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ABSTRACT Weakly supervised learning has outstanding ability to solve classification tasks, and mul-
tiformity middle-level visual features provide more abundant discriminant information for meaningful
regions. In this paper, we study the integration of the middle-level visual features including homogeneity
of superpixels, region objectness and texture map for segmentation. Then, three kernels are exploited
to map visual features to high-dimensional space. A few labeled pixels are chosen for training support
vector machines(SVMs) in a single image with hybrid kernels. On this basis, the remaining pixels are
labeled with classified results of SVMs and refined the segmentation results by merging pre-segments
of mean-shift. We perform sufficient experiments on Berkeley datasets and compared them with several
excellent segmentation algorithms. Extensive experimental results of the proposed method show superior
segmentation performance and expanded tests on PASCAL VOC datasets further validate the effectiveness

of the algorithm.

INDEX TERMS Image segmentation, MKL, mixed visual features.

I. INTRODUCTION

The main difficulty of image segmentation technology is still
that the semantic gap has not been solved. The bottleneck
lies in the lack of learning and application of prior knowl-
edge in the segmentation task. To solve this problem, many
studies are explored on knowledge representation or super-
vised learning to guide the development of image segmenta-
tion technology in order to get more accurate segmentation
results [1]-[6]. In the field of semantics analysis, segmenta-
tion means the annotation for pixel-level. Due to the high cost
of annotation for pixel-level segmentation labels, the existing
data sets are usually constrained by the lack of annotation
examples and class diversity, which limits the segmentation
to a small number of pre-defined object categories. How to
use the weakly supervised tagged information has become
a major challenge to semantic segmentation. Under the
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influence of supervised learning, many image segmentation
methods employ Deep Neural Networks(DNN) to train the
segmentation model [7]. The DNN models need a large num-
ber of training samples and achieve great success by building
a network to learn the underlying features [8], [9]. However,
one of the main obstacles to achieve semantic segmentation
is the lack of complete and generalized data samples in free
and realistic environment. The image contents are complex,
diverse and uncertain, thus the patterns and semantics con-
tained in it are difficult to predict [10], [11].

In computer vision, most images show multiple semantic
regions, and these regions have different shapes and scales.
So, itis necessary to design reasonable, reliable and recogniz-
able feature descriptors for efficient representation of image
content. As an important method of acquiring middle-level
visual information, superpixels have attracted widespread
attention and consequently a series of segmentation strategies
and evaluation criteria are produced [12]. The superpixels are
the homogeneous regions aggregating the group features of
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the pixels, which provide more information and knowledge
for further image analysis and understanding [13]. In addi-
tion, segmentation tasks are gradually developing towards
multi-level feature fusion that can improve the performance
of segmentation. On the other hand, in addition to the local
homogeneity brought by superpixels, another visual feature
named objectness contains higher semantics information. It is
the prediction information of the object regions estimated
by multi-feature cues that provide important guidance for
segmentation and classification. Finally, the texture is one
of the indispensable feature for segmentation, and it is more
robust in dealing with complex regions.

As a shallow network model, SVMs [17] is a convex
optimization method to ensure the optimal solution with
fewer parameters learning, and it is still an important shallow
tool for deep learning. In addition, SVMs can avoid local
extremum and gradient dispersion problems. To enhance the
ability of similarity measurements, the samples can possess
better separation after mapped to high-dimensional feature
space through a kernel function, and integrates multiple fea-
tures well with multiple kernel [18]. The multiple kernel
method can map different feature components of heteroge-
neous data through appropriate single kernel and the data
can be expressed in the new combination space more accu-
rately and reasonably. Multiple kernel learning(MKL) can be
regarded as an effective information fusion method between
feature level and decision level fusion. MKL can naturally
fuse these information and each kernel corresponds to differ-
ent information sources, such as color, texture and edges.

On the basis of the above analysis, we propose an opti-
mization merging framework based on weakly supervised
learning with three middle-level visual features. The first
kind of visual feature employs three different strategies to
make multi-scale superpixels, and employs the internal mean
features to get the homogeneous feature in the color space.
The second kind of feature unites multi-scale J-image as the
texture feature. The third feature map is the regional object-
ness which evaluating the internal object score of two types of
candidate windows that cover objects. Thus the hybrid visual
features mapped to MKL and imbedded into SVM classifiers
to obtained pre-labels for image pixels, which are used to
further refining for optimal segmentation results.

