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ABSTRACT Historical data offers a wealth of knowledge to the users. However, often restrictivelymammoth
that the information cannot be fully extracted, synthesized, and analyzed efficiently for an application such
as the forecasting of variable generator outputs. Moreover, the accuracy of the prediction method is vital.
Therefore, a trade-off between accuracy and efficacy is required for the data-driven energy forecasting
method. It has been identified that the hybrid approach may outperform the individual technique in
minimizing the error while challenging to synthesize. A hybrid deep learning-based method is proposed
for the output prediction of the solar photovoltaic systems (i.e. proposed PV system) in Australia to obtain
the trade-off between accuracy and efficacy. The historical dataset from 1990-2013 in Australian locations
(e.g. North Queensland) are used to train the model. The model is developed using the combination of
multivariate long and short-term memory (LSTM) and convolutional neural network (CNN). The proposed
hybrid deep learning (LSTM-CNN) is compared with the existing neural network ensemble (NNE), random
forest, statistical analysis, and artificial neural network (ANN) based techniques to assess the performance.
The proposed model could be useful for generation planning and reserve estimation in power systems with
high penetration of solar photovoltaics (PVs) or other renewable energy sources (RESs).

INDEX TERMS Accuracy, convolutional neural network, data-driven model, deep learning, forecasting,
multivariate long and short-term memory, reliability, solar photovoltaic power plants.

I. ABBREVIATION
ANN Average Neural Network
APL Artificial Pooling Layers
ARENA Australian Renewable Energy Agency
ASEFS Australian Solar Energy Forecasting System
B Bias
BNL Batch Normalization Layer
CNN Convolutional Neural Network
DL Dropout Layer
DNI Direct Normal Irradiance
DHI Diffuse Horizontal Irradiance
GHI Global Horizontal Irradiance
IW Input Weights
LSTM Long and Short-Term Memory
NN Neural Network
NNE Neural Network Ensemble
PSO Particle Swarm Optimization

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravindra Singh.

RNN Recurrent Neural Network
ReLU Rectified Linear Unit
RW Recurrent Weights
W Weights

II. INTRODUCTION
The penetrations of solar photovoltaic (PV) are increasing
in several countries including Australia in multiple straight
years. Significant PVs are either connected to medium or
low voltage networks in Australia. The growth of both large
and small-scale PV penetrations has economic and environ-
mental benefits. However, it poses a range of management
and control issues for grid operators due to the variabil-
ity of PV outputs. The power system has become increas-
ingly volatile and less predictable with PV systems [1].
The PV systems are weather dependent, therefore, hard to
predict. Accuracy of the prediction is critically important for
secure operation of power systems with high penetrations of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 136223

https://orcid.org/0000-0002-3016-1695
https://orcid.org/0000-0001-8314-0225
https://orcid.org/0000-0003-3133-9333


B. Ray et al.: New Data Driven Long-Term Solar Yield Analysis Model of Photovoltaic Power Plants

PV systems. It enables the system operator to deal with output
power variability and planning engineers to plan and design
the power system for future [2]. There are various methods
for such forecasting in different time horizons, e.g. short,
medium, and long-term. The physical, persistence, statistical,
and combined approaches may be used to estimate the out-
put of variable generations [3]. The meteorological data and
energy forecasting are the two significant components related
to the forecasting of the PV system [4]. Many procedures
were proposed in the literature to forecast meteorological
information such as wind speed, cloud cover, temperature,
and irradiance [5], [6]. Furthermore, physical, meteorological
data-driven, and astronomical driven are the common meth-
ods reported in the literature to forecast the output power
and energy of the PV system. Different parameters such as
power rating, azimuth angle, module type, tilt angle, wind
speed are used in the physical model for energy forecasting in
PV systems [7]. The historical weather data and the previous
measurements of PV system outputs are used in the mete-
orological data-driven method for PV forecasting [8]. The
statistical, persistence, auto-regression are the key methods
used for this purpose [8]. Recently, machine learning tech-
niques have widely been applied in the meteorological data-
driven approach to forecast PV output [9]. In the astronomical
and meteorological data-driven approach, the physical factor
has been used with the meteorological data [9]. In a data-
driven traditional statistical method, the measured historical
PV data in the past time is used in forecast [10]. The auto-
regression and spatial-temporal are the other two widely used
data-drivenmethods for such application [11], [12]. However,
the physical information of PV is often limited or ignored
in these methods [10]–[12]. Although different techniques
have already recognized for forecasting PV output, there is
still an opportunity to improve the reliability and accuracy
regarding the long-term forecasting of the PV system to be
used in power system planning. A good number of works
have been attempted to estimate the short-term solar yield
using historical data. Most of the forecasting techniques
applied in minutes into day spatial resolution for dispatching
and load following, unit commitment, distributed generation
operation, building energy management, and transmission
scheduling. However, very few studies have investigated the
data-driven long-term estimation of solar yield. In this paper,
a data-driven model is proposed for reliable estimation of
solar yield from historical data.

