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ABSTRACT Evaporation duct is a kind of chaotic phenomenon over the ocean. In this paper, a new nonlinear
prediction algorithm, the Darwinian evolutionary algorithm (DEA), is introduced to obtain the specific
nonlinear formula P(·) of the chaotic phenomenon. Based on Darwinian natural selection and survival theory,
themethod first selects a suitable training set of samples, and then produces an initial population before going
through an evolutionary process of selection, reproduction andmutation until the optimal individual is found.
Finally, a specific expression for a nonlinear chaotic time series is obtained, which can realize the short-term
prediction of evaporation duct height (EDH) quickly and accurately. After that, the DEA, the support vector
regression (SVR), and the back propagation (BP) neural network were applied to predict the EDH which
were formed over the ocean by using sounding data. After interpolation and smoothing of the original data,
we selected the first 250 data as training samples and the last 115 data as test samples to test the effect of the
EDA algorithm. The results showed that the root mean squared error (RMSE) for the DEAwas about 7% less
than that of the SVR and 10% less than that of BP neural network; the mean absolute percent error (MAPE)
for the DEAwas about 9% less than that of the SVR and 15% less than that of BP neural network. In addition,
the DEA obtained, for the first time, a nonlinear expression for EDH, which provides an important reference
for future research on the evaporation ducts.

INDEX TERMS Evaporation duct, nonlinear chaotic time series, Darwinian evolutionary algorithm, support
vector regression, back propagation neural network, short-term prediction.

I. INTRODUCTION
Evaporation ducts are a type of near surface duct in the
marine environment formed by the evaporation of sea water;
due to subjecting to turbulence, weather and other meteo-
rological factors, it is a typical chaotic phenomenon. The
duct is an abnormal atmospheric structure in the marine
atmospheric environment, and can capture and change the
propagation route of electromagnetic waves, thus altering
the characteristics of electromagnetic wave propagation [1].
Guo et al. [2] pointed out that almost all the sea areas of
the world may contain evaporation ducts at any specific
time, with the ducts having a certain scale and geographical
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characteristics which are subject to local weather conditions.
Evaporation ducts are sensitive to changes in atmospheric
humidity, sea air temperature differences and horizontal wind
speed. The formation mechanism of the ducts is due to the
unbalanced thermal structures existing between the atmo-
sphere and the ocean boundaries, which lead to sea-air inter-
actions and cause the evaporation of water vapor from the sea
surface, such that a large amount of water vapor may reside
at the sea surface. After this process and through wind action,
the water vapor near the sea surface may diffuse upwards
to specific heights, forming a gradient structure whereby
there is rapid decrease of water vapor content with height
above the surface [1]. The evaporation duct height (EDH)
is the main parameter that describes the evaporation
duct.
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In recent years, many researchers have analyzed and pre-
dicted the EDH [3]–[10]. At present, the main methods used
to obtain the height include physical measurement, model
diagnosis [11] and the radar echo retrieval method [12]. The
physical measurement is to obtain a vertical profile distri-
bution of the refractive index of the atmosphere via direct
measurement of the atmospheric refractive index at different
heights with a microwave refractive index meter, and then
calculate the EDH according to the basic definition. The
model diagnosis method relies on a specific model to diag-
nose the EDH by inputting meteorological and hydrological
parameters such as air temperature, humidity, atmospheric
pressure, wind speed and sea surface temperature for the
specific sea area. The radar echo retrieval method is based
on measurement of the radar sea clutter power signal to
reconstruct the structure of the evaporation ducts. Besides,
Freitas and Costa used the ray tracing method [13], [14]
to model the evaporation duct [15]. Given that evaporation
ducts have a great influence on radar navigation and com-
munication systems, it is important to effectively avoid the
negative influences of the evaporation ducts on the radar
system. This becomes possible if we can predict the EDH
in advance. In recent years, advances in computing, machine
learning and intelligent algorithms have become important
tools for time series prediction, and such applications in
meteorology are becoming more frequent [16]–[22]. For
example, based on machine learning, Rhee and Im [23]
have used long-range climate forecasting and remote sensing
data to forecast meteorological droughts for ungauged areas.
Hughes et al. [24] used machine learning to predict the global
distribution of aerosol mixing state metrics. So far, some
scholars also use different machine learning algorithms to
predict the EDH [25], [26]. Application of such tools in the
study of evaporation ducts would allow us to obtain the EDH
information in advance, and thus effectively avoid the neg-
ative effects of evaporation ducts on electromagnetic wave
transmission. However, the parameters in their algorithms
are set according to practical experience, which has certain
limitations. Thus, it is essential to establish a powerful and
automatic new algorithm to predict the EDH.