The contributions of this paper are as follows:

1. A framework of multi-kernel learning classification for
region refining segmentation based on weakly label infor-
mation of a single image is proposed. The trained MKL
SVMs is helpful for accurate classification of pixels and the
results are used for region refining in this model. Weights of
different feature kernels is tested sufficiently to obtain the
optimal combination of kernel coefficients on BSD500 and
the significance of different visual features for classification
accuracy is also discussed.

2. A complementary learning space combined three
middle-level visual cues from different feature spaces are
designed, including superpixels homogeneity, multi-scale
texture and objectness. The SVMs that learns from a small
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number of samples can accurately classify the pixels of single
image in our method. Our method provides a novel solution
for the further research of unsupervised segmentation.

3. A more proper regional based objectness estimation
strategy is proposed. Two types of candidate windows cov-
ering objects are defined to aid the computation of the
object-proposal score. One type is based on random selection
and the other is based on different distribution of superpixels.
Then the corresponding objectness feature is employed to
improve the accuracy of pixel classification.

The rest of this paper is organized as following.
Section 2 introduces the related work, while in Section 3,
we represent the proposed merging segmentation method
by weakly supervised of MKL on mixed visual features.
Experimental results and detailed analysis with comparisons
are demonstrated in Section 4. Finally, Section 5 makes a
conclusion of the paper. The architecture of the proposed
framework is shown in Fig.1.

Il. RELATED WORK

A. WEAKLY SUPERVISED SEGMENTATION

Weakly supervised learning has achieved notable success
in machine learning task. Its main principle is to learn
and build a prediction model through weakly supervision
information. Weakly supervised segmentation has become a
hot topic for the manual annotation process is completely
avoided. It relies on lightweight annotation data such as
image category labels. Papandreou et al. [14] proposed a
model to estimate semantic regions by utilizing annotated
bounding boxes or image-level labels. Huang er al. [15]
proposed a training model starting from the discriminative
regions and progressively increase the pixel-level supervision
using seeded region growing. Wang et al. [16] proposed
an iterative bottom-up and top-down framework which tol-
erates inaccurate initial localization by iteratively mining
common object features from object seeds. It bridges the
gap between high-level semantic and low-level appearance
in weakly supervised semantic segmentation. Most of these
models are based on deep network, and weak supervised
learning for single image is still rare so far.

B. TEXTURE COMPUTING

JSEG image segmentation provides a method based on color
texture [26]. Its segmentation results are more accurate and
robust on texture regions. This method is more efficient
and feasible than estimating the parameters of the texture
model to recognize this homogeneity. The algorithm makes
several assumptions about the image. Firstly, each image
contains some similar color texture regions. Secondly, in an
image, the color value of each region can be substituted
by a quantized color. Finally, in the image, the color of
the neighborhood is uninterrupted and distinguishable. JSEG
algorithm consisted of two main steps: color quantization and
spatial segmentation. The purpose of color quantization is to
reduce the number of colors in the original color image and
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FIGURE 1. The architecture of the proposed method.

decrease the complexity of the algorithm. Generally, 10 to
20 representative colors are extracted in quantization, and
only these colors are treated in the texture computing. The
key step of quantization is to smooth denoising in LUV space
using a non-linear Peer Group Filtering. Then, the general
vector quantization algorithm is used to cluster the pixels and
get the class-map. Thus the J-image is calculated with cir-
cular window templates based on the class-map. The texture
features J-image can show the boundary and interior of the
region.

C. SUPERPIXELS COMPUTING

Superpixels segmentation is to over-segment an image into
a set of connected uniform regions. Different superpix-
els algorithms present diverse appearance and attributes.
Shi and Malik proposed the basic idea of graph-based seg-
mentation, named normalized cut [27]. The graph-cut seg-
mentation [28] adopts minimum spanning tree to cluster
pixels and the goal is to make the pixels in the same region
as similar as possible and the pixels in different regions as
dissimilar as possible. Mean-shift segmentation [29] seek
the extreme modality in the joint feature space for clus-
tering, and obtains the reasonable segmentation region by
changing the bandwidths. Levinstein et al. [30] proposed a
growing superpixels model based on geometric flows. SLIC
was proposed by Achanta et al. [31], clustering super-pixels
based on K-means iteration. Liu er al. [32] proposed a
new objective function based on entropy rate and balance
term for calculating superpixels in a graph-based framework.
LSC(Linear Spectral Clustering) [33] designs a linear spec-
tral clustering strategy, which maps the pixel values and coor-
dinates explicitly into the high-dimensional feature space,
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approximates the similarity measure by using the kernel
function, and optimizes the objective function of normalized
cutting by iterating simple K-means clustering in the feature
space.