Three main forecasting algorithms categories, i.e.
statistical analysis [13], machine learning [14], and
hybrid [15], [16], were reported. The Australian Renewable
Energy Agency (ARENA) has reported the Australian Solar
Energy Forecasting System (ASEFS), which used the statisti-
cal models like decision tree, random forest, and persistence
to forecast the hour ahead prediction of solar energy in
Australia. The model has a root mean squire error (RMSE)
of 15.80. Hence, there is still a prospect to improve in
the forecasting approaches. Furthermore, several machine
learning techniques were attempted to forecast minutes,

hours, and day-ahead energy outputs of large-scale PV sys-
tems [7], [8], [14], and [17]. These were mainly used various
neural networks (NN) based forecasting techniques with
the short length of dataset. Very few studies have exhibited
good forecasting performance as reported in [7], which has
a normalized root-mean-square deviation or error (nRMSE)
of 0.07356. However, the proposed algorithm in [7] are not
suitable in generalized forecasting due to the underlying
weather classification and certain assumptions applicable
to the specific region. Furthermore, the hybrid techniques
were attempted to combine the algorithms for better per-
formance as stated in [7]. The proposed method combines
the particle swarm optimization (PSO) with the variation
of NN to achieve better forecasting performance. However,
the performance of the proposed algorithm is almost similar
to other NN based algorithms for forecasting. Recently, the
recurrent neural network (RNN) and deep learning [16]
based forecasting have received a great deal of attention
due to better prediction performance compared to traditional
techniques i.e. statistical, PSO, NN. But, most of the deep
learning-based methods are used for short-term forecasting
with the small length of data.

In this paper, a novel hybrid deep learning method is
proposed. A number of studies have individually used long
and short-term memory (LSTM) and convolutional neural
network (CNN) individually in various application including
forecasting of PV output [18]. This paper proposed a method
that combines LSTM and CNN to obtain a hybrid algorithm
for long-term forecasting of PV output. The proposed algo-
rithm is compared with four baseline modelling methods
and demonstrates the better performance compared to the
other methods. The rest of the paper is organized as follows:
Section III briefly describes the key techniques considered
in this paper. The methodology is explained in Section IV.
Results and discussions are presented in Section V. The
conclusions and the contributions of the paper are given
in Section VI.

III. OVERVIEW
The long-term forecasting of solar PV can be used for the
planning of power system reserve with high penetration
of PV systems. The goal of this research is to find the
PV power and energy in the long-term time horizon – a
couple of years ahead. The historic Typical Meteorological
Year (TMY) dataset used for this study. The TMY dataset are
obtained from Energy Partners’ [19]. The TMY data is used
in the System Advisor Model (SAM) to prepare the required
weather data and PV output data for the predictionmodel. The
blending of two deep learning methods has been considered.
Fig. 1. shows an overview of the proposed method. The key
techniques used in this work are briefly described next in this
section.

A. RECURRENT NEURAL NETWORK (RNN)
The recurrent neural networks (RNNs) consist of recurrent
loops of networks that allow persistent information flow [16].

136224 VOLUME 8, 2020



B. Ray et al.: New Data Driven Long-Term Solar Yield Analysis Model of Photovoltaic Power Plants

FIGURE 1. Overview of the proposed method.

