor, T, T, and T},, is divided into k parts of
the same size. Lots of experiments on the three datasets
show that it is best to horizontally divide the feature
tensors into 6 parts, as can be seen from Fig. 6. Since the
images collected for Person RelD have been generated
through detector or manual annotation, in most cases,
the 6 parts divided can roughly represent different parts
of the body, such as the head, neck, feet and so on.

As mentioned in Section III-B, since images in Person
RelD datasets are already cut by bounding boxes, it is
not suitable to directly use Mask R-CNN to extract the
mask. Thus, we expand the images. Considering the
pixel size of the original image, we expand the images
by 3 times and extend 3 pixels around the mask contour
after extracting the mask.
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CUHKO3 (with the original protocol) and in thresh-
old = 0.4/0.5 on CUHKO3 (with the new protocol).
Besides, Fig.7 suggests that 0.4-0.7 are moderate thresh-
olds, which is consistent with our intuition. To fur-
ther summarize the results from a macro perspective,
we divide the thresholds into three groups, i.e., thresh-
old = 0.0 to 0.3, threshold = 0.4 to 0.7, and thresh-
old = 0.8 to 1.0, and investigate the performances
under various query patterns on the three datasets. mAP
and Rank-1 values are averaged according to the three
groups. Experimental results in Fig.8 shows that for
all query patterns, threshold = 0.4 to 0.7 achieves the
best performance on all datasets. In future studies,
we will try to make the network learn the threshold
automatically.
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FIGURE 8. Illustration of the mAP and Rank-1 performances achieved by different groups of thresholds on Market-1501,
DukeMTMC-relD and CUHKO3 (with both original protocol and new protocol). Best viewed in color.

TABLE 1. Ablation study of MPM-LTL on Market-1501. The best results are bolded. MP: Mask Pooling. GTL: Global-level Triplet Loss. LTL: Local-level Triplet

Loss. SQ: Single-Query. MQ: Multi-Query. RR: Re-ranking.

Datasets Market-1501
Models SQ MQ SQ+RR MQ+RR
Rank1 mAP Rank1 mAP Rank1 mAP Rank] mAP
(1) Baseline 86.55 69.07 91.48 71.57 88.39 82.50 92.93 88.57
(2) Baseline + Mask (convolution) 88.45 69.87 91.86 77.70 90.29 84.56 92.84 88.29
(3) Baseline + Mask (bilinear interpolation) 88.66 70.86 93.20 78.57 90.56 84.88 93.29 88.84
(4) Baseline + Mask + MP 89.82 73.67 93.29 80.31 92.10 86.30 94.21 89.90
(5) Baseline + Mask + MP + GTL 90.59 75.35 94.03 81.96 92.73 87.60 94.83 91.16
(6) Baseline + Mask + MP + LTL 92.87 79.53 94.83 85.27 94.30 90.94 95.72 93.31
(7) Baseline + Mask + MP + LTL + TriHard (Ours) 93.38 80.45 95.40 86.47 94.39 91.39 95.72 93.76

o After the mask pooling and convolution operations
in Mask-pooling model, the size of Tensor T is
24 x 8 x 2048. With part number fixed at 6, after an
average pooling, the size of Tensor G is 6 x 1x2048.
Then, a 1 x 1 convolution turns the size of Tensor H to
6 x 1x256.

o When using triplet loss, the distance margin between
different identities o is 0.5.

3) EXPERIMENT ENVIRONMENT
All experiments are conducted on 4 GPUs with 16G memory
each.

C. ABLATION STUDY AND PERFORMANCE EVALUATION
We investigate the effectiveness of each component in our
proposed model by conducting a series of experiments on
Market-1501, CUHKO03 and DukeMTMC-relD.

(1) Baseline. In the baseline model, we employ the original
ResNet50 as the backbone network, which takes the original
RGB images in the datasets as inputs, without any mask
information.

(2) Baseline + Mask (convolution). To assess the benefit
of mask, the baseline model described above takes masks as
additional inputs, besides the original RGB images. All the
four input channels are down sampled using convolution.