So far, all these methods have achieved satisfactory results
on their established indicators. Therefore, three strategies are
employed to calculate different scales of superpixels, and
their average performance are used for feature optimization.

D. OBJECTNESS

When the human eye observes an image, the brain vision sys-
tem will quickly give a semantic information to each region
in the image and locates the contour integrity of the target
region, which is the ability acquired from long-term training.
Alex gives the definition of objectness [34]: the objectness of
an image is the possibility that a pixel or an area is contained
by an object in the image. The semantic information can be
determined according to the details of color, contour, region,
texture and so on. Of course, it depends more accurately on
the target itself. So if we know the objectness of an image,
we can approximately know the semantic information for seg-
mentation. Therefore, we try to introduce objectness compute
method to assist segmentation. There are many applications
about objectness, such as salient computation [35], segmen-
tation [36] and target detection [37], [38].

Zhang and Zhou [35] redefined the calculation method
of objectness, and designed a self-train structural ranker
across a group of images to rank the proposals and obtain
the proposal-level saliency map. Yao et al. [39] computed
co-saliency by multi-view spectrum clustering square based
on the co-occurrence relation between objectness and super-
pixels. Jia and Han [40] used weighted linear combination
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of image objectness score as feature map to assist salient
object detection and the feature map can roughly describe
the position of objects in the image. Frintrop et al. [41]
integrated the saliency system into an object proposal
generation framework to obtain segment-based saliency
maps and boost the results for salient object segmenta-
tion. Carreira and Sminchisescu [42] used bottom-up pro-
cesses and mid-level cues to produce and rank the objects
hypotheses in an image. They extracted object by solv-
ing a sequence of constrained parametric min-cut problems
(CPMC) on a regular image grid without prior knowledge.
Chang et al. [38] improved their estimates model of object-
ness by building new graphical models and energy func-
tions through iterative optimization. Specifically, the energy
function includes objectivity, saliency and interaction energy.
Jiang et al. [43] overlapped all scored object windows as pix-
els objectness and averaged them in regions level by segmen-
tation to compute regional objectness for salience detection.

E. MULTI-KERNEL LEARNING

Multi-kernel methods are widely used in many fields, such as
face recognition [18], visual image classification [19], [20],
automatic target recognition [21], multi-spectral and hyper-
spectral remote sensing data analysis [22], [23] etc. The main
reason is that most of these problems need to be solved in pat-
tern recognition are non-linear problems. The kernel method
has strong ability to cope with non-linear problems and
unique advantages in the case of solving high-dimensional
data with small number samples [24].

The MKL methods can be divided into many kinds
according to different combination modes, training strategies,
multi-scale analyses, etc. The combined kernel model can
simplify the process of parameter learning in this paper.
The basic idea of combining kernel can be summarized as
following:

Suppose that the samples have M kinds of feature represen-
tations, a training pixel denoted as x(x!, x2 .. . x™). The ker-
nel method maps x™ to high-dimensional space using inner
product function K, (x]", xj’.") = (P"(x;), P"(xy)), P is an
implicit mapping function and the most widely used kernel is
the radial basis function (RBF) kernel. The multi-class parti-
tioning problem of combined kernel SVM can be expressed
as the following optimization problem:

M

! 2
N | G ,
rrgnlg}gl{zmél lomll” + Ei &}

st yi{om, ")) +b)>1-&, &>0icC1,2...N

(D

In the solution of SVMs, N pairs of examples (y;, xl-)i.V: 1
are selected for training. y; is the label of x;. @, is the weight
for component ®"(x;), & is the vector of slack variables,
G is pre-defined regularization parameter that trades off the
margin with error. A composite kernel can be effectively
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computed by a weighted average of multiple kernels:

M
K= D tmKun(xf", x}") @
m=1

As show in [25], the parameters «; and the classifica-
tion rules are estimated by solving the Lagrange equation
of Eq.(1) and the resultant decision function is obtained as
follows:

FE =" Y aiyiKn(x, x) + b 3)

lil. METHODS

In this section, We define three types of features that con-
tain weak semantic information for training MKL-SVMs to
classify image pixels. Then, we refine mean-shift segments
with the pre-labeled information in order to produce a better
segmentation result. The detailed implementation process is
described as following.