In this paper, a new nonlinear prediction algorithm,
the Darwinian evolutionary algorithm (DEA) is introduced.
Based on the Darwinian natural selection and survival theory,
the method first selects a suitable set of training samples,
then produces an initial population before going through an
evolutionary process of selection, reproduction and muta-
tion until the optimal individual is found. Finally, a specific
expression for a nonlinear chaotic time series is obtained
to realize the short-term prediction of the EDH. After that,
the DEA, the support vector regression (SVR) and the back
propagation (BP) neural network were applied to the predic-
tion of the EDH over the ocean. Compared with the SVR
and BP neural network, the first advantage of DEA algo-
rithm is to improve the prediction accuracy, and the second
advantage is to acquire a nonlinear expression for the EDH,
which can obtain the EDH in advance and thus counter

the negative effects of the ducts on electromagnetic wave
propagation.

II. INTRODUCTION TO EVAPORATION DUCTS
AND USE OF DATA
A. INTRODUCTION TO EVAPORATION DUCTS
In the radio meteorology, atmospheric refraction refers to the
bending characteristics of electromagnetic waves propagat-
ing in the atmosphere. The degree of refraction may be mea-
sured by the refraction index n, which is defined as the ratio of
the propagation speed c (light speed) of the electromagnetic
wave in free space to the propagation speed v in the medium
of interest [1]:

n =
c
v

(1)

The normal values for the refractive index of the atmosphere
at the earth’s surface typically range from 1.00025-1.0004.
Given the relatively small values, it is not convenient to
calculate such values for studies in electromagnetic wave
propagation. In order to facilitate the calculation and statis-
tics of refractive index, and evaluate the atmospheric refrac-
tive index gradient and its impact on electromagnetic wave
propagation more easily, a corrected atmospheric refractive
index M [1] is used, that is:

M=N+0.157Z=77.6×
p
T
+3.73×105×

e
T 2+0.157×Z

(2)

whereM is the corrected atmospheric refractive index and is a
dimensionless quantity. For statistical purposes,M is used as
the base unit.N is the atmospheric refractive index and is also
a dimensionless quantity. P, T , e and Z are the air pressure,
temperature, vapor pressure and height from the ground with
units of hpa, K , hpa and m, respectively.
According to the variation of M with height, atmospheric

ducts can be divided into the following four categories [10]:
surface ducts, surface-based duct, elevated ducts, and evapo-
ration ducts. Figure 1 shows the respective trends of the ducts
as a function of height.

The evaporation ducts are a type of near surface duct
formed by the evaporation of sea water [1]. The duct is
a typical abnormal atmospheric structure in the near sea
atmospheric environment, which can capture the propagation
of electromagnetic waves, thus altering the characteristics
of the electromagnetic wave propagation, and hence having
great impact on marine radar, navigation and communication
systems. If information on evaporation ducts can be acquired
in advance, it is possible to effectively avoid the electro-
magnetic wave losses caused by the evaporation ducts in the
atmospheric environment, and thus ensure reliable over-the-
horizon data transmission and target detection at sea.