(3) Baseline + Mask (bilinear interpolation). Different
from (2), the mask channel is down sampled using bilinear
interpolation.
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TABLE 2. Ablation study of MPM-LTL on DukeMTMC-relD. The best
results are bolded. MP: Mask Pooling. GTL: Global-level Triplet Loss. LTL:
Local-level Triplet Loss. SQ: Single-Query. MQ: Multi-Query. RR:
Re-ranking.

Datasets DukeMTMC-reID
SQ SQ+RR

Models Rankl | mAP | Rankl | mAP
(1) Baseline 77.78 58.92 81.33 74.70
(2) Baseline + Mask (convolution) 78.82 60.66 83.89 76.87
(3) Baseline + Mask (bilinear interpolation) 78.90 60.20 83.03 75.45
(4) Baseline + Mask + MP 81.46 64.52 86.09 80.89
(5) Baseline + Mask + MP + GTL 82.09 64.20 87.07 81.73
(6) Baseline + Mask + MP + LTL 83.03 66.39 86.89 8245
(7) Baseline + Mask + MP + LTL + TriHard (Ours) 83.44 67.16 87.12 82.69

(4) Baseline + Mask + Mask Pooling. To evaluate the
effectiveness of mask pooling, mask-pooling model is used,
as described in Section III-C and Fig.4.

(5) Baseline + Mask + Mask Pooling + Global-level
Triplet Loss. The four models above are models without
triplet architecture. When training with triplet loss, a triplet
architecture is adopted. Global-level means that the whole
feature maps are directly used for training, without being
divided.

(6) Baseline + Mask + Mask Pooling + Local-level
Triplet Loss. Feature maps are divided into several parts for
training and triplet loss is calculated with the corresponding
parts.

(7) Baseline + Mask + Mask Pooling + Local-level
Triplet Loss + TriHard (Ours). Hard triplets are selected
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TABLE 3. Ablation study of MPM-LTL on CUHKO3. The best results are bolded. MP: Mask Pooling. GTL: Global-level Triplet Loss. LTL: Local-level Triplet

Loss. SQ: Single-Query. MQ: Multi-Query. RR: Re-ranking.

Datasets CUHKO3 (Original protocol)
Labeled Detected
Models SQ SQ+RR SQ SQ+RR
Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

(1) Baseline 84.00 80.01 90.00 90.73 79.00 76.37 89.50 88.50
(2) Baseline + Mask (convolution) 88.44 85.89 92.46 93.08 86.43 82.85 89.95 90.80
(3) Baseline + Mask (bilinear interpolation) 87.44 84.68 92.46 93.04 83.92 80.64 88.44 88.33
(4) Baseline + Mask + MP 89.95 88.50 94.47 94.78 88.50 85.59 92.00 92.62
(5) Baseline + Mask + MP + GTL 90.50 87.25 94.50 94.62 89.45 86.30 95.48 94.37
(6) Baseline + Mask + MP + LTL 93.00 91.14 95.25 95.00 93.00 89.24 96.00 95.01
(7) Baseline + Mask + MP + LTL + TriHard (Ours) 95.00 92.52 97.50 97.36 93.50 89.51 96.98 95.67

Datasets CUHKO3 (New protocol)

Labeled Detected
Models SQ SQ+RR SQ SQ+RR
Rank1 mAP Rank1 mAP Rank1 mAP Rank] mAP

(1) Baseline 38.43 35.71 48.14 49.91 39.43 35.39 4743 49.56
(2) Baseline + Mask (convolution) 50.00 45.48 62.00 62.40 47.21 41.03 56.29 55.82
(3) Baseline + Mask (bilinear interpolation) 49.29 44.76 61.21 62.08 48.36 42.24 58.29 57.56
(4) Baseline + Mask + MP 55.29 50.13 67.50 67.87 55.00 49.64 66.43 67.83
(5) Baseline + Mask + MP + GTL 57.36 50.78 67.21 67.45 58.29 54.01 71.50 71.51
(6) Baseline + Mask + MP + LTL 64.36 59.04 75.07 75.83 61.79 55.99 71.64 72.40
(7) Baseline + Mask + MP + LTL + TriHard (Ours) 66.29 59.89 75.64 76.30 62.71 56.61 71.79 72.32

TABLE 4. Comparison with other methods on Market-1501. The best

results are bolded.