A. AVERAGE COLOR FEATURES OF THREE

LAYER SUPERPIXELS

Superpixels segmentation can obtain homogeneous regions,
and different computing strategies can obtain superpixels of
various scales and shapes which imply the class attributes of
the pixels. In literature [22], the average feature of superpixels
has been used for classification, and it achieves better results.
Entropy rate(ER) segmentation [32], Mean-shift [29] and
NNG [28] are used to compute homogeneous regions by
Entropy rate of random walk, feature space clustering and
minimum spanning tree strategy respectively. Therefore, The
average color feature of three kinds of superpixels segmenta-
tion is defined as one of the input of classification learning.
For segmentation results /*7 contains M superpixels, and
superpixel I’ consists of a set of pixels xi = 1,2...N,
the mean color value M, of the internal pixel x; is defined
as

N
. 1 .
MICZNE Cj XjEIl,i:LZ...M (4)
1

Each inner pixel is assigned M/, and all assigned pixels
constitute the mean features of images I The mean color
featuer of three-layer superpixels are calculated as

MY = MeanME*R + MEMS + mMENNO) (5)

B. TEXTURE

The value of the pixel in the J-image is expressed by the
local J-value, and the calculation of the local J-value of each
pixel is described by a class map of the color uniformity
of the circular template centered on the pixel x.: Let the
neighborhood of x. consist of N pixels in the window W,
so that z € Z. Z be the set of all N pixels in the class-map,
and it is assumed to be divided into C color classes, namely
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FIGURE 2. The illustration of the J-image of various color quantization and template scales.

Z; =1,2,..,i,..C. The mean value of Z is m and m; be the
mean of the N; data points of class Z;:

mizllvzz (6)

Z€Z;

Define Sy as the total variance of the data set Z.

Sr=7_llz—ml? @

€Z

Sw represents the sum of variances for each class, namely
intra-class differences.

C C
Sw=y Si=Y Y llz—ml® ®)
1 1

z€Z;

Then the J-image is calculated by the relationship between
St and Sy to describe the uniformity of image color:

St —Sw
=5,

When the color class of image distributes uniformly in the
whole image, the J-value is smaller. If color distribution is
uniform and the color class is kept separate from each other,
the J-value will be larger. The number of color quantization
and window scale is essential for texture calculation. Through
observation of Fig.2, we find that larger color number or
smaller texture template will bring a more detailed texture.
On the contrary, smaller color number or larger texture tem-
plate will smooth homogeneous texture and bring large-scale
texture regions. In order to make texture features more adapt-
able, we combine color quantization (5,10,15) with window

J &)
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scale (1,5,10) respectively to obtain three scale texture energy
maps as the texture components of MKL in this paper:

T = [(Jis=1,c=5), Js=5,c=10), J;s=10,c=15)]  (10)

C. OBJECTNESSS

In [34], objectness mainly estimated the scores of the alter-
native windows of four cues: multi-scale saliency, color con-
trast(CC), edge density(ED) and superspixel straddling(SS).
The saliency detection only focuses on the extraction of
interesting regions and emphasizes the difference of back-
ground and foreground, which will influence the segmenta-
tion performance. So we only use three other cues to calculate
objectness. All detailed definition of CC, ED and SS can be
found in [34].

FIGURE 3. The illustration of outer rectangles of Wseg (a). MS (b). NNG.

The selection of object proposal windows consists of two
parts. The first part is the random sampling windows Wefauir
obtained by learning from [43]. On the second part, we use
the superpixels of MS and NNG to estimate the alternative
windows. The outer rectangles of all superpixels compose
a set Rect(such as red rectangles in Fig.3), and the outer
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FIGURE 4. The computation process of the objectness.(a). Input image (b).Sampling windows Wgefq,se (c).Sampling
windows Wseg (d).Objectness of Wz, (€)-Objectness of Wseg (f). Region objectness of Wyerq,i (8)-Region objectness

of Wseg (h).Hybrid region objectness Wseg and Wgefgyj;-

rectangles of any combination of two rectangles in Rect is
more likely to contain a relatively complete object compared
with random windows(see yellow rectangles in Fig.3). There-
fore, we choose all the outer rectangles of any combination
of two rectangles in Rect as the candidate windows Wieg.
Next, we estimate a probability score (the probability of there
being a complete object) for the aforementioned two parts of
windows to compute pixel-level objectness.

