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ABSTRACT The prevalence of cloud computing greatly promotes the traditional computing paradigm.With
the assistance of a cloud, the light-weight device can achieve computation-intensive tasks which may not be
done on its own. While, computing the Hermite Normal Form (HNF), which is a standard form of integer
matrices, not only is inescapable when solving the linear system of equations over integers, but also has lots
of applications in many other fields, such as integer programming and lattice-based cryptography. However,
the fast blowup phenomenon of intermediate numbers makes the HNF computation time-consuming. In this
paper, we initialize the study of the cloud-assisted HNF computation and design an efficient outsourcing
algorithm that enables the resource-constrained client to securely delegate this heavy computation to a
resource-abundant yet maybe untrusted cloud server. The main idea involved in our algorithm is a novel
matrix encryption method based on random permutation, unimodular matrix transformation and triangular
matrix transformation, which makes our algorithm protect the client’s input/output information with the
one-way notion and enable the client to detect the cloud’s deception with the optimal probability 1. Besides,
rigorous theoretical analysis and extensive experimental evaluation validate the efficiency and the practical
performance of our design, and the substantial client-side savings are remarkable as the problem size
increases.

INDEX TERMS Cloud computing, computation outsourcing, Hermite normal form, matrix transformation,
privacy-preserving.

I. INTRODUCTION
The Hermite Normal Form (HNF), as a canonical form for
integer matrices, has important applications in various com-
putational problems in computer science. For example, in
linear algebra just as reduced echelon form can be used to
find solution vectors of a linear system over reals, the HNF is
utilized to solve a linear system over integers [40]. In inte-
ger programming, the HNF has been employed to design
an effective algorithm of finding the extreme points [19],
and in lattice-based cryptography, the HNF has been used
to improve the efficiency and security of lattice-based
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cryptosystems [32], [47]. Therefore, exploring the efficient
algorithm of computing HNF is of great importance in the
real world.

Given a full column rank matrix A ∈ Zm×n, the simplest
algorithm of computing its HNF is the integer Gaussian elim-
ination which triangularizes the matrix A with consecutive
elementary matrices over integers. Intuitively, this algorithm
only requires polynomial many arithmetic operations, and
thus it could be expected to behave reasonably well concern-
ing the size of the integers involved. Unfortunately, this is
far from the practical case. Since the intermediate numbers
explosion phenomenon occurs, the time overhead of this algo-
rithm is exponential. For instance, Hafner and McCurley [17]
give an example of a 20 × 20 integer matrix with entries
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between 0 and 10, and the numbers that are encountered
during the execution of the algorithm can become as large as
10500 or even 105011. Subsequently, many researchers have
tried to accelerate the HNF algorithm. The first polynomial-
time algorithm for a square matrix A is given by Kannan
and Bachem [21] with a time complexity of Õ(n12 log2 ‖A‖),
where ‖A‖ = max1≤i,j≤n |aij| is the largest absolute value
of entries of A. Later, many improved algorithms with better
complexity bounds are successively presented [8], [11], [20],
[29], [33] and the currently best known algorithm is intro-
duced by Storjohann and Labahn [44] with a provable asymp-
totic complexity of Õ(mnθ log ‖A‖), whereO(nθ ) denotes the
upper bound for the number of arithmetic operations required
tomultiply two n×n integer matrices. It seems to be a feasible
algorithm in practice. However, the integer matrices emerged
in modern computer and engineering community, such as in
machine learning, data mining, image processing, etc. usually
involve hundreds of thousands of entries. Meanwhile, with
the prevalence of 5G technology, more and more lightweight
devices are connected to the internet. It is unrealistic for
these resource-constrained entities to handle such large-scale
matrices by themselves.

Cloud, as an unprecedented computing infrastructure, can
provide ubiquitous network access to technology services,
such as computing power, storage space, and databases, on a
pay-as-you-go principle. As it brings the well-known benefits
like low management cost, agile deployment, and elastic
resource provision, outsourcing various computations to the
cloud is intriguing for resource-constrained entities. How-
ever, every coin has two sides. The remote physical isolation
between the resource-constrained client (outsourcer) and the
cloud server makes this promising computing paradigm have
to face some new security challenges [38], [49]. On the client
side, the outsourcing computational task may contain sensi-
tive information, such as personal secret keys, confidential
image information, private property data, etc. Exposing this
critical information could lead to the client’s massive loss of
life and asset. On the cloud side, due to internal hardware and
software errors or external rantankerous economic incentives,
the server may be lazy, curious, or even malicious, and thus
the cloud could deviate the specified computation task, grab
client’s sensitive information or even deliberately forge mali-
cious results returned to the client. Therefore, a sound and
complete outsourcing computing algorithm should achieve
the following security and performance guarantees: (1) Cor-
rectness. Any cloud server, as long as it executes the algo-
rithm honestly, must be able to produce a result that can
be successfully verified and decrypted by the client. (2)
Input/output privacy. The cloud server cannot obtain sensitive
information of the client’s private data when executing the
algorithm. (3) Verifiability. The client can verify whether
the cloud server honestly executes the algorithm with a non-
negligible probability. (4) Efficiency. The outsourcing algo-
rithm must enable the client to achieve decent computational
savings compared with that of performing the task without
outsourcing.

A. RELATED WORK
Due to the above-mentioned tremendous benefits of cloud
computing, designing secure and efficient outsourcing algo-
rithms for various of computation-extensive tasks, such as
large-scale linear algebraic operations [3], [14], modular
exponentiations and modular inverse operations in cryptogra-
phy [18], [27], [45], [56], large-scale graph operations [54],
heavy computations in artificial intelligence (AI) and internet
of things (IoT) [28], [51], [52], has become a popular topic.
Out of which, the outsourcing of matrix-related operations
is closely related with our work. For other computation out-
sourcing, one can refer to two comprehensive surveys pre-
sented by Shan et al. [42] and Yang et al. [50].

1) MMC,MIC,MDC-OUTSOURCING
As three most fundamental matrix operations in linear alge-
bra, matrix multiplication computation (MMC), matrix
inversion computation (MIC) and matrix determinant com-
putation (MDC) are time-consuming when the size of the
involved matrices is large, which is common in the era of
big data. Atallah et al. [2] first investigated the MMC
and MIC outsourcing and put forward privacy-preserving
matrix disguise techniques based on random permutation.
However, their algorithms are designed under the honest-
but-curious single-server model and don’t consider the ver-
ifiability. Benjamin and Atallah [3] initialized the study of
verifiable MMC outsourcing strategy and, based on expen-
sive homomorphic encryption schemes, they realized the
secure outsourcing of MMC under the untrusted non-
colluding two-server model. Later, Atallah and Frikken [1]
improved the above-mentioned schemes and, by employing
Shamir’s secret sharing technique [41], designed a secure
MMC outsourcing protocol under the malicious single-
server model. Nevertheless, the redundancy check based
on noise matrices makes their protocol suffer from poor
efficiency. Subsequently, Mohassel [34] designed secure out-
sourcing algorithms forMMC andMIC by invoking exist-
ing block-box homomorphic encryption (HE) schemes [6],
[16], [36]. Despite Mohassel’s algorithm reduces client-side
time cost to O(n2) in theory, it is also inefficient in practice
due to the time-consuming HE operations. To overcome such
expensive HE operations, Lei et al. [24]–[26] successively
proposed three efficient outsourcing schemes for MMC,
MIC and MDC. The key technique idea underlying their
schemes is a concise matrix encryption/decryption method
based on special sparse matrices. To amend the potential
security issues incurred by simple sparse matrix transforma-
tions, recently, Zhang et al. [53] established a novel matrix
encryption method based on consecutive sparse and uni-
modular matrix transformations, and applied this method to
securely outsourcing MMC, MIC and MDC over finite
fields.