B. METEOROLOGICAL DATA AND PRETREATMENT
The meteorological data used were high resolution meteoro-
logical sounding balloon data [27] and the Defense Mete-
orological Satellite Program (DMSP) inversion data [10]
recorded in 2009. The release site of the sounding balloon

VOLUME 8, 2020 136037



Y. Mai et al.: New Short-Term Prediction Method for Estimation of the EDH

FIGURE 1. (a) Surface ducts (b) surface-based ducts (c) elevated ducts
(d) evaporation ducts.

was a sea area near the equator with longitude and latitude
of 151.8◦ E and 7.4◦ N, respectively; the release time was
12:00 Universal Time Coordinated (UTC) every day. The
sounding data recorded meteorological parameters such as
temperature, pressure, humidity and wind at the height of the
sounding balloon. The vertical resolution below 100 m was
10-80 m, and the vertical resolution above 100 m was 30-
300 m. The sea surface temperature (SST) data originated
from the DMSP inversion data provided by the National
Oceanic and Atmospheric Administration (NOAA) of the
USA with a resolution of 0.25◦× 0.25◦. The longitude and
latitude of the selected sites were 151.875◦ E and 6.375◦ N,
respectively, and themeasurement timewas 12:00 UTC every
day in 2009; the sample size was 365.

First, the temperature, air pressure, relative humidity, wind
speed and other meteorological parameters at 3 m height
recorded by the sounding balloon were extracted and then
substituted into the Liuli-2.0 evaporation duct model [10] to
calculate the EDH. Finally, all the diagnostic results were
recorded as a time series sample set X . Considering factors
such as the rapid change of weather conditions over the sea,
measurement errors and turbulence etc., it was necessary to
preprocess the data for the EDH before employing the algo-
rithm prediction. First, the abnormal data of the sample set
were eliminated. The specific approach adopted was: calcu-
late themean square deviation σ of the sample data, mark data
whose absolute value for the difference between the sample
value and the average value is greater than 3σ as ‘‘abnormal
values’’, then remove and interpolate the remaining data to
get a new data set by cubic spline interpolation [28]; next
use the moving average to carry out low-pass filtering to get
the a new sample sequence X ′. The specific moving average
method is as follows [29]:

X ′n =

n∑
i=a

xi

m
(3)

where X ′n is the average value of the height of the evaporation
duct calculated for the n-th time, xi is the height of the
evaporation duct on the i-th day and a is the first sample
in the moving average range. When n ≤ L, a = 1; when
n > L, a = n-L + 1 (L is the total number of samples); m is
the number of samples in the current moving average range.
Figure 2 shows the diagnostic results for the EDH and the
results after moving average filtering. After moving average
filtering, the new time series, X ′, will be used in the test and
analysis of the DEA, the SVR and the BP neural network.

FIGURE 2. The heights of the evaporation ducts obtained after using the
Liuli-2.0 model and the heights of the evaporation ducts after smoothing.
Abscissa is the sequence of time series, from January 1, 2009 to
December 31, 2009, a total of 365 data. The vertical coordinate is the
specific value of EDH on that day.

III. THE PREDICTION ALGORITHMS
A. THE SUPPORT VECTOR REGRESSION
The SVR is a classical machine learning algorithm. It breaks
through the traditional machine learning methods based on
empirical risk minimization theory, where it is easy to pro-
duce the over fitting phenomenon for small sample data. It has
been widely applied in theoretical research and practical
applications and has become a research hotspot in machine
learning. The output of SVR is a linear combination of inter-
mediate nodes, each of which corresponds to a support vector.
In recent years, it has also been shown to give excellent
performance in the prediction of time series and has been
successfully applied to the prediction of nonlinear chaotic
time series.

In this paper, SVR [30]–[31] is used to analyze and predict
the time series X ′. The training sample is the first 250 data
for the time series X ′, and the test sample is the last 115 data
for the time series X ′. The construction of SVM mainly
includes the selection of kernel function and parameter.
Because the result of solving nonlinear problem by linear ker-
nel function is poor, radial basis function is chosen as kernel
function in this paper. The specific formula is as follows.