The objectness score of a test window w is defined by the
Naive Bayes posterior probability as:

Py (obj|Cue) = PLC1s106)P(0b)) 11
p(Cues)

where Cue is the combined cues set of CC, ED and SS, p(obyj)
is the priors estimation value of the objectness of training
data. All the specific definition of p(Cues|obj), p(obj) and
p(Cues) are described in [34].

The objectness value of all sampling windows is computed
by Eq.(11), and summed up by pixels locations as pixel-level
objectness with Eq.(12).

weW
Obj(x) = Y Py(x) (12)

XEW
where W is the combined sample windows of Wy, and
Waefauir» W is the single window in W and Py, (x) is the score
of sample window computed by Eq.(11). The objectness of
pixle-wise can not represent the similarity between pixels
which shows disorder, so we calculate the average objectness
value of regions as the region objectness of all pixels in the

corresponding regions of MS segmentation / _é"e[g .
O(x) = Mean,cg,Obj,(x) R; C IS (13)

In Fig.4, we show the computation process of objectness.

D. PIXELS PREDICTION WITH MKL SVMs

In this paper, a small number of labeled pixels(The training
pixels shown in Fig.1) (x1, x2,...xy) with corresponding
labels (y1, y2, ...yn) are selected uniformly on the image
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plane to train classification rules. In addition, RBF kernel [34]
has been proved to be a good kernel function to improve
the classification effect and is widely used. Therefore, SVM
classifier combines RBF kernel function with weighted train-
ing of three kinds of features in this paper, and they are:
mean feature of combined superpixels Mc, texture map T
and region-based objectness O. All data are normalized by
x = x/|lx|| * 255. The three kernels are computed by a
weighted sum formula:

Kemr Gis i) = imkme (i, x;)
+urkiex (Xi, X)) + poko(xi, xj)  (14)

where the kernel weights py + 1+ 1o = 1, and the optimal
weights combination of three kernels is tested in 4.1. Thus
with the learned «; and b from Lagrange multipliers of Eq.2,
the resultant decision function of the combined kernels can
be obtained as:

N
@ =) Y aiyiKemp(x, x) + b (15)

i=1

E. REGION REFINING

The pixels label predicted by SVM are discrete results,
not ideal segmentation results. In this section, these labeled
results are used to optimize the merging of regions. It is well
known that when the appropriate parameters are selected,
the MS segmentation Iy;s has a good performance in the
details and regional integrity. So we use MKL classification
results(All pixels of image are classified into L-classes) to
refine and merge the superpixels of /s as the final segmenta-
tion. For [; in I;g with L regions, count the pixels number(V;)
of different labels /(I € L) in I;, and the label /; of max N;
is used to redefine all pixel labels in /; to get the final image
segmentation results.

ly = arg mlax Conut(x;) € I lCL (16)
M

IsgG = Merge Y (Label(l) =1L,)  I; 1™ (17)
1
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IV. EXPEREIMENTS

In this section, the experiment includes four sub test to eval-
uate the performance of the proposed method. The imple-
mentation is conducted with MATLAB on a standard com-
puter(Intel i5 Core 2.3GHz CPU with 8G memory) and eval-
uated on Berkeley Segmentation Data Set (BSD500) [44].
BSD500 is widely used in image segmentation testing, which
includes 200 training images, 200 test images and 100 vali-
dation images. We use a variety of measurements to evaluate
and quantitatively the performance of the algorithm: the Prob-
abilistic Rand Index (PRI) [45], the Variation of Information
(Vol) [46], the Global Consistency Error (GCE) [47], and
the Boundary Displacement Error (BDE) [48]. The PRI is
a measure of likelihood of a pair of pixels being grouped
consistently between two segmentations. The VOI is defined
as the relative entropy between proposed segmentations and
groundtruth segmentations. GCE computes the degree to
which two segmentations are mutually consistent. The BDE
evaluates the average displacement error of boundary pixels
between two segmented images by computing the distance
between the pixel and the closest pixel in the other seg-
mentation. Higher PRI score indicates that the algorithm has
good performance, and lower scores of VOI, GCE and BDE
indicate better performance.