2) LSLE-OUTSOURCING
Solving large-scale linear system of equations (LSLE)
is another ubiquitous linear algebraic operation in the
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computer science and engineering community. By utilizing
a similar random permutation technique as employed in
MMC,MDC-outsourcing, Atallah et al. [2] designed the
first efficientLSLE-outsourcing algorithm under the honest-
but-curious single-server model, and thus the algorithm can
not assure the result verification. Also, the simple permu-
tation may leak the statistic information of entries in the
coefficient matrix. Later, Wang et al. [48] revisited this
problem and, based on the iterative method of solvingLSLE ,
proposed a privacy-preserving, cheating-immune outsourc-
ing scheme. However, their scheme also suffers from low
efficiency in practice due to the involved expensive HE
scheme [36] and the multi-round interactions between the
client and the server. Afterward, Chen et al. [7] successively
adopted efficient random sparse-matrix transformations to
outsourcing LSLE problem, which achieves high efficiency
and optimal verifiability probability 1. However, just as
mentioned in their paper, the simple sparse-matrix based
blind technique can not provide strong enough security.
Meanwhile, another efficient outsourcing algorithm given by
Salinas et al. [39] was successfully attacked by
Ding et al. [10]. Recently, to better balance the efficiency
and security, Meng et al. [31], using the similar technique
with reference [53], brought forward a publicly verifiable
and efficiency/security-adjustable outsourcing algorithm for
solving LSLE over some residue class ring Zq.

3) MFC-OUTSOURCING
Various matrix factorization computations (MFC) have
extensive applications in data analysis, image processing, and
AI, and the huge size of the matrices in the real world makes
theMFC overloaded for recourse-constrained clients. Thus,
outsourcingMFC, such as non-negative matrix factorization
(NMF), QR and LU factorizations, singular value decomposi-
tion (SVD), eigenvalue decomposition (EVD), etc. to a public
cloud is also a hot topic. Based on the matrix permutation
technique, Duan et al. [12] presented an efficient scheme
to outsource the computation-intensive NMF in machine
learning. However, some privacy breaches were revealed by
Pan et al. [37]. Luo et al. [30] considered the outsourcing
of the common large-scale QR and LU factorizations, and
designed a privacy-preserving and verifiable outsourcing
scheme by employing a low-complexity Householder trans-
formation technique. Zhou and Li [55] realized the privacy-
preserving and verifiable outsourcing of EVD and SVD of
a matrix by utilizing random orthonormal transformation-
based blind technique and Monte Carlo verification
algorithm.

In all, most of the abovematrix-relatedwork is designed for
matrices over reals. Whereas, because of the discrete struc-
ture of integers, the random matrix permutation techniques
employed for real matrices are vulnerable to the greatest com-
mon divisor (GCD)-like algorithm’s attack, and, meanwhile,
operations on integer matrices are usually more expensive
than that of matrices over reals. Therefore, designing secure

and efficient outsourcing algorithms for widely applicable
operations of integer matrices is of great importance.

B. OUR CONTRIBUTIONS
To help the resource-constrained client to fast fulfill the com-
putation of HNF under the circumstance of cloud computing,
this paper presents a cloud-assisted, privacy-preserving, and
cheating-resistance outsourcing algorithm for this problem.
That is, in our proposed algorithm, a local client can securely
and efficiently obtain the HNF by delegating this overloaded
computation task to a resource-abundant yet maybemalicious
cloud server. As far as we know, this is the first outsourcing
implementation of the HNF computation. More importantly,
the main technique ingredient underlying our algorithm is a
novel matrix encryption method based on permutation, uni-
modular transformation, and block upper triangular matrix,
which makes the proposed algorithm has the following
merits:

1) Our algorithm is designed under the fully malicious
single-server model. Compared with the two (resp.
multiple)-untrusted-server model which is common in
the design of computation outsourcing schemes, this
makes our algorithm more practical in the real world.
Since the proposed algorithm only leverages one server
and avoids the strong security assumption of two (resp.
multiple) non-colluding servers.

2) The security of our algorithm has been shown to be
robust. The encryption secret key in our algorithm
is randomly chosen from a large enough key space
and variable with the input matrix, which seems like
one-time pad encryption, and we have presented a
rigid argument on the one-way privacy of the client’s
input/output information.Moreover, the proposed algo-
rithm can assure the client to detect the cloud server’s
fraud behavior with an optimal probability 1.

3) Our algorithm has been shown to be high-efficiency
both in theory and practice. Our elaborate encryption
technique skillfully transfers the complex HNF com-
putation of a general matrix to the simple HNF com-
putation of a block triangular matrix, which reduces
the client’s theoretical computation overhead from
Õ
(
mnθ log ‖A‖

)
to Õ

(
(m2n+ mθ ) log ‖A‖

)
, where

2.3728639 ≤ θ ≤ 3, A ∈ Zm×n is the input matrix
and ‖A‖ denotes the largest absolute value of entries of
A. Extensive experimental analysis also indicates our
algorithm’s practical effectiveness and efficiency.

C. ROAD MAP
The road map of this paper is arranged as follows: we first
show the systemmodel and the associated security definitions
in Section II, and introduce the preliminaries in Section III.
Our main secure outsourcing algorithms are proposed in
Section IV. Subsequently, Section V proves the correctness
of our proposed algorithm, and analyzes its security and
theoretical efficiency. The practical efficiency analysis and
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FIGURE 1. The system model.

performance evaluation are followed by Section VI. Finally,
Section VII summarizes the paper.

II. SYSTEM MODEL AND SECURITY DEFINITIONS
A. SYSTEM MODEL
Generally, a typical secure computation outsourcing model
can be seen as a special two-party computation system, which
involves two entities with incoordinate computing capabili-
ties: a resource-limited client C and a resource-abundant yet
maybe untrusted cloud server S. As illustrated in FIGURE
1, the client C wants to leverage the computing power of S
to achieve some overloaded computation problem F with an
input x. To conceal the input information x, the clientC firstly
encrypts the problemF with the input x into another problem
F ′ with corresponding encrypted input x ′ by utilizing a secret
key SK . Then, C sends (F ′, x ′) to S. The cloud server S is
specified to compute y′ = F ′(x ′) and send it back to C . After
that, C checks the correctness of y′. If it is correct, by using
the secret key SK , the client C decrypts y′ to obtain the
actual computational result y = F(x). Otherwise, the client
C rejects the received result y′.