K (xi, xj) = exp

(
−
||xi − xj||2

2α2

)
(4)

where xi and xj are sample datum and α is hyperparameter.
Besides the selection of kernel function, SVR also needs to
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set penalty parameter C, insensitivity loss degree ε and kernel
function parameter α. The parameter selection is based on
grid search method. Firstly, we set a reasonable parameter
range according to our experience, then through continuous
experiments to test their effect. Finally, the parameters with
the best prediction results are selected as the final parameters
to predict the EDH. Through test, the final parameter values
we finally selected are shown in table 1.

TABLE 1. The specific values parameters of SVR.

B. BP NEURAL NETWORK
Artificial neural network uses mathematical methods to
simulate the structure, function, and mode of processing
for biological neural systems to build a complete informa-
tion processing system; so far, it has been widely used in
data prediction [32], [33]. In this paper, the BP neural net-
work [34], [35], which is relatively mature and widely used,
is used to predict the EDH. The key step of BP neural network
is the design of hidden layer. In the BP neural network,
the numbers of nodes in input layer and output layer are
determined by the training samples, whereas the number of
nodes in hidden layer is uncertain. Generally, the number of
nodes of the hidden layer can be determined by Eq. (5) [35]:

h =
√
m+ n+ a (5)

where h is the number of nodes of the hidden layer, m is the
number of nodes of the input layer, n is the number of nodes
of the output layer, and a is the adjustment constant. After
comprehensive consideration, we formulate a four-layer BP
neural network including an input layer, two hidden layers,
and an output layer. The input layer is set to three neurons,
the first hidden layer to 5 neurons, the second hidden layer
to 2 neurons and the output layer is set to one neuron.
Through test, the parameters with the best prediction results
are selected as the final parameters to predict the EDH. The
final values of h, m, n and a are shown in table 2 and the
structure of BP neural network is shown in figure 3.

The excitation function of nodes of the hidden layer of
the BP neural network is the rectified linear units (ReLU),
a piecewise linear function that which changes all negative
values to zero and maintains the positive values.

C. DARWINIAN EVOLUTIONARY ALGORITHM
1) INTRODUCTION TO DARWINIAN EVOLUTIONARY
ALGORITHM
The theoretical basis of the DEA is Darwin’s natural selection
and survival theory. The theory first produces an initial pop-
ulation by selecting the appropriate training set. It then goes

TABLE 2. The specific values parameters of BP neural network.

FIGURE 3. The structure of BP neural network.

through the evolutionary process of selection, reproduction
and mutation until the optimal individual is found. Finally,
the specific expression for the nonlinear chaotic time series
is obtained to realize the short-term prediction of the chaotic
time series. The basic principle is as follows:

For time series {X (ti)}, i = 1, · · ·N , the algorithm
can be regarded as the output of a deterministic nonlinear
autonomous dynamic system [27]; [29]–[30], which satisfies:

→

ds
dt
= φ(

→
s ) (6)

where
→
s is a k-dimensional vector and φ(·) is a nonlin-

ear vector field. Generally, we use a series of observation
variables x(t) to describe the system at a certain time, but
x(t) is generally complex, which is not conducive to our
direct study. To connect the dynamic system (6) with the
time series variable x(t), one way to solve this problem is to

reconstruct a phase space h(·), that is, x(t) =
→

h(s) , which
is equivalent to its original power system in the topological
sense. Through the study of the phase space h(·), we can get
the understanding of the original system 8. However, when
dealing with the experimental data, we usually only observe
the output of the dynamic system and do not determine the
specific state of equation (6). Therefore, we hope to get some
useful information about equation (6) from the output of the
dynamic system. Takens [39] described the relation between
the observation value x(t) at a certain time for the dynamic
system and the observation value that preceded it, and this
follows the formula:

→

X (t) = [x(t), x(t − τ ), · · · x(t − (m− 1)τ )] (7)
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When the delay coefficients τ and m are greater than 2de,
(de is the dimension of the attractor, that is, the geometric
object generated by the trajectory after the transient disap-
pears), the system will provide am-dimensional space, which
is the replacement of the complete multivariate state space
of the system (6). The space in which the attractor exists is
a phase space which is a six dimensional imaginary space
in which momentum and space occupy three dimensions
respectively. Each point above represents all possible states
of the system under consideration. The dimension of de can
be determined by [40], [41] the embedding dimension m
can be determined by [42], and the time delay coefficient
τ can be determined by different methods [43], [44]. More
specifically, thismeans that there is a smooth inversemapping
ψ from the k-dimensional state space of the original system
to the Euclidean reconstruction space Rm. This mapping is
called embedding, and this theorem is called the Takens
embedding theorem. The embedding theorem ensures that
the state information of the system can be recovered from
a long enough output time series observation. According to
the theorem, the time series also follows a smooth mapping
P : Rm→ R:

x(t) = P(x(t − τ ), x(t − 2τ ), · · · , x(t − mτ )) (8)

Therefore, the theorem needs two steps to build a dynamic
model for the time series. The first step is to reconstruct the
current state of the system (state space reconstruction) by
using the past state of the time series closest to the current
state, which can be achieved by formula (7). The second
step is to establish the prediction model P(·) in equation (8).
This paper provides a new method to accomplish this step.
As long as the state space is reconstructed from the time
series, the function P(·) in formula (8) can be estimated.
At present, many researchers have studied the concrete

approximate method of P(·) in formula (8). Most of these
studies are based on polynomial fitting, neural networks
and radial basis functions [36], [37]; [45], [46]. In recent
years, a search process based on Darwin’s natural selection
and survival theory has been proposed [47]–[50]. The main
advantage of the evolutionary algorithm is that it can attempt
to describe the specific functional form of the data, providing
a specific functional expression between the past, present
and future values of the time series data. Even if the data
is sparse, the evolutionary algorithm is applicable. For a
univariate time series, the DEA tries to solve the P(·) defined
in formula (8); in addition, the possibility of calculating long-
term predictability is discussed. Specifically, for a model:

x(t) = P′(x(t − µτ ), x(t − (µ+ 1)τ ),

· · · , x(t − (µ+ m− 1)τ )) (9)

Here, the parameter µ determines the long-term predictabil-
ity. In addition, for a problem requiring µ-step prediction in
advance, tests show that the prediction effect of the mapping
function P′(·) calculated by formula (9) is much better than
that of formula (8) [45]; [48], [49].

2) SPECIFIC STEPS OF THE DARWIN EVOLUTIONARY
ALGORITHM
a: GENERATION OF THE INITIAL POPULATION
The original population in the evolutionary process is the
population consisting of the original individuals, and this is
the basis for generation of new species in the future. If the
initial estimate of the potential solution for a problem cannot
be obtained, the usual method is to consider a randomly gen-
erated population of equations, which is obtained by a random
combination of parameters and operators. In this process,
the properties, parameters or operators of each element in the
string are determined randomly to provide specific values of
parameters or operators, and the final individuals must be a
consistent mathematical expression. Before introducing the
rules for establishing randommathematical consistent strings
in suffix representation, we introduce some concepts first.
For the convenience of processing, the string of an equation
is written as a pair of coordinates. The second coordinate
in the coordinate pair represents the parameter or operator
in the equation, and we make the following regulations: the
coordinate pair (k1,1) represents the operator in the equation,
and the range of k1 is 1-4, corresponding to addition, subtrac-
tion, multiplication and division respectively. The coordinate
pair (k2,2) represents a real parameter. The coordinate pair
(k3, λ) represents a parameter, which can be expressed by
time series x(t-k3τ ); the range of λ is greater than 11. When
we translate coordinate pairs into equation strings, we usu-
ally calculate them from left to right, and the two parame-
ters connected by operators are the two closely consecutive
parameters on the left of operators. For instance, for a code
P1(·) = {(3.2, 2), (3, 11), (1, 1), (5, 11), (3, 1)}, we first cal-
culate {(3.2, 2), (3, 11), (1, 1)} and the result is 3.2+x(t−3τ ).
After that, we take the result of the first step as a whole and
calculate subsequent results according to the definition of
operator in turn; finally, we get (3.2 + x(t − 3τ ))x(t − 5τ ),
which is the final result. The rules for establishing random
mathematical consistent strings in suffix representation are
as follows: (a) The first two elements of the string must be
parameters and the last elementmust be an operator. (b) Given
a position in a string, the number of parameters on the left
must be greater than the number of operators. (c) The total
number of parameters in the string must be the total number
of operators plus 1.