SQ MQ
Methods % Rankl [ mAP % Rankl [ mAP %
MSCEF [50] (IEEE Access 2019) 82.90 - - -
CMEE [29] (j.neucom 2019) 84.70 65.80 - -
TriNet [25] (arXiv 2017) 8492 | 69.14 | 90.53 | 76.42
JLML [17] AJCAI 2017) 85.10 | 65.50 | 89.70 | 74.50
JLDE [9] (j.neucom 2018) 85.21 67.69 | 90.73 | 76.17
PESR [19] (IEEE Access 2020) 85.60 | 79.20 - -
AACN [48] (CVPR 2018) 8590 | 66.87 | 89.78 | 75.10
AOS [49] (CVPR 2018) 86.49 | 70.43 | 91.32 | 78.33
IC-TL [11] (j.neucom 2018) 86.60 | 70.10 - -
PSE [35] (CVPR 2018) 87.70 | 69.00 - -
STN [8] (IEEE Access 2019) 87.82 | 71.93 - -
NWAPI [41] (IEEE Access 2019) 89.78 | 71.69 - -
GLAD [13] (ACM MM 2017) 89.90 | 73.90 - -
MLEFN [51] (CVPR 2018) 90.00 | 74.30 | 92.30 | 82.40
JA-RelD [31] (IEEE Access 2019) 90.40 76.10 - -
PSE+ECN [35] (CVPR 2018) 90.40 | 80.50 - -
FD-GAN [52] (NIPS 2018) 90.50 | 77.70 - -
HA-CNN [53] (CVPR 2018) 91.20 | 7570 | 93.80 | 82.80
DuATM [24] (CVPR 2018) 9142 | 76.62 - -
PABR [33] (ECCV 2018) 91.70 | 79.60 | 94.00 | 85.20
PCB [18] (ECCV 2018) 92.30 | 77.40 - -
PAAN [10] (IEEE Access 2019) 9240 | 77.60 | 95.53 | 84.26
KPM+RSA+HG [54] (CVPR 2018) 92.70 | 82.50 - -
GCSL [28] (CVPR 2018) 93.50 | 81.60 - -
PCB+RPP [18] (ECCV 2018) 93.80 | 81.60 - -
MPM-LTL (OURS) 93.38 | 80.45 | 9540 | 86.47
Re-ranking [46] (CVPR 2017) 77.11 63.63 - -
ECN(RR) [35] (CVPR 2018) 82.30 | 71.10 - -
MGCAM(RR) [42] (CVPR 2018) 83.79 | 74.33 - -
MSCF(RR) [50] (IEEE Access 2019) 85.70 - - -
CMFE(RR) [29] (j.neucom 2019) 85.90 67.20 - -
TriNet(RR) [25] (arXiv 2017) 86.67 | 81.07 | 91.75 | 87.18
cTransNet(RR) [6] (IEEE Access 2020) 88.10 | 71.20 - -
PAN(RR) [36] (arViv 2017) 88.57 | 81.53 - -
AOS(RR) [49] (CVPR 2018) 88.66 | 83.30 | 92.51 88.60
AACN(RR) [48] (CVPR 2018) 88.69 | 82.96 | 92.16 | 87.32
PSE+ECN(RR) [35] (CVPR 2018) 90.30 84.00 - -
PABR(RR) [33] (ECCV 2018) 9340 | 89.90 | 9540 | 93.10
MPM-LTL (OURS, RR) 94.39 | 91.39 | 95.72 | 93.76

for local-level triplet loss using the proposed Mask-guided
TriHard algorithm. This is our proposed model.

As shown in Table 1, Table 2 and Table 3, inputs with mask
information are better than the original datasets, which shows
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TABLE 5. Comparison with other methods on CUHKO03. The best results
are bolded. The first two lines use the original training/testing
protocol [2].The last two lines use the new protocol [46].