Formally, the general framework of a secure compu-
tation outsourcing algorithm is a four-tuple OAlgF =

(KeyGen,Encrypt, ServerCom,Verify&Decrypt) consist-
ing of the following four probabilistic polynomial-time (PPT)
sub-algorithms:

1) KeyGen(F , x, 1κ ) → {SK }: On Inputting a com-
putation problem F with some input x, and a secu-
rity parameter κ , the client C invokes the algorithm
KeyGen to generate a secret key SK .

2) Encrypt(F , x, SK ) → {F ′, x ′}: For the computation
problem F with the input x, the client C performs
the algorithm Encrypt to encrypt 〈F , x〉 into another
computation problem 〈F ′, x ′〉 by using his/her secret
key SK , and then sends 〈F ′, x ′〉 to the cloud server S.

3) ServerCom(F ′, x ′) → {y′}: After receiving the com-
putation problem F ′ with the blinded input x ′, the
cloud server S performs the algorithm ServerCom to
compute y′ = F ′(x ′) and sends it back to the client C .

4) Verify&Decrypt(F , y′, SK ) → {y,⊥}: After receiv-
ing the cloud server returned result y′, the client C
invokes the algorithm Verify&Decrypt to verify the

correctness of y′. If y′ is correct, the algorithm using
SK decrypts y′ into y = F(x) and outputs y. Otherwise,
it outputs ⊥.

B. THREAT MODELS
From the view of the users, the threats in a computation
outsourcing system mainly come from the cloud server.
According to different behaviors of the cloud server, there
mainly exist three kinds of threat models in computing out-
sourcing system: the lazy single-server model, the semi-
honest single-sever model and the fully malicious single-
sever model.
Lazy Single-Server (LS) Model. In LS model, the cloud

server is able to perform the protocol specification, but, for
the sake of financial incentive, may return a random or an
intermediate result.
Semi-honest Single-server (SS)Model. In SS model (also

known as the ‘‘honest-but-curious’’ single-server model),
the cloud server will fulfill the specified computation task
honestly. However, it is curious about the client’s private
information, or even intentionally leaks the client’s valuable
information to outside attackers.
Fully Malicious Single-sever (FMS) Model. In FMS

model, the cloud server can arbitrarily deviate from the spec-
ified computation task. It not only tries to pry into the client’s
private information, but also may return a forged result to fool
the client.
Clearly, in the LS model, the client should be able to verify

the correctness of the cloud server’s returned results, and,
in the SS model, the client has to protect the privacy of the
input/output information. While, a secure outsourcing algo-
rithm in the FMS model should enable the client to possess
both of the two abilities. Hence, from the perspective of
security, it is more meaningful to design a secure outsourcing
algorithm in the FMS model than that of in the LS and SS
models.

C. CORRECTNESS AND SECURITY DEFINITIONS
Based on our system and threat models, we give strict formal-
ized definitions on the correctness and security requirements
of a secure outsourcing algorithm.

1) CORRECTNESS
For some computation task F , a secure computation out-
sourcing algorithm OAlgF (·) is correct if the client can
achieve the desired value y = F(x) in case that the cloud
server perform the delegated computation task honestly.
Exactly
Definition 1 (Correctness): A secure computation out-

sourcing algorithm OAlgF (·) is correct if, for any
valid input x, the key generation algorithm produces
{SK } ← KeyGen(F , x, 1κ ) such that, if {F ′, x ′} ←
Encrypt(F , x, SK ), y′ ← ServerCom(F ′, x ′) and y′ =
F ′(x ′), the algorithm Verify&Decrypt(F , y′, SK ) outputs
y = F(x).
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2) INPUT/OUTPUT PRIVACY
Input/ouput privacy asks the secure computation outsourcing
algorithm OAlgF (·) to preserve the privacy of the client’s
input/output information as much as possible. That is, the less
information an untrusted cloud server can infer about the
input x (resp. the output y = F(x)), the stronger input (resp.
output) privacy the secure computation outsourcing algo-
rithm achieves. Noteworthily, it employs secret-key encryp-
tion rather than public-key encryption in our system model,
and the secret key is variable with the input infromation.
Here, we argue the input (resp. output) privacy with one-way
notion. Their definitions can be formalized with the following
two experiments ExpIprivA [F , 1κ ] and ExpOprivA [F , 1κ ].
Experiment ExpIprivA [F , 1κ ]
Query and response :
x0 = σx0 = ⊥.
For i = 1, · · · , ` = poly(κ)
xi← A(F , (xj, σxj )0≤j≤i−1).
SKi← KeyGen(F , xi, 1κ ).
σxi = (F ′, x ′i )← Encrypt(F , SKi, xi).

Challenge :
x̂ ← Domain(F).
ˆSK ← KeyGen(F , x̂, 1κ ).
σx̂ = (F ′, x̂ ′)← Encrypt(F , ˆSK , x̂).
x̄ ← A(F , (xj, σxj )0≤j≤`, σx̂).
if x̄ = x̂ output ′1′;
else output ′0′.

In the above experiment ExpIprivA [F , 1κ ], the adversary A
adaptively chooses ` = poly(κ) inputs {xi}1≤i≤` and queries
their ciphertext {σxi}1≤i≤` by repeatedly invoking the algo-
rithm Encrypt. In the challenge phase, the adversary A tries
to calculate a value x̄ according to the ciphertext σx̂ of some
challenge instance x̂ and the information collected in the
query and response phase. If x̄ = x̂, the experiment outputs 1.
Otherwise, the experiment outputs 0.

Experiment ExpOprivA [F , 1κ ]
Query and response :
x0 = σx0 = δ0 = ⊥.
For i = 1, · · · , ` = poly(κ)
xi← A(F , (xj, σxj , δj)0≤j≤i−1).
SKi← KeyGen(F , xi, 1κ ).
σxi ← Encrypt(F , SKi, xi).
y′i← A(F , (xj, σxj , δj)0≤j≤i−1, σxi ).
δi← Verify&Decrypt(F , SKi, y′i).

Challenge :
x̂ ← Domain(F).
ˆSK ← KeyGen(F , x̂, 1κ ).
σx̂ = (F ′, x̂ ′)← Encrypt(F , ˆSK , x̂).
ŷ′← ServerCom(σx̂).
ŷ← A(F , (xj, σxj , δj)0≤j≤`, σx̂ , ŷ′).
if ŷ = F(x̂), output ′1′;
else output ′0′.