b: COMPUTE POWERFUL INDIVIDUALS
Generally, the strength of the evaluation standard for each
individual (equation string) in the population is its fitness.
Each individual Pj (·) will be used as a function of the
previous values of the time series in order to calculate the
estimated values of all x(t) in the time series, which is called
the training set. For a prediction problem of advance µ step,
the specific fitness calculation formula of Pj (·) is as follows:

12
j =

T∑
t−L+1

(x(t)− Pj(x(t − µτ ), x(t − (µ+ 1)τ ), · · · ,
x(t − (µ+ m− 1)τ )))2

(10)
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where Pj represents the j-th generation equation string in the
population, L = mτ and T is the total length of the training
set. The numerical calculation of each suffix expression Pj
uses a stacking method to stack the parameters of the expres-
sion until the operatormeets the conditions [48]. The intensity
index for each individual can be expressed as:

Rj = 1−
12
j

T∑
t=L+1

(x(t)−
−
x )2

(11)

where
−
x is the average value of the training data. Rj is

the explanatory variance which is a percentage of the total
explained variance of the training set in the j-th generation
equation string. The closer Rj is to 1, the stronger the genera-
tion j is. The validation or sampling test set is composed of the
data not included in the training set, and over fittingwill occur
when the last individual in the validation set is weak. The
final best individual strength index allows for differences in
the case of obtaining a good estimate of the dynamic system
from the over fitting state.

c: REPLICATION AND VARIATION
Once two parents are chosen according to their power, two
new offspring will be produced by crossing the indepen-
dent parts between the two parents. Only a scheme that can
consider cross operation is described here. First, the process
determines randomly a parameter, a real number or an ele-
ment of the time series; if the next element to the right of
this randomly selected parameter is an operator, only this
parameter is considered for exchange; if the next pair of
randomly selected parameters represents another parameter,
the string used for cross operation is limited to the case where
the number of parameters nar and the number of operators
nop satisfies nar = nop + 1. If none of the above conditions
are met, another parameter in the string is selected randomly.
Note that the goal of this process is to exchange the self-
contained parts in equation strings to avoid inconsistent math-
ematical expressions in the offspring. The same operation is
performed on the second equation string. As an example of
reproduction, consider the equation string for the parents:

P1(·) = {(3.2, 2), (3, 11), (1, 1),

selected︷ ︸︸ ︷
(5, 11), (3, 1)}

≡ (3.2+ x(t − 3τ ))x(t − 5τ )

P2(·) = {(1, 11), (2,11)︸ ︷︷ ︸
selected

, (4, 11), (4, 1), (2, 1)}

≡ (x(t − τ )−
x(t − 2τ )
x(t − 4τ )

) (12)

For an example of a scalar time series, a possible pair of
offspring is as follows:

P3(·)= {(3.2, 2), (3,11), (1, 1), (2, 11), (4,11), (4,1), (3, 1)}

≡ (3.2+ x(t − 3τ ))(
x(t − 2τ )
x(t − 4τ )

)