These loops allow the information to flow concurrently from
one step of the network to the next using the chain of
events within networks which are intimately related to the
sequences and lists. The concept of the recurrent neural
network is the base of deep learning techniques/algorithms
which are inspired by the connection of neurons in human
brain [16], [17]. It uses recurrent learning to learn from large
and complex dataset. Deep learning is used to solve complex
problems that require input from diverse, unstructured, and
inter-connected dataset. In this work, two of the most pop-
ular deep learning techniques such as long and short-term
memory (LSTM) and convolutional neural network (CNN)
are utilized. The details about LTSM and CNN are given later
in this paper.

B. LONG- AND SHORT-TERM MEMORY (LSTM)
The LSTM is a deep learning technique explicitly designed
to reduce long lasting dependency problem using a chain like
structure [20]. The recuring model of LSTM uses concurrent
cell update structure. The initial update starts right after the
first output of initial LSTM block which uses the initial state
of the network and the first-time step of the sequence to
compute the output. At time step t , the block uses the current
state (ct−1,yt−1) to update cell state ct , and the following
time step of the network to compute the output. Each layer
has two states known as the cell and the hidden state (also
known as the output state). The output of the LSTM layer
at time step t is contained in the hidden state of the same
time step [21]. The information erudite from previous steps
is confined in the cell state of the current step. The layer adds
or removes information from the cell state controlled by gates
in each time step. Fig. 2 illustrates a general LSTM block
architecture.

FIGURE 2. LSTM general architecture.

From Fig. 2, it is evident that there are four control gates
in LSTM: forget (f ), cell candidate (g), input (i), and output
(o) as illustrated in Fig. 2. When c (t − 1) points enter to
the LSTM unit from LSTM block, it first passed through the
forget gate and drop some memory. The new memories are
added by update gate. The output is filtered through the output
gate. Working mechanisms can be mathematically expressed
as in (1) - (4) for timestamp t for each control gate.

it = σg (Wixt + Riyt−1 + bi) (1)

ft = σg
(
Wf xt + Rf yt−1 + bf

)
(2)

gt = σg
(
Wgxt + Rgyt−1 + bg

)
(3)

Ot = σg (Woxt + Rtyt−1 + bo) (4)

In (1)-(4), σg denotes the gate activation function. The sig-
moid function given by σ (x) = (1+ e−x)−1 is used to com-
pute the gate activation function in MATLAB [22]. There are
three learnable weights of an LSTM layer: input weights W ,
recurrent weights R, and bias b. The matrices of W , R, and b
are concatenated as in (5).

W =


Wi
Wf
Wg
Wo

 , R =


Ri
Rf
Rg
Ro

 , b =

bi
bf
bg
bo

 (5)

where i, f , g, and o represent the input gate, forget gate, cell
candidate, and output gate, respectively.
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The cell and hidden state at timestamp t are expressed
by (6) and (7), respectively.

ct = ft � ct−1 + it � gt (6)

ht = ot � σc(ct ) (7)

where � denotes the Hadamard product (element-wise mul-
tiplication of vectors) and σc denotes the state activation
function. The state activation function is compared by using
the hyperbolic tangent function (tanh) and lstmLayer function
in MATLAB.

C. CONVOLUTIONAL NEURAL NETWORK (CNN)
The Convolutional Neural Network (CNN) is one of the most
popular deep learning algorithms [21]. It has the advantage
of extracting data features effectively. Therefore, the CNN
is used widely in image recognition and classification. The
CNN networks are like a visual cortex, with arrangements
of simple and complex cells [18]. Similar to an RNN neural
network, CNN is composed of three main components: the
input layer, output layer, and hidden layers in between the
input and output layers [23]. A general CNN structure is
illustrated in Fig. 3. One or multiple convolutional layers may
be involved in CNN as given in Fig. 3. The CNN used in this
paper has four 2-D convolutional layers, BNL, ReLU layer,
and APL. These are followed by one DL, fully connected
layer, and regression output layer, respectively.

FIGURE 3. Generic architecture of CNN.