In the query and response phase of the experiment
ExpOprivA [F , 1κ ], given the oracle access to the algorithms
Encrypt and Verify&Decrypt, the adversary A adaptively

chooses ` = poly(κ) three-tuples of (xi, σxi , δi)1≤i≤`. In the
challenge phase, given some challenge instance x̂, the adver-
saryA obtains σx̂ and ŷ′ by invoking the algorithms Encrypt
and ServerCom, as well as the collected information in the
query and response phase. Then it tries to calculate a value ŷ.
If ŷ = F(x̂), the experiment outputs 1. Otherwise, the exper-
iment outputs 0.
Definition 2 (Input/output privacy): A secure computa-

tion outsourcing algorithm OAlgF (·) of some computation
task F is input-private (resp. output-private) if, for any
probabilistic polynomial-time adversary A, the probability
of the experiment ExpIprivA [F , 1κ ] (resp. ExpOprivA [F , 1κ ]) out-
putting 1 is negligible, i.e.

Pr[ExpIprivA [F , 1κ ] = 1] ≤ negli(κ)

(resp.Pr[ExpOprivA [F , 1κ ] = 1] ≤ negli(κ)),

where negli(κ) is a negligible function of the security
parameter.

3) VERIFIABILITY
Informally, verifiability means that the outsourcing algorithm
can enable the client to detect the an untrusted cloud server’s
fraudulent behavior with a non-negligible probability.
Definition 3 ((1− β)-Verifiable): Given some computa-

tion task F , a secure outsourcing algorithm OAlgF (·) is
(1 − β)-verifiable if, for any valid input x, the secret key
generating algorithm produces SK ← KeyGen(F , 1κ )
such that, if (F ′, x ′) ← Encrypt(F , x, SK ), and y′ ←
ServerCom(F ′, x ′), the probability of Verify&Decrypt
(F , y′, SK ) outputting y = F(x) satisfies

Pr[y← Verify&Decrypt(F , y′, SK ) | y′ = F ′(x ′)] = 1,

Pr[y← Verify&Decrypt(F , y′, SK ) | y′ 6= F ′(x ′)] ≤ β.

4) EFFICIENCY
High-efficiency is the least requirement for a secure outsourc-
ing computation algorithm, which can be defined as follows.
Definition 4 (α-Efficient): Given some computation task

F , a secure outsourcing algorithm OAlgF (·) is α-efficient
if to

tc
≥ α, where to denotes the client’s time overhead of

achieving the task on its own, and tc is the local-client’s time
overhead of achieving the task by invoking the outsourcing
algorithm OAlgF (·).

III. PRELIMINARIES
In this section, we introduce the notations and mathematical
concepts used in this work.

A. NOTATIONS AND TERMINOLOGIES
Weuse bold upper (resp. lower) case letters to denotematrices
(resp. vectors). For some m × n matrix M, log ‖M‖ =
logmax1≤i≤m,1≤j≤n{|mij|} denotes the bit length of the (abso-
lute) maximum entry inM. Throughout the paper, we use the
notation log to denote logarithms to base 2. For any two real
functions f (x), g(x), f (x) = O(g(x)) means f (x) ≤ c1 · g(x)
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for some constant c1 > 0 and any x ≥ x0, and f (x) = Õ(g(x))
if and only if f (x) = O(g(x) logc2 g(x)) for some
constant c2 > 0.

B. PERMUTATION MAPPING AND PERMUTATION MATRIX
Definition 5 (Permutation Mapping [5]): For any given

finite set S = {1, 2, · · · , n}, a permutation mapping defined
on S is a bijection function π : S → S, which is usually
denoted as:

π =

(
1 2 3 · · · n
π (1) π (2) π (3) · · · π (n)

)
,

where π (1), · · · , π(n) is some arrangement of 1, · · · , n.
Example 1: Let n = 3, then

π =

(
1 2 3
2 3 1

)
is a permutation mapping defined on the set {1, 2, 3}.
Definition 6 (Permutation Matrix [4]): For any given

finite set S = {1, 2, · · · , n} and a permutation mapping
π : S → S, the permutation matrix Pπ induced by π is
an n × n matrix with Pπ (i, j) = δπ (i),j for any 1 ≤ i, j ≤ n,
where δx,y is the Kronecker delta function defined as

δx,y =

{
1, x = y
0, x 6= y.

Example 2: Take the permutation mapping π as shown in
example 1, the corresponding permutation matrix is

Pπ =

 0 1 0
0 0 1
1 0 0

 ,
since π is an even permutation, det(Pπ ) = 1.

C. UNIMODULAR MATRIX
Definition 7 (Unimodular Matrix [40]): A matrix U ∈

Zn×n is unimodular if the absolute value of its determinant
is 1, i.e. |det(U)|= 1, where Zn×n denotes the set of n × n
integer matrices.

Two simple properties of unimodular matrix are listed as
the following two lemmas.
Lemma 1 ( [35]): If U ∈ Zn×n is unimodular, so is U−1.

Particularly, if

U =
(
u11 u12
u21 u22

)
∈ Z2×2,

then

U−1 =
1

det(U)
×

(
u22 −u12
−u21 u11

)
∈ Z2×2.

Lemma 2: If U ∈ Zn×n and V ∈ Zn×n are unimodular,
so is U′ = U× V.

Example 3: Take U =

(
2 −1
5 −2

)
∈ Z2×2 and V =(

3 −1
4 −1

)
∈ Z2×2. Clearly, det(U) = 2×(−2)−(−1)×5 = 1

and det(U) = 3 × (−1) − (−1) × 4 = 1. They are both

unimodular. It is easy to verify that U−1 =
(
−2 1
−5 2

)
∈ Z2×2

and the product matrix U′ = U× V =
(
2 −1
7 −3

)
∈ Z2×2 are

also unimodular.

D. BLOCK MATRIX
A 2× 2 block representation of an (m+ n)× (m+ n) matrix
is (

A B
C D

)
, (1)

where A, B, C and D are m × m, m × n, n × m and n × n
submatrices respectively.
Lemma 3: Assume A and D are invertible and C = 0 in

equation (1), then(
A B
0 D

)−1
=

(
A−1 −A−1BD−1

0 D−1

)
.

E. HERMITE NORMAL FORM
Definition 8 ( [9]): An m×n matrixH = (hij)with integer

entries is in Hermite normal form (HNF) if there exists r ≤ m
and a strictly monotonic increasing mapping f from [r+1, n]
to [1,m] satisfying

• For r + 1 ≤ j ≤ m,hf (j),j ≥ 1, hi,j = 0 if i > f (j) and
0 ≤ hf (k),j < hf (k),k if k < j.

• The last m− r rows of H are equal to zero.
Specially, when m = n and f (k) = k , H is in HNF if it
satisfies the following conditions:

• hi,i > 0 (∀1 ≤ i ≤ n).
• H is an upper triangle matrix, i.e. hi,j = 0 for i ≥ j.
• 0 ≤ hi,j < hi,i for i > j.

For example, the matrix

H =


11 5 1 0
0 12 5 1
0 0 12 6
0 0 0 33


is in HNF. Notice that all the diagonal entries are greater than
zero (condition 1); all off-diagonal entries in the lower half
of the matrix are zeros (condition 2); and all off-diagonal
entries in the upper half of the matrix are no less than zero and
less than the corresponding value of the entry on the diagonal
(condition 3).