P4(·) = {(1, 11), (5, 11), (2, 1), }

≡ (x(t − τ )− x(t − 5τ )), (13)

The bold pair represents the cross part of the parent equation.
The substring can be longer than the parent string, but it is
always bounded by the maximum length of ntot. If the off-
spring generated by the exchange of the self-contained parts
between the parent strings is longer than ntot, this specific
exchange is not allowed. At this time, another self-contained
part in the one parent string will be randomly selected for
exchange. This process will be repeated until the conditions
are met. Two ectypes of the parent string are also considered
offspring during the replication process. Except for the high-
est ranked equation string, mutations can occur in any indi-
vidual of the population. Every element of a given string can
be changed by a mutation process. In the previous example,
the string P4 (·) = {(1, 11), (5, 11), (2, 1)} can be changed
to P4 (·) = {(1, 11), (8.9, 2), (2, 1)}, where bold characters
represent mutations.

d: THE PARAMETER SETTINGS
In this test, the first 250 data of the time series sample X ′

are also selected as training samples and the last 115 data are
selected as test samples to realize the prediction and analysis
of time series X ′. There are 13 parameters to be set in the
DEA, and the details are as follows:
npop: the number of individuals in the population
ntot: the total number of parameters and operators, that is:

nar + nop
nsize: the parameters and operators of the initial individual
idum: starting from different initial random populations
nstep: the generations of algorithm termination
ndel: the embedding dimension m (see equation (8))
tau: the time delay element τ , (see equation (8))
nseries: the number of time series to be solved
threshold: µ in the corresponding equation (9)
ndat: the total number of time series
ntdat: the last data point of the training set
pm: the probability of mutation
Rrange: The allowable range of the numeric parameters [-

range, range]
Similarly, the parameter selection is also based on grid

search method. According to the actual needs and prediction
results, the set of final parameters in this paper is shown
in table 3 and the flow chart of the experiment is shown
in figure 4.

IV. RESULTS AND DISCUSSION
After setting the parameters of the algorithm, the last 115 data
of the time series were selected as the test set to verify their
prediction effect. Figures 5, 6 and 7 show the trend charts
of the predicted results and the real values for the three
algorithms respectively.

It can be seen from Figures 5, 6 and 7 that the prediction
trends for the three algorithms are both essentially the same
as the true value data. However, the prediction results for the

VOLUME 8, 2020 136041



Y. Mai et al.: New Short-Term Prediction Method for Estimation of the EDH

TABLE 3. The specific values parameters of DEA.

FIGURE 4. The flow chart of the experiment.

DEA are significantly better than that of other algorithms
at both ends of the time series in the case of data where
there are some fluctuations. To further measure the prediction
accuracy, the root mean square error (RMSE) and the mean
absolute percent error (MAPE) were used to measure the
overall prediction effect of both performance measures. The

TABLE 4. Overall error for the algorithm.

FIGURE 5. The prediction results for the SVR. Abscissa is the sequence of
time series, from September 1, 2009 to December 31, 2009, a total
of 122 data. The vertical coordinate is the predicted value
of EDH on that day.

FIGURE 6. The prediction results for the BP neural network. Abscissa is
the sequence of time series, from September 1, 2009 to December 31,
2009, a total of 122 data. The vertical coordinate is the predicted
value of EDH on that day.

specific formulae used for calculation were as follows:

RMSE =

√√√√√ N∑
i=1

(Xobs,i − X mod el,i)2

N
(14)

MAPE =
1
N

N∑
i=1

∣∣Xobs,i − X mod el,i
∣∣

Xobs,i
× 100% (15)

Table 4 shows the RMSE and the MAPE of the prediction
results for the three algorithms.

From Table 4, it can be seen that the RMSE of the SVR
and BP neural network were 0.2422 and 0.2506 respectively,
whereas that of the DEA was 0.2248; that is, the RMSE
for the DEA was about 7% less than that for the SVR and
10% less than BP neural network. In the case of the MAPE,
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FIGURE 7. The prediction results for the Darwinian evolutionary
algorithm. Abscissa is the sequence of time series, from September 1,
2009 to December 31, 2009, a total of 122 data. The vertical coordinate is
the predicted value of EDH on that day.