The influential input parameters of m× m× n are used in
CNN (wherem×m determine size of each set, and n specifies
the total number of dataset). The inputs are passed to the
convolutional 2D network consists of neurons that connect
to sub-regions of input dataset or the output of the previous
layer. The convolutional 2D network uses the set of weights
called filter (k) that convolved the input. This has extracted
the important features of the input dataset for accurate output
prediction. Then, the batch normalization is used to normalize
inputs (mi) by calculating the mean (µB) , and variance (σ 2

B)
over a mini-batch and each input channel. The normalized
activations can be obtained as in (8).

x̂i =
mi − µB√
σ 2
B + ε

(8)

In (8), ε is the property Epsilon that improves the numerical
stability when the mini-batch variance is very small. The
batch normalization layers are followed by ReLU layer which
acts as a threshold operation to the input with the following

relationship as given in (9).

f (x) =

{
m, m ≥ 0
0, m < 0

(9)

The ReLU layer is followed by an APL, which performed
down sampling. The input is divided into rectangular pooling
regions to compute the average values in that region. If the
input (I ) to the pooling layer is n× n, and the pooling region
size (PS) is h × h, then, the pooling layer down-sampled
the regions by h [23]. The output (O) of a pooling layer for
overlapping regions can be expressed as in (10).

O = (I − PS + 2 ∗ Padding)/(Stride+ 1) (10)

In the final stage, one DL, fully connected layer, and regres-
sion layer work together to prepare the output of the CNN
network. The dropout layer randomly sets the input ele-
ments to zero given by the dropout mask rand(size(m)) <
Probability (where m is the layer input). The fully connected
layer multiplies the input by a weight matrix W and adds
the bias vector b. In this case, the fully connected layer acts
independently on each time step with the sequential inputs.
At time step t , the corresponding entry of Z is WYt + b.
The loss function of the regression layer is the half-mean-
squared-error for the sequence-to-one regression networks of
the predicted responses as in (11). This can be computed by
a regression layer as given in (11).

Loss =
1
2

∑n

i=1
(ti − yi)2 (11)

where n is the number of responses, ti is the target output, and
Yi is the network’s prediction for response i.

IV. METHODOLOGY
The step-by-step methodology used in this paper is given in
Fig. 4. The monthly dataset from 1990 to 2013 with one-
hour time interval have been used here for the forecasting.
Solar dataset for four locations in Queensland, e.g. Cairns,
Gladstone, Rockhampton, and Townsville are considered to
validate the proposed method.
Step 1: Prepare the initial dataset-The historic Typical

Meteorological Year (TMY) dataset from 1990-2013 with
.tm2 file extension are used to generate the weather data for
the proposed algorithm. The System Advisor Model (SAM)
is used to generate the energy output of the PV system [24].
The SAM is developed by the National Renewable Energy
Laboratory (NREL) to estimate the energy output of renew-
able energy systems including PV generators by the physical
model of the system. The PV system in SAM has been
tuned using the manufacturer data of PV cell, inverters,
AC lines, derating factors, and others. Using the specification
of the physical model of PV plant and relevant TMY dataset,
the SAM presents influential weather parameters like global
horizontal irradiance (GHI), direct normal irradiance (DNI),
diffuse horizontal irradiance (DHI), wet bulb, and dew point
temperature in hourly and monthly duration. Fig. 5 illustrates
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FIGURE 4. Process flow.

the output of a PV plant estimated by SAM for a represen-
tative year in Cairns. The obtained output can be exported
to a.csv format to use this as an input to the deep learning
algorithm. The hourly and monthly energy outputs of the PV
plants are also calculated using TMY and physical model
specification in the SAM.
Step 2: Input selection-Initially the generated weather

data were analyzed using the correlation coefficient to find
positive and negative Correlation Index (CI) for parameters
associated with energy production. The CI values in this
paper are calculated based on the Pearson product-moment
correlation coefficient as given in (12) [25]:

CI =

∑
(x − X̄ )(y− Ȳ )√∑
(x − X̄ )(y− Ȳ )

(12)

The influential parameters are given in Table 1. As pre-
sented in Table 1, the five major influential input values with
CI > ±0.5 are employed. As can be seen from Table 1,
GHI and DNI are positively correlated while DHI, wet bulb,

TABLE 1. Influential weather parameters.

FIGURE 5. One year meteorological output.

and dew point temperature are negatively correlated with
energy the production.
Step 3: In this step, the dataset are prepared for the training

and testing of the hybrid deep learning structure. The LSTM
part of the hybrid deep learning technique has been used to
predict inputs in tyears (this will be used in Step 4 to calculate
PV output for tnyears using CNN part of the hybrid structure).
The brief overview of dataset preparation and hybrid deep
learning is given next.