An important property of HNF is provided as follows,
Lemma 4 ( [9]): For any integer matrix A ∈ Zm×n, there

exists an unique HNF matrix H ∈ Zm×n and an unimodular
matrix U ∈ Zm×m such that H = UA.
Example 4: Take

A =


7 −7 6 −6
9 −5 −5 −5
1 6 8 2
−7 −5 −3 −1

 ∈ Z4×4.
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Its HNFmatrixH and associated transformation matrixU are

H =


1 0 0 338
0 1 0 24
0 0 1 401
0 0 0 922


and

U =


102 −274 −361 −302
7 −19 −25 −21

121 −325 −428 −358
278 −747 −984 −823


satisfying H = UA.

A simple corollary of Lemma 4 is
Lemma 5: Suppose A and A′ are two m× n integer matri-

ces, and A′ = U′A for some unimodular matrix U′ ∈ Zm×m,
then A′ and A share the same HNF.

Proof: We assume that H is the HNF matrix of A.
By Lemma 4, there exists an unimodular matrix U such that
H = UA. Since A = U′−1A′, we have

H = UU′−1A′.

According to Lemma 2 and Lemma 4, UU′−1 is unimodular
and the HNF matrix of A′ is unique. Therefore, the HNF
matrix of A′ is H. I.e. A′ and A share the same HNF
matrix H. �
On the algorithmic side, Storjohann and Labahn [44] devel-

oped the currently provable and fastest algorithm of comput-
ing the HNF.
Lemma 6 ( [44]): There exists a deterministic algorithm

that, on inputting an m × n integer matrix A of rank n,
outputs the HNF matrix H ∈ Zm×n and an unimodu-
lar matrix U ∈ Zm×m such that H = UA in time
Õ(mnθ−1M (n log ‖A‖, n log ‖A‖)). Moreover, the total size
ofH (the summation of the bit lengths of the individual entries
of H) is on the order of Õ(mn log ‖A‖) bits. Entries in U and
U−1 will be bounded in length by Õ(n log ‖A‖) bits and by
Õ(log ‖A‖ + log n) bits respectively.
Here, in Lemma 6, M (x, y) denotes the asymptotic upper
bound for the number of bit operations required to mul-
tiply two number with x, y bits respectively. Clearly,
M (x, y) = xy for standard operations and M (x, y) =
max{x, y} logmax{x, y} = Õ(max{x, y}) for asymptotically
fastest algorithm [22]. O(nθ ) stands in for asymptotically
upper bound for the number of arithmetic operations required
to multiply two n × n integer matrices. θ = 3 for practical
standard operations and θ = 2.3728639 for the asymptoti-
cally fastest algorithm [15].

Specially, for a triangular integer matrix, there exists a
more efficient algorithm to compute the HNF.
Lemma 7 ( [43]): There exists a deterministic algorithm

that, on inputting an n × n upper triangular integer
matrixB, outputs the HNF ofB in timeO(n2M (logD, logD)),
where D = det(B).

IV. OUTSOURCING ALGORITHM OF HNF
A. A HIGH LEVEL DESCRIPTION
Give anm×n (m ≥ n) integer matrixA of rank n, we intend to
compute its HNF with the assistance of a resource-abundant
yet maybe untrusted cloud server.

To protect the privacy of A, a common method is to take
advantage of the classic permutation-substitution encryption
technique. That is. we can multiply the original matrix A by
a permutation matrix P and a unimodular matrixU on the left
side. Although this simple transformation can blind the posi-
tion and value information of the entries in A, by Lemma 5,
it can not ensure the output privacy. I.e., the cloud server can
obtain the HNF of A by computing the HNF of A′ = UPA.
To amend this flaw, we must figure out a new encryption
method with the following two properties: (1) It not only
can blind the input matrix A, but also is able to conceal its
HNF. (2) The method can ensure the local client to recover
the HNF ofA from the cloud server returned results correctly
and efficiently. Based on HNF’s definition (Definition 8)
and its property (Lemma 5), we adapt the original idea
with multiplying the matrix A by a permutation matrix P,
a unimodular matrix U on the left side and a block upper
triangular matrixR on the right side simultaneously. Namely,
the client delegates the computation task of computing the
HNF of

A′ = UPAR (2)

to the cloud server. Let H′ denote the HNF of A′. Then,
by Lemma 5, there exists a unimodular matrix U′ such that

H′ = U′A′. (3)

Combing equation (2) with equation (3), we have
A = P−1U−1(U′)−1H′R−1. Therefore, once receiving the
cloud server returned resultH′, the client can recover theHNF
ofA by computing theHNF of a block upper triangularmatrix
H′R−1. Since computing the HNF of a block upper triangular
matrix is easy, this makes our algorithm efficient. Meanwhile,
the randomness of the matrices P, U and R guarantees the
algorithm’s input/output privacy.

B. THE DETAILS OF OUTSOURCING ALGORITHM
Concretely, our HNF-outsourcing algorithm OAlgHNF (·) =
(KeyGen,Encrypt,ServerCom,Verify&Decrypt) consists
of four subalgorithms.

1) KEY GENERATION ALGORITHM
On input an m× n integer matrix A and a security parameter
λ, the key generation algorithm KeyGen outputs a random
secret key sk = (R,P,U), where R ∈ Zn×n is a random
upper triangular and nonsingular matrix generated by Algo-
rithm 1, P ∈ {0, 1}m×m is a random permutation matrix
generated by Algorithm 2, andU ∈ Zm×m is a block-diagonal
unimodular matrix generated by Algorithm 3.
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Algorithm 1 R(A, 1λ)
Input: A matrix A ∈ Zm×n of rank n and a security param-

eter λ.
Output: A random block triangular matrix R ∈ Zn×n
1: For i = 1 to n
2: Choose ri,i, ri,i+1 from Z ∩ (−2λ, 2λ) uniformly at

random such that ri,i 6= 0
3: Choose r21 from Z ∩ (−2λ, 2λ) uniformly at random

such that |r11r22 − r21r12| 6= 0
4: For j = 1 to n and (i, j) 6= (2, 1), (i, i), (i, i+ 1)
5: rij = 0
6: Construct

R1 =

(
r11 r12
r21 r22

)
,R2 =

(
0 0 · · · 0
r23 0 · · · 0

)
,

O =
(
rij
)
3≤i≤n,1≤j≤2 =

0 0
...
...

0 0

 ,
and

R3 =
(
rij
)
3≤i,j≤n =


r33 r34

r44 r45
. . .

rn−1 n−1 rn−1 n
rnn


is a sparse upper-triangular matrix

7: Return R =
(
R1 R2
O R3

)

Algorithm 2 P(A, 1λ)
Input: A matrix A ∈ Zm×n of rank n and a security param-

eter λ.
Output: A random permutation matrix P ∈ Zm×m

1: Set π=Im(identical permutation)
2: for i = m to 2
3: Set j to be a random integer with 1 ≤ j ≤ i
4: Swap π [j] and π [i]
5: for i = 1 to m
6: for j = 1 to m
7: pij = δπ (i),j
8: Return P = (pij)1≤i,j≤m

2) CLIENT ENCRYPTION ALGORITHM
In this stage, the client utilizes the secret key sk = (R,P,U)
to encrypt the original matrix A by computing A′ = UPAR
and sends A′ to the cloud server.