FIGURE 8. Linear regression of the prediction results for the SVR.

FIGURE 9. Linear regression of the prediction results for the BP neural
network.

that of the SVR and BP neural network was 2.3286 and
2.5166 respectively, compared to 2.1294 for the DEA; thus,
the value for the DEA was about 9% less than that for the
SVR and 15% less than that of BP neural network. These
results demonstrated that the overall prediction accuracy of
the DEA was better than that of the SVR and BP neural
network. To further verify the advantages and disadvantages
of the three algorithms, univariate linear regression of the
prediction results for the three algorithms was performed, and
the regression results are presented in Figures 8, 9 and 10
respectively.

FIGURE 10. Linear regression of the prediction results for the Darwin
evolutionary algorithm.

From Figures 8, 9 and 10, it can be seen that the correlation
coefficient r for figure 8 (SVR) is 0.9790, the correlation
coefficient r for figure 9 (BP neural network) is 0.9682, and
the correlation coefficient r for figure 10 is 0.9811 (DEA),
confirming that the prediction result for the DEA is slightly
better than that of the SVR and BP neural network. Also,
the sum of the squared residuals for figure 10 is 5.6680, and
that for Figure 8 and 9 is 5.7207 and 5.8134 respectively,
indicating that the prediction error for theDEA is smaller than
that of the SVR and BP neural network. In addition, the DEA
also gave an approximate fitting expression (expression 14)
for this time series, and this can be used to describe the
development trend of the time series, this being the main
advantage of this algorithm.

x(t) = (x(t − 1)+ ((x(t − 1)− x(t − 3))/((x(t − 2)

∗(x(t − 2)/x(t − 3)))− ((x(t − 1)/(x(t − 2)

/x(t − 1)))+ (−4.46))))) (16)

V. CONCLUSION
Chaotic time series is the change of some states of chaotic
systemwith time. It has random and nonlinear characteristics.
Evaporation duct is an abnormal refraction structure over the
ocean; because it is subject to turbulence, weather and other
meteorological factors, it is a typical chaotic phenomenon.

In this paper, a new chaos prediction algorithm is intro-
duced, which is applied to obtain the nonlinear formula
P(·) of the chaotic phenomenon. Based on the Darwinian
natural selection and survival theory, the method first
selects appropriate training samples, then produces an initial
population before going through an evolutionary process of
selection, reproduction and mutation until the optimal indi-
vidual is found. Finally, a specific expression for a nonlinear
chaotic time series is obtained, which in effect can realize the
short-term prediction of the EDH.

After that, the DEA, the SVR and the BP neural network
are applied for prediction of the EDH over the ocean. The
results show that the RMSE for the prediction result for the
DEA is 7% less than that of the SVR and 10% less than
that of the BP neural network; the MAPE of the DAE was
about 9% less than that of the SVR and 15% less than that of
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the BP neural network, indicating that the DEA was superior
to the two algorithms in terms of predicting the time series
for the EDH. In addition, the DEA also gave an approximate
fitting expression for the time series, which provided an
important reference point for future research on the EDH.
In the future voyage, we can use this algorithm to obtain the
EDH in advance based on previous data, so that we canmaster
the information of evaporation duct in advance to effectively
avoid its influence on our communication system.

However, the time series fitting expression x (t) obtained in
this study is ‘‘static’’ and does not update with the introduc-
tion of new observations. In addition, in actual work, the evap-
oration ducts are greatly affected by turbulence, prevailing
weather conditions and other factors, which may have a great
impact on the time course of atmospheric ducts. Therefore,
in future work, we will establish a dynamic time series fitting
expression based on specific weather scenarios to achieve
more accurate predictions of the EDH.
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