Labeled Detected
Methods [ Rankl | mAP % Rankl | mAP {

MSCAN [16] (CVPR 2017) 74.21 - 67.99 -
Quadruplet [26] (CVPR 2017) - - 75.53 -
JLML [17] (IICAI 2017) 83.20 - 80.60 -
PartNet [32] (ICCV 2017) 85.40 - 81.60 -
GLAD [13] (ACM MM 2017) 85.00 - 82.20 -
JLDE [9] (j.neucom 2018) 86.60 - 85.30 -
PDC [14] (ICCV 2017) 88.70 - 78.29 -
IC-TL [11] (j.neucom 2018) - - 86.80 -
TriNet [25] (arXiv 2017) 89.63 - 87.58 -
CMEFE [29] (j.neucom 2019) - - 88.30 -
GCSL [28] (CVPR 2018) 90.20 - 88.80 -
MSCF [50] (IEEE Access 2019) 91.20 - - -
AACN [48] (CVPR 2018) 91.39 - 89.51 -
PABR [33] (ECCV 2018) 91.50 - 88.00 -

MPM-LTL (OURS) 95.00 | 92.52 | 93.50 | 89.51

Re-ranking [46] (CVPR 2017) 69.90 | 70.89 | 69.67 | 72.45
CMFE(RR) [29] (j.neucom 2019) - 89.20 -

MSCF(RR) [50] (IEEE Access 2019) | 93.50 - - -
KPM+RSA+HG [54] (CVPR 2018) 94.90 | 94.00 -
MPM-LTL (OURS, RR) 97.50 | 97.36 | 96.98 | 95.67

PAN [36] (arXiv 2017) 36.90 | 35.00 | 36.30 | 34.00
HA-CNN [53] (CVPR 2018) 4440 | 41.00 | 41.70 | 38.60
AOS [49] (CVPR 2018) - - 47.14 | 4333
CMEE [29] (j.neucom 2019) - - 48.20 -
MLEN [51] (CVPR 2018) 5470 | 49.20 | 52.80 | 47.80
JA-RelID [31] (IEEE Access 2019) - - 58.00 | 56.50
STN [8] (IEEE Access 2019) 61.20 | 54.80 | 60.20 | 54.60
PCB [18] (ECCV 2018) - - 61.30 | 54.20
PCB+RPP [18] (ECCV 2018) - - 63.70 | 57.50
MPM-LTL (OURS) 66.29 | 59.89 | 62.71 56.61
ECN(RR) [35] (CVPR 2018) - - 30.20 | 27.30
PAN(RR) [36] (arXiv 2017) 4390 | 45.80 | 41.90 | 43.80

MGCAM(RR) [42] (CVPR 2018) 50.14 | 50.21 | 46.71 | 46.87

CMFE(RR) [29] (j.neucom 2019) 49.30 -
AOS(RR) [49] (CVPR 2018) - - 54.56 | 56.09
MPM-LTL (OURS, RR) 75.64 | 7630 | 71.79 | 72.32

the effectiveness of the extracted mask. Models with mask
pooling achieve much better results than models without
it or models that use bilinear interpolation instead of mask
pooling, which reflects the benefits of the mask pooling.
Models with triplet architecture have better performance than
models with single branch. Local-level triplet loss is much

138199



IEEE Access

F. Zheng et al.: MPM-LTL for Person RelD

better than global-level triplet loss. And finally, Mask-guided
TriHard algorithm for hard triplets selection further improves
the performance of the model. In general, the Mask Pool-
ing and Local-level Triplet Loss significantly improve the
performance of the model, while the TriHard only slightly
improves the model, which is probably because the method
fails to select hard samples according to the specific postures.
Therefore, better hard triplets selection algorithm will be
considered in future work, which will make more use of
posture and pedestrian behaviors.
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FIGURE 9. The comparison of the proposed Mask-guided TriHard
algorithm, Batch-Hard [25] and random triplet selection method on
Market-1501. Best viewed in color.

In addition to the random selection method and our TriHard
method in the above ablation study (Table 1, 2, 3 (6) and (7)),
we use the same backbone to test out another hard sample
selection method, i.e., Batch Hard, and the comparison is
shown in Fig. 9. As can be seen in Fig. 9, the hard triplet
selection algorithm we design is more effective than Batch-
Hard [25] and the random triplet selection method because it
takes into account the feature distance between sample pairs
and the intersection of their mask.