3) SERVER COMPUTING ALGORITHM
After receiving the encrypted matrix A′ from the client,
the cloud server are inquired to compute (H′,V′) such that
H′ ∈ Zm×n is the HNF ofA′ andV′ ∈ Zm×m is an unimodular

Algorithm 3 U(A, 1λ)
Input: A matrix A ∈ Zm×n of rank n and a security param-

eter λ.
Output: A block-diagonal unimodular matrix U ∈ Zm×m
1: For i = 1 to dm/2e
2: Choose two coprime random integers u(i)11, u

(i)
12 ∈ Z ∩

(−2λ, 2λ)
3: Perform the extended Euclidean algorithm to u(i)11, u

(i)
12

and return two integers u(i)21, u
(i)
22 ∈ Z ∩ (−2λ, 2λ) such

that |u(i)11u
(i)
22 − u

(i)
21u

(i)
12| = 1.

4: Construct Ui =

(
u(i)11 u

(i)
12

u(i)21 u
(i)
22

)
5: if m%2 == 0
6: Return U = diag(U1, · · · ,Udm2 e)
7: else
8: Return

U = diag(U1, · · · ,Um−1
2
, 1) · diag(1, · · · , 1,Udm/2e)

matrix satisfying V′H′ = A′. Then it returns (H′,V′) to the
client.

4) CLIENT VERIFICATION AND DECRYPTION
ALGORITHM
Once receiving the cloud server returned result (H′,V′),
the client first checks whether H′ is in HNF and V′ ∈ Zm×m.
If not, the client rejects the result. Else, the client further
verifies whether V′H′ = A′ and | det(V′)| = 1. If it holds,
the client computes B = H′R−1 and outputs its HNF matrix
H. Else, it rejects the result. The detail description is shown
in Algorithm 4.

Algorithm 4 Verify&Decrypt
Input: Matrices H′, V′, A′ and R.
Output: An HNF matrix H or ⊥.
1: If H′ is not in HNF or V′ /∈ Zm×m

2: Return ⊥
3: Else
4: If V′H′ = A′ and | det(V′)| = 1
5: The client computes R−1

6: The client computes B = H′R−1

7: If B ∈ Zm×n

8: The client computes the HNF matrix H of B
9: Return H
10: Else
11: Return ⊥
12: Else
13: Return ⊥

Now, we further illustrate our algorithm with a toy
example.
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Example 5: Take the matrix

A =


−1 0 −14 9 13
−5 6 12 15 6
8 −10 −8 −3 15
4 14 3 −9 4
13 16 −12 −4 11
−4 −12 14 13 −11

 ∈ Z6×5.

The proposed algorithm OAlgHNF (A) goes as follows: (1)
The client randomly generates a block triangular matrix

R =


4 −2 0 0 0
2 4 −3 0 0
0 0 2 −3 0
0 0 0 3 −2
0 0 0 0 3

 ,
and a permutation matrix

P =


0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0

 .

Then, the client randomly chooses three 2 × 2 unimodular
matrices

U1 =

(
2 −3
−1 2

)
,U2 =

(
1 −2
−1 1

)
,

U3 =

(
−1 −1
2 1

)
,

and constructs the secret unimodular matrix

U =


2 −3 0 0 0 0
−1 2 0 0 0 0
0 0 1 −2 0 0
0 0 −1 1 0 0
0 0 0 0 −1 −1
0 0 0 0 2 1

 .

In all, the client’s secret key sk = (R,P,U).
(2) Utilizing the secret key sk , the client encrypts the input

matrix A into

A′ = UPAR =


−56 −182 110 −33 −82
24 108 −52 21 35
−156 −132 158 −33 −31
72 94 −86 9 −10
−40 −50 64 −33 −51
36 52 −92 102 72

 ,

and sends the ciphertext matrix A′ to the cloud server.
(3) After receiving the encrypted matrix A′, the cloud

server computes its HNF matrix H′ and associated

unimodular transformation matrix V′:

H′ =


4 8 0 0 0
0 10 0 0 0
0 0 2 0 1
0 0 0 3 1
0 0 0 0 3
0 0 0 0 0

 ,

V′ =


−14 −7 55 −11 −42 10
6 6 −26 7 18 −6
−39 18 79 −11 −33 −11
18 −5 −43 3 10 9
−10 3 32 −11 −24 3
9 −2 −46 34 28 −6

 .

and returns them to the client.
(4) Once receiving the returned results from cloud server,

the client first verifies the correctness of the returned results.
I.e. The client checks whether H′ is in HNF and A′ = V′H′.
If they pass the verification, the client confirms the determi-
nant of matrix V′. Since det(V′) = −1, the client computes

B = H′ × R−1 =


0 2 3 3 2
−1 2 3 3 2
0 0 1 1 1
0 0 0 1 21
0 0 0 0 1
0 0 0 0 0

 ,

and recovers the actual result by computing the HNF of the
matrix B:

H =


1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 .

V. CORRECTNESS AND SECURITY ANALYSIS
In this section, we will give a rigorous analysis on the correct-
ness and the security of our proposed algorithm according to
the definitions modeled in section II-C.

A. CORRECTNESS
Here, correctness means that the client can obtain the HNF of
any valid input matrix correctly in case that the cloud server
performs the specified computation task honestly.
Theorem 1: For any large-scale input matrix A ∈ Zm×n

of rank n, the proposed algorithm OAlgHNF (A) is correct
according to Definition 1.

Proof: Based on the encryption algorithm, the ciphertext
matrix A′ = UPAR. If the cloud server is honest, V′H′ = A′

and V′ is unimodular. That is, V′H′ = UPAR. Therefore,

P−1U−1V′H′R−1 = A.

Since P and U are also unimodular, B = H′R−1 =
(V′)−1UPA is an integer matrix. By Lemma 5, A shares the
same HNF matrix with B. Consequently, the output matrixH
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is the HNF of A, i.e. the proposed algorithm OAlgHNF (·) is
correct. �

B. INPUT/OUTPUT PRIVACY
Now, we argue the one-way input/output privacy of the pro-
posed algorithm.
Theorem 2: For any large-scale input matrix A ∈ Zm×n

of rank n, the proposed algorithm OAlgHNF (A) fulfills the
input/output privacy according to Definition 2.