A. PREPARATION OF DATASET
From the available solar data, 1990–2014 (25 years), solar
data from 1990 – 2013 are used for training and testing. Solar
data of 2013 and 2014 are used for the validation. Fig. 7 shows
the process flows which used to prepare dataset for training
and testing.
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FIGURE 6. Influential input parameters.

B. DATASET STANDARDIZATION
The standardization process is used to prepare the dataset to
better fit and keep the deviation minimum. For the dataset
matrixMij, the mean and standard deviation are estimated to
get standardizing dataset of S.

µ =

∫ n

ij=1
Mij (13)

σ =

√∑n
ij=1

(
Mij − M̄

)
n− 1

(14)

δ =

(
Mij − µ

)
σ

(15)

In (13)-(15), Mij is the dataset matrix, S is the standardized
dataset, µ is the mean, and σ is the standard deviation of the
dataset.

C. PARTITION OF TRAINING AND TEST DATA
The 90% of the available data are used for training, while,
the other 10% are used for testing. The training data size can
be estimated as in (16):

T = 0.9× sin(δ) (16)

D. PREPARE PREDICTORS AND RESPONSES
The training sequences are shifted by n time steps to forecast
the value in future time. This has been done to make sure
that the proposedmethod could learn to predict ahead of input
sequences. The predictor and responses for the proposed
algorithm can be obtained as in (17) and (18):

Xtrain = δ(1 : T− n)) (17)

Ytrain = δ(2 : T) (18)

E. HYBRID DEEP LEARNING ARCHITECTURE
The hybrid deep learning (LSTM-CNN) architecture has
been designed using LSTM and CNN deep learning tech-
niques. Due to the weather variability, it is difficult to predict
PV output accurately in longer time horizon. The CNN

FIGURE 7. Steps to prepare data for machine learning.

has intelligently adapting mechanism to understand complex
relationships of properties in variable nature which moti-
vated us to choose CNN over other deep learning methods
to predict yearly PV output. As illustrated in Fig. 8, a deep
learning network using two LSTM layers denoted as LSTM1
and LSTM1 with 500 and 1000 hidden layers are initially
considered. These LSTM layers then combined with input
data Iyears which is 5 by 12 matrix as presented in (19).

Iyears =

 x11 − x1i
− − −

x51 − x5i

i=1...12
years

(19)

The LSTM network is designed with fully connected layer
and regression output layer to getOnyears outputs. The LSTM
network was set with training option properties as given
in Table 2.

The LSTM network is designed to predict input values in
future time of nyears where (nyears = years + n). The value
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FIGURE 8. Hybrid deep learning structure for long term PV forecasting.

TABLE 2. LSTM training values.

of n can be replaced by any number of years. The output
Onyears of LSTM network is 5 by 12 matrix which gives all
influential input values of n years as presented in (20).

O(5×12×1)
nyears =

 x11 − x1n
− − −

xi1 − xin

i=1..5
nyears

(20)

Step 4: The output from LSTM network used as the inputs
into the CNN network as presented in Fig. 8. The CNN net-
work is designed with three 2D CNN deep learning networks
followed by equal numbers of BNL, ReLU layers, and APL.
The CNN network also added with DL to handle overfitting.
Finally, it has fully connected layers of 12 outputs for each
year which is followed by the regression layer. The network
was set with training option properties as given in Table 3.
The CNN network is then trained using Iyears where Iyears=
24 from 1990 to 2013. It was then used to predict output
energy Enyears for nyears time as given in (21) (where value

TABLE 3. CNN training values.

of nLSTM = nCNN ).

Enyears =
[
x11 − xin

]i=1...12
nyears (21)

V. RESULTS AND DISCUSSIONS
A. PREDICTION RESULTS
The forecasted performance is tested in North Queens-
land locations, e.g. Cairns, Gladstone, Rockhampton, and
Townsville. However, due to the brevity, only the results
related to Cairns are presented in this section. Historical
meteorological data from 1990 to 2013 in Cairns has been
used for the training of the model. The downloaded data files
have some low quality, missing data, and format compliance
to SAM and the proposed prediction model. To resolve these
problems, data cleaning has been carried out based on the
physical model. The SAM has also been used for data clean-
ing in this paper. For example, if the PV output obtained more
than the capacity value for very low irradiance or output of
PV at night, flagged as bad data. Sometimes the PV output
could be obtained due to missing data. This is also flagged
as bad data. Similar to [7], 5271 hours out of 5461 daytime
are considered as good data in this work. The bad data are
excluded from the training of the proposed method. Often the
missing data have been filled based on the previous hour of
measurements. The SAM model is later used to compare the
forecast model with the baseline PV model.