D. COMPARISON WITH THE STATE-OF-THE-ART
METHODS

The above experiments have shown that each component of
the proposed model MPM-LTL is effective. To verify the
overall effect of our method, we compare it with the state-
of-the-art methods.

Comparisons on  Market-1501, CUHKO3 and
DukeMTMC-relD are exhibited in Table 4, Table 5 and
Table 6 respectively. In this paper, we report Rank-1 =
95.72% and mAP = 93.76% for Market-1501, Rank-1 =
97.50% and mAP = 97.36% for labeled CUHKO03, Rank-1 =
96.98% and mAP = 95.67% for detected CUHKO3 using
original protocol, Rank-1 = 75.64% and mAP = 76.30% for
labeled CUHKO3, Rank-1 = 71.79% and mAP = 72.32%
for detected CUHKO3 using new protocol, and Rank-1 =
87.12% and mAP = 82.69% for DukeMTMC-relD, setting
new state-of-the-art on the three datasets.

What needs to be emphasized is that MGCAM [42] and
NWAPI [41] also utilize mask to improve its performance.
But with novel mask pooling, Mask-guided triplet selec-
tion and local-level triplet loss, our MPM-LTL surpasses
MGCAM by 10.60% in Rank-1 and 17.06% in mAP on
Market-1501, by 25.50% in Rank-1 and 26.09% in mAP
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TABLE 6. Comparison with other methods on DukeMTMC-relD. The best
results are bolded.

[ Methods [ Rankl | mAP |
PAN [36] (arXiv 2017) 71.59 | 51.51
STN [8] (IEEE Access 2019) 76.55 | 61.02
CMEFE [29] (j.neucom 2019) 76.80 60.20
AACN [48] (CVPR 2018) 76.84 | 59.25
AOS [49] (CVPR 2018) 79.17 | 62.10
PESR [19] (IEEE Access 2020) 79.40 | 55.20
PSE [35] (CVPR 2018) 79.80 | 62.00
FD-GAN [52] (NIPS 2018) 80.00 | 64.50
HA-CNN [53] (CVPR 2018) 80.50 | 63.80
KPM+RSA+HG [54] (CVPR 2018) 80.70 | 66.40
JA-RelID [31] (IEEE Access 2019) 80.90 | 65.70
MLEFN [51] (CVPR 2018) 81.00 | 62.80
PCB [18] (ECCV 2018) 81.70 | 66.10
DuATM [24] (CVPR 2018) 81.82 | 64.58
NWAPI [41] (IEEE Access 2019) 81.87 | 65.31
PAAN [10] (IEEE Access 2019) 82.59 | 65.53
PCB+RPP [18] (ECCV 2018) 83.30 | 69.20
MPM-LTL (OURS) 8344 | 67.16
PAN(RR) [36] (arXiv 2017) 7594 | 66.74
CMFE(RR) [29] (j.neucom 2019) 78.20 | 61.30
cTransNet(RR) [6] (IEEE Access 2020) 81.10 62.80
AOS(RR) [49] (CVPR 2018) 84.11 78.19
PSE+ECN(RR) [35] (CVPR 2018) 85.20 | 79.80
MPM-LTL (OURS, RR) 87.12 | 82.69

on CUHKO3 labeled dataset (using new protocol), and by
25.08% in Rank-1 and 25.45 % in mAP on CUHKO3 detected
dataset (using new protocol), and surpasses NWAPI by 3.60%
in Rank-1 and 8.76% in mAP on Market-1501, and by 1.57%
in Rank-1 and 1.85% in mAP on DukeMTMC-relD.

V. CONCLUSION

In this paper, we propose a novel Mask-pooling Model
with Local-level Triplet Loss for Person RelD. By applying
mask pooling, we gradually remove the background features
through deep convolutional process and acquire the most
crucial person features. By employing local-level triplet loss,
the model fully utilize the local features and capture the
discriminative details. By exploiting the Mask-guided Tri-
Hard, we make use of outline information to select hard
positive image pairs and negative image pairs. We also pro-
vide the experiments to show that the proposed model gets
the state-of-the-art results on Market-1501, CUHKO3 and
DukeMTMC-reID using our MPM-LTL.
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