Proof: (1) Input privacy. In the experiment
ExpIprivA [F , 1κ ], the computation task F represents the HNF
computation of A, and κ = mn log ‖A‖ is the bit-length of
the input information. In the Query and response phase, the
adversary A can adaptively choose (xi, σxi ) = (Ai,A′i) for
1 ≤ i ≤ `. In the Challenge phase, given the ciphertext
matrix A′ of some challenge instance A, the adversary tries
to recover A.
Now we analyze the probability that the adversary can

successfully obtain A. According to the client encryption
algorithm, A′ = UPAR, i.e. A = P−1U−1A′R−1. Let X =
P−1U−1A′. Then Rank(X) = Rank(A′) = Rank(A) = n.
Hence the mapping f (r) = Xr is an injective function from
Rn to Rm. That is, the input matrix A varies as the variation
of the secret matrix R. Since the entries in R are chosen
uniformly at random from Z∩ (−2λ, 2λ), the probability that
the adversary can obtain the correct A is

1
|{A | A = P−1U−1A′R−1}|

≤
1

|{R | R is constructed as in Alg.1}|

≤
1

(2(2λ − 1))n+1(2 · 2λ − 1)n−1
,

which obviously is negligible.
(2) Output privacy. Similarly, In the Query and response

phase of experiment ExpOprivA [F , 1κ ], the adversary A can
adaptively choose (xi, σxi , δi) = (Ai,A′i,Hi) (or (Ai,A′i,⊥))
for 1 ≤ i ≤ `. In the Challenge phase, given the ciphertext
matrix A′ of some challenge instance A, the HNF matrix H′

of A′ and an unimodular matrix V′ satisfying V′H′ = A′,
the adversary tries to obtain the HNF of A.
According to the client verification and decryption algo-

rithm, A and B = H′R−1 share the same HNF. Since
Rank(H′) = n, the mapping g(r) = H′r is an injective
function from Rn to Rm. That is, the number of different Bs
is the same with that of Rs. Since the entries in R are chosen
uniformly at random from Z∩ (−2λ, 2λ), the probability that
the adversary can obtain the HNF of A is

1
|{B | B = H′R−1}|

≤
1

|{R | R is constructed as in Alg.1}|

≤
1

(2(2λ − 1))n+1(2 · 2λ − 1)n−1
,

which also is a negligible function of n. �

C. VERIFIABILITY
Theorem 3: For any large-scale input matrixA ∈ Zm×n of

rank n, the proposed algorithm OAlgHNF (A) is 1-verifiable
according to Definition 3.

Proof: Corresponding to our algorithm, y′ = F ′(x ′) in
Definition 3 means

(C) H′ is in HNF ∧ V′ is unimodular ∧ V′H′ = A′.

According to Definition 3, we need to prove (1) the prob-
ability of the algorithm Verify&Decrypt outputting H in
case that the condition (C) holds is 1, and (2) the probabil-
ity of the algorithm Verify&Decrypt outputting ⊥ in case
that the condition (C) fails is 0. The proof of (1) directly
follows the correctness of our algorithm in Theorem 1, and
the proof of (2) is easily obtained from the description of
Verify&Decrypt in Algorithm 4.

�

D. EFFICIENCY
This section strictly analyzes the proposed algorithm’s
theoretical effectiveness. Namely, we have
Theorem 4: For any large-scale input matrix A ∈ Zm×n

of rank n, the efficiency factor α achieved by our proposed
algorithm OAlgHNF (A) according to Definition 4 is

Õ
(

nθ log ‖A‖
(mn+ mθ−1)(λ+ log ‖A‖)

)
.

In particular, take λ = O(log ‖A‖), we have

α = Õ
(

nθ

mn+ mθ−1

)
,

and further, if m = n, then

α = Õ
(
nθ−2

)
,

where 2.3728639 ≤ θ ≤ 3.
Proof: By Lemma 6, without outsourcing, the client’s

time cost is toriginal = Õ(mnθ−1M (n log ‖A‖, n log ‖A‖)).
In our proposed algorithm, let tKeyGen, tEncrypt,

tVerify&Decrypt denote the client-side time costs of the
sub-algorithms KeyGen, Encrypt and Verify&Decrypt
respectively.

(1) Estimation of tKeyGen. In the key generation algorithm,
we need to generate a random block upper-triangular matrix
R, a random permutation matrix P and a random sparse uni-
modular matrix U. Clearly, generating R needs O(nM (λ, λ))
bit operations. The permutation matrix can be generated by
employing the classic algorithm given by Durstenfeld [13]
(Knuth [23] attributes the algorithm to Tippett [46]), which
requires at most n swap operations. Also, the unimodular
matrix U can be constructed by utilizing the well-known
extended Euclidean algorithm in timeO(mλM (λ, λ)). Totally,
tKeyGen = O((n+ mλ)M (λ, λ)).
(2) Estimation of tEncrypt. In the client encryption algo-

rithm, the ciphertext matrixA′ = (U(PA))R can be computed
by consecutively employing matrix multiplication between a
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sparse matrix and a dense matrix, and thus the time complex-
ity is tEncrypt = O(mnM (λ, log ‖A‖)+mnM (λ+log ‖A‖, λ))
= O(mnM (λ+ log ‖A‖, λ)).

(3) Estimation of tVerify&Decrypt. In the client verification
and decryption algorithm, the client’s time cost mainly con-
tains five parts. Let tH′ , tV′ , tR−1 , tB and tH denote the time
cost of checking V′H′ = A′, computing det(V′), comput-
ing R−1, computing B and recovering H from B respec-
tively. According to Lemma 6, the size of entires in V′ is
bounded by Õ(log ‖A′‖ + log n) and the total size of H′

is bounded by Õ(mn log ‖A′‖). Hence, tH′ has the order of
Õ(m2 nM (log ‖A′‖, log ‖A′‖)) = Õ(m2 nM (λ+log ‖A‖, λ+
log ‖A‖)), and the time cost of computing the determinant
of V′ is tV′ = Õ(mθM (log ‖A′‖, log ‖A′‖)) = Õ(mθM (λ +
log ‖A‖, λ+ log ‖A‖)). By Lemma 3,

R−1 =
(
R−11 −R

−1
1 R2R−13

0 R−13

)
is a block triangular matrix. Since R3 is an (n − 2) ×
(n − 2) sparse triangular matrix, tR−1 can be bound by
O(n2M (λ, λ)). Since the total size of H′ is Õ(mn log ‖A′‖)
bits and B = H′R−1 is block triangular, tB is on the order
of Õ(mn2M (log ‖A′‖, λ)) = Õ(mn2M (λ + log ‖A‖, λ)).
By Lemma 7, the asymptotic fastest known algorithm of
computing the HNF of the matrix B is with a time com-
plexity of tH = O(n2M (logD, logD)), where D = det(B).
Since D = det(B) = det(A) ≤ nn/2‖A‖, tH =

O(n2M (n log ‖A‖, n log ‖A‖)). Thus,
tVerify&Decrypt= tH′ + tV′ + tR−1 + tB + tH

= Õ(m2 nM (λ+ log ‖A‖, λ+ log ‖A‖))

+ Õ(mθM (λ+ log ‖A‖, λ+ log ‖A‖))

+O(n2M (λ, λ))+Õ(mn2M (λ+log ‖A‖,λ))

+O(n2M (n log ‖A‖, n log ‖A‖))

= Õ
(
(m2n+mθ )M (λ+log ‖A‖, λ+log ‖A‖)

+ n2M (n log ‖A‖, n log ‖A‖)
)

To sum up, the time cost of the client in our proposed
algorithm
tclient = tKeyGen + tEncrypt + tVerify&Decrypt