After processing the monthly weather input parameters
and energy output estimated by step 1 and step 2 given in
Section IV. The historical dataset of 24 years with a list
of input values are established. These have been processed
later to pepare a input matrix Iyears=24 as in (18) for LSTM
(see step 3). The proposed LSTM algorithm predict output
matix Onyears=6 for 6 years as illustrated in Fig. 9.

In Fig. 9, GHIs from 2014 to 2020 are presented. The
predicted value of GHIs is comparedwith the actualmeasured
values to validate the performance of the proposed method.
From the results, it is evident that the forecasted values
are well-matched with the actual measurements. The rest of
the GHI values from 2015 to 2020 are predicted using the
proposed hybrid algorithm. These predicted values then used
with other predicted input Onyears = 6 as given in (19) to
get the energy outputs from 2015 to 2020 in Cairns (Latitude
−16.8833 and longitude 145.75).
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FIGURE 9. Yearly forecasted GHI in Cairns.

Fig. 10 shows the actual and predicted energy output for
the PV system in Cairns for 2014 to validate the accuracy
of the model. The physical model of the PV system and the
actual meteorological data are used to get the actual value,

FIGURE 10. Monthly energy prediction at Cairns in 2014.

whereas, the predicted meteorological data have been used
to get the PV output for 2014 using the physical model
of PV. From the results given in Fig. 10, it is evident that
the predicted energy output almost accurately matched with
the actual energy output of 2014 with errors less than 3.3.
It should be worth noting that energy prediction in May and
September showed the highest positive errors, while August
has the highest negative error. From the results in Fig. 10, it is
evident that the forecasted energy value closely matched with
the actual values of energy in 2014. Thereby, it is evident that
the proposed method is able to forecast the long-term energy
from PV systems.

The proposed method is further used to estimate the energy
output of a PV system at Cairns. Yearly predicted energy
outputs are given in Fig. 11 for 2015 to 2020. From the yearly
predicted results, it is evident that the energy production
would be high from September to January and low from
February to August – which are the general trends for the
PV systems in North Queensland.

FIGURE 11. Yearly predicted energy value.

B. COMPARATIVE ANALYSIS
There are no standard sets of performance comparison param-
eters to be used in the existing forecasting techniques. Hence,
it is important to cover a reasonable range of performance
parameters for benchmarking the proposed method. Four
well-known forecasting performance parameters such as
RMSE, nRMSE, mean absolute percent error (MAPE), and
Rvalue are used to benchmark the proposed algorithm.

The RMSE is more sensitive to forecast errors [14], [26].
Hence, it is suitable where the small errors are more toler-
able than the larger ones. The RMSE can be expressed as
in (22) [14]:

RMSE =

√
1
N
×

∫ N

i=1

(
PV αi − PV

f
i

)2
(22)
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In (22), PV a
i is actual PV output power, PV f

i is forecasted
power, and N the number of observations. The RMSE error
is nomalized with respect to maximum andminimum value of
PV f

i to get nRMSE as given in (23). It should be noted that the
lower the RMSE and nRMSE values, better the performance
of the algorithm for forecasting.

NRMSE =
RMSE

PV f
max − PV

f
min

(23)

The MAPE is widely used index to determine the fore-
cast accuracy with respect of scale-independency and inter-
pretability. The MAPE and error variance can be calculated
as in (24) [17], [26], and [27]:

MAPE (%) =
1
FH

∫ FH

t=1

PV αi − PV
f
i

PV ρt
(24)

where FH is the forecast horizon and PV p
t is the peak output

power at time t . A higherMAPE value means lower accuracy
of forecasting algorithms whereas lower MAPE value means
high accuracy of the forecasting algorithms.