= O((n+ mλ)M (λ, λ))+ O(mnM (λ+ log ‖A‖, λ))

+ Õ
(
(m2n+ mθ )M (λ+ log ‖A‖, λ+ log ‖A‖)

+ n2M (n log ‖A‖, n log ‖A‖)
)

= Õ
(
(m2n+ mθ )M (λ+ log ‖A‖, λ+ log ‖A‖)

+ n2M (n log ‖A‖, n log ‖A‖)
)

Finally, noticing that m ≥ n and the multiplication
complexity M (x, y) = Õ(max{x, y}) as introduced in
Section III-E, we have

tclient = Õ
(
(m2n+ mθ )(λ+ log ‖A‖)+ n3 log ‖A‖

)
= Õ

(
(m2n+ mθ )(λ+ log ‖A‖)

)
,

toriginal = Õ(mnθ−1M (n log ‖A‖, n log ‖A‖))

= Õ(mnθ log ‖A‖),

and thus the efficiency factor in Definition 4 is

α =
toriginal
tclient

=
Õ(mnθ log ‖A‖)

Õ
(
(m2n+ mθ )(λ+ log ‖A‖)

)
= Õ

(
nθ log ‖A‖

(mn+ mθ−1)(λ+ log ‖A‖)

)
.

Particularly, take λ = O(log ‖A‖), we have

α = Õ
(

nθ

mn+ mθ−1

)
,

and further, if m = n, then

α = Õ
(
nθ−2

)
.

�
Remark 1: Based on the privacy analysis in Theorem 2

and the efficiency analysis in Theorem 4, to balance the
efficiency and the security, λ = O(log ‖A‖) is alternative.
Remark 2: Since the secret key is one-time, in practice,

we can preprocess a large resource pool of random numbers
and 2 × 2 unimodular matrices which can be randomly
chosen to construct the secret matrices R and U in the key
generation step. This can reduce the cost accumulation in big
data processing.

VI. PRACTICAL EXPERIMENTAL PERFORMANCE
EVALUATION
Theoretical analysis shows that our design does benefit the
client. We will continue to implement the proposed algo-
rithm to evaluate its actual performance. We simulate client-
side’s operations on a Windows 10 machine with Intel(R)
Core(TM) i5-8500T 2.10GHz CPU and 8GB RAM, and sim-
ulate cloud-side’s operations on a Ubuntu 18.04machine with
Intel(R) Xeon(R) W-2133 3.60GHz CPU and 32GB RAM.
All the codes are executed in the Wolfram Mathematica 10.4
software.

A. EVALUATION METHODOLOGY AND EXPERIMENT
DESCRIPTIONS
We measure client’s computational savings through compar-
ing the client’s time overhead of the designed algorithm with
that of the algorithm without outsourcing. Concretely, taking
the same notations as that in the proof of Theorem 4, we will
check (1) the variance of the client-side time overhead tclient
as the increasing of the size of input matrices and (2) the
variance of the client-side speedup toriginal

tclient
as the increasing

of the size of input matrices. Also, we measure the cloud’s
time overhead tcloud and the ratio

toriginal
tcloud

. Ideally, a well design
should not increase the time required to solve the problem,
thereby the ratio toriginal

tcloud
is expected to be approximately 1.
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FIGURE 2. Client-side cost comparison of square matrices between
algorithm OAlgHNF (·) and algorithm without outsourcing.

FIGURE 3. Client-side cost comparison between algorithm OAlgHNF (·)
and algorithm without outsourcing for non-square matrices.

To simulate the different circumstances in the real
world, we specify the input matrices into two classes:
the square integer matrices and the non-square inte-
ger matrices, whose entries are randomly chosen from
[−24, 24]. For square integer matrices, the size ranges from
100 × 100 to 500 × 500. For non-square integer matri-
ces, the size varies from 100 × 50 to 500 × 450.
According to our theoretical analysis in Section V,
in the key generation step, taking λ = 4 is appro-
priate for the tradeoff between the security and the
efficiency.

To comprehensively evaluate the practical efficiency,
we simulate all stages of our proposed algorithm. Moreover,
for more detailed presentation, we divide the sub-algorithm
Verify&Decrypt into algorithm Verify and algorithm
Decrypt. Out of which, Verify includes checking H′, V′ and
verifying V′H′ = A′, | det(V′)| = 1, and Decrypt represents
computing B = H′R−1 and its HNF matrix H. Then,
the client-side time overhead tclient = tKeyGen + tEncrypt +
tVerify&Decrypt = tKeyGen + tEncrypt + tVerify + tDecrypt, and,
theoretically, the client-side speedup (toriginal/tclient) should
be a considerable positive number greater than 1.

FIGURE 4. The time cost of each stage of square matrices in our proposed
outsourcing algorithm OAlgHNF (·).

FIGURE 5. The time cost of each stage in our proposed outsourcing
algorithm OAlgHNF (·) for non-square matrices.

FIGURE 6. The comparison of the client-side speedup for square matrices.

B. EXPERIMENTAL RESULTS
Table 1 and Table 2 list the time cost in different stages for
different sizes of square matrices and non-square matrices,
respectively. FIGURE 2 - FIGURE 6 visualize the tedious
data in Table 1 and Table 2. Precisely, FIGURE 2 and
FIGURE 3 show a visual efficiency comparison between
our proposed outsourcing algorithm and the algorithm with-
out outsourcing. Clearly, our proposed algorithm can greatly
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TABLE 1. The experimental results of square matrices.

TABLE 2. The experimental results of non-square matrices.

FIGURE 7. The comparison of the client-side speedup for non-square
matrices.

reduce the time cost on the client-side no matter that the input
matrixA is square or not. FIGURE 4 and FIGURE 5 compare
the client-side time cost of the four stages in the proposed
algorithm. It shows during the execution of the designed
algorithm OAlgHNF (·), the most time-consuming step on
the client side is the process of Verify&Decrypt. Finally,
FIGURE 6 and FIGURE 7 show the client-side speedup
(toriginal/tclient) for square matrices and non-square matrices
with different sizes. As can be seen from the tables and
figures, the designed outsourcing algorithm enables the client
to achieve significant computational savings, and, with the
increase of the problem sizes, the efficiency superiority of our
outsourcing algorithm becomes more and more remarkable.

VII. CONCLUSION
In this paper, we present the first framework for secure
and efficient HNF computation outsourcing. Our design
enables a resource-constrained client to leverage the power
of the cloud to securely compute the HNF of some integer
matrix. Through delicate unimodular matrix and triangu-
lar matrix transformations, we manage to shift the time-
consuming processing to the cloud side. Our design operates
under the increasingly popular malicious single-server model
and provides the first solution for securely and efficiently
outsourcing the HNF computation task. We craft our design
to fulfill the one-way privacy of the client’s input/output

information, the verifiability of the cloud’s returned result.
In addition, we identify our designed algorithm’s efficiency
both in theory and in practice, and the experimental evalu-
ation shows the considerable computational savings on the
client side.
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