The Rvalue is the correlation between the predicted values
and the observed values [27]–[29]. It gives an idea about
the model generalization. An Rvalue close to one means,
the forecasting values are highly close to the fitted regression
line and it can be used in more generalized cases. The Rvalue
can be calculated as in (25) [27]–[29]:

Rvalue =

1−

∑(
PV αi − PV

f
i

)2
∑(

PV f
i

)2
 (25)

Table 4 shows the baseline comparison of the proposed
method against the four well-establishedmethods given in the
literature to forecast the long-term energy from the PV sys-
tem. All four benchmarking performance indices mentioned
earlier are used for the comparison. From the results given
in Table 4, it is evident that the proposed method has the
RMSE of 3.89 which is very low compared to the other meth-
ods. The nRMSE value for the proposed method is 0.0529,
considerably low with compared to others. However, this
can be further improved with training. The given algorithm
outperforms all other existing algorithms in MAPE which
is 2.83 for the studied location. Furthermore, the Rvalue of
the proposed method is 0.9. This indicates that the proposed
method is very close to the fitted regression line. Moreover,
it is worth noting that the Rvalue of the proposed method is
higher with compared to statistical analysis. However, Rvalue
of the given method is slightly low with compared to random
forest and NNE. From the comparative results, it is evident
that the proposed forecasting algorithm is more accurate for
forecasting the long-term energy output from PV system.

Fig. 12 illustrated the values of RMSE and MAPE for all
four studied locations in the North Queensland, e.g. Cairns,
Gladstone, Rockhampton, and Townsville for the proposed
method. From the results given in Fig. 12, it is evident that
the RMSE values are lower than 15 in all studied locations

TABLE 4. Benchmarking of the proposed algorithm–carins.

FIGURE 12. Comparative results of various locations in North
Queensland: (a) RMSE; (B) MAPE.

for the givenmethod.Moreover, the given algorithm has good
forecast quality for various locations with RMSE ranging
between 3.89 – 11.87. It should be worth to note that the
MAPE values of the studied locations are ranging between
2.5 –7.8, which makes the proposed method more reliable in
estimating long-term energy output of PV.

Further analyses are conducted to evaluate the reliability
of the proposed method for different datasets and layers for
LSTM. The RSME, MAPE, nRMSE, and Rvalue are used as
the indices to measure the reliability of the proposed method.
Table 6 gives the performance of the proposed model under
different lengths of training data (i.e. 5 years, 10 years, and
25 years).

Table 7 shows the performance of the proposed method
under different LSTM layers and standard deviation of
indices in relation to result presented in Table 4. From the
results given in Table 6 and 7, it is evident that the mean
standard deviations of all the indices are lower in relation to
actual values presented in Table 4. For example, the average
RMSE standard deviations varies in worst case scenarios
is ±1.2 only whereas ±0.2 best case scenarios. Therefore,
the performance indices for the given method are lower under
various factors affecting the forecasting performance.
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TABLE 5. Rvalue of various locations.

TABLE 6. Performance of the proposed method for various length of
training data.

TABLE 7. Performance of the proposed method for various layer of LSTM.

From the results given in Table 6, it should be worth noting
that the Rvalue reduced significantly for the smaller training
dataset. Moreover, the MAPE value for the lower training
datasets is also high. However, the average changes are low
which suggests that the proposed method is reliable.

VI. CONCLUSION
This paper proposed a new and reliable method forforecast-
ing the long-term output of solar PV. The proposed method
utilized the multivariate long and short-term memory and
convolutional neural network to develop the technique for
forecasting the PV output. This paper utilized the twenty-four
years of historical data from various locations in North
Queensland in Australia to validate the performance of the
developedmodel. Additionalmeteorological parameters have
been used in the proposed algorithm based on their positive
and negative influences on the output of the PV system.
From the given results and comparisons, it is evident that
the proposed method may accurately predict the long-term
output of the PV system for planning studies with RMSE
lower than 15 for all studied locations. Moreover, the pro-
posed method is robust compared to some well-established
methods such as ANN, Random Forest, NNE, and others. The
proposed algorithm was run in MATLAB R2018b (9.5) with
the computational cost for training and prediction of 203.63 s.
Therefore, it could be considered as a low computation cost
algorithm compared to others.

In this study, several assumptions had to make for PV
output forecasting. Therefore, further sensitivity study around
this domain would be performed in the future. This work

will be further extended to forecast the long-term generation
reserve in power systems with high penetration of wind and
solar in Australia.
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