In the first experiment, we test and analyze the segmen-
tation performance on all possible weight combinations of
multi-feature kernels, and get the kernel combination of the
optimal segmentation results. The second experiment inves-
tigates the influence of different number of training samples
on the segmentation performance. In the third experiment,
we evaluate the segmentation results and compare them with
several state-of-the-art methods on the BSD300(a subset of
BSD500). In the fourth experiment, the proposed method is
performed on a large scale datesets PASCAL VOC 2012 seg-
mentation benchmark, and the results are compared with a
deep learning segmentation method.

A. SEGMENTATION TEST OF KERNEL
WEIGHT COMBINATION
In this section, we investigate the kernel combinations sen-
sitivity of the proposed method to find the optimal com-
binations based on the BSD500. We display the influence
on segmentation performance with various superpixels num-
ber of ER method in Fig.7, and it can be seen that the
the change of superpixes have little effect on segmentation
performance. The superpixel numbers of MS and FH are
uncontrollable, and region refining makes the presegments
have little effect on the overall segmentation performance.
Therefore, we set the segmentation parameter of MS and
FH with higher boundary recall with fixed Minarea. The
calculation parameters of three superpixels are set to ER(K =
400), MS(h, = 10, hy = 8, Minarea = 200), NNG(oc =
0.6,k = 200, Minarea = 200). The goal of multi-scale
superpixels is to make them contain more visual content.
Fig.5 displays the test results of all kernel combina-
tions of three kinds of features on BSD500. We arrange all
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possible combinations in the main sequence of increasing
up (0.1 —0.8). As can be seen in Fig.5, different weights
combinations present significant changes in the segmenta-
tion accuracy. Increasing the proportion of any single fea-
ture will lead to the decrease of the segmentation accuracy,
and larger weight of component M¢ performs better(uy =
0.4,0.5,0.6,0.7) compared with other weights. According
to our observation of Fig.5, when the weight combination is
set to (uy = 0.5, ur = 0.2, up = 0.3), the segmentation
performance is the best and the index values reach the optimal
(PRI = 0.8449,VOI = 1.5774, GCE = 0.1757, BDE =
9.8792). The above results indicate that the performance
of the proposed algorithm is sensitive to the change of the
weight coefficients, and the mean feature of superpixels has
the greatest affection on segmentation accuracy, followed by
objectness and texture feature.

Next, we verify the qualitative performance of weight com-
binations on several specific images. We take the ur as a
variable to observe the segmentation accuracy with change
of weight combinations. Fig.6 shows several image segmen-
tation results under the best weight combinations of three ker-
nels when pr increases from 0.1 to 0.8(see in Fig.5). There
are corresponding segmentation results and image evaluation
indexes PRI and BDE. All pr are highlighted in red color
in Fig.6. It can be seen that raising the proportion of any
weight will not bring ideal visual segmentation effect and
index performance. Segmentation results are relatively ideal
only when each feature space plays a role. As can be seen
from Fig.6, The segmentation results are visually better and
more accurate in the case of (=05, H7=0.2, L0=0.3), Which
is consistent with the performance of the entire dataset.

B. SEGMENTATION TEST ON VARIOUS TRAINING PIXELS

In this section, we investigate the effect of the num-
ber of training samples on the performance of the pro-
posed algorithm. 50-1000 training samples are tested on
BSD500 respectively. In Fig.7, we show the changes of
four evaluation indexes(PRI,VOI,GCE and BDE) with the
increase of the number of training samples. From the overall
trend of four indexes, it can be seen that they are improved.
A comparison of several test images with different training
samples are presented in Fig.8. It can be observed that with
the increase of the training samples, the segmentation accu-
racies of test images are also improved and visually better.
On the other hand, with the increase of training samples,
object areas to be segmented become more complete, such as
the chimpanzees and people on images in the first and fourth
rows. When there are enough training samples, more details
will appear, such as the pattern of butterfly wings on images in
the fifth row. In addition, the location of the training samples
will also have an impact on the segmentation results. The
location of the small area may be disqualified because there
are no relevant samples, such as face and grasses from images
in the second and third rows. When the training samples range
from 400 to 1000, the change of the four evaluation indexes
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FIGURE 5. Average Performance with different weights combination K (i, /.7, 1) on four criteria.

become flat. Therefore, the number of training samples in this
paper is set to 400 to improve operating efficiency.

C. SEGMENTATION COMPARISON

In this section, we choose several state-of-the-art seg-
mentation methods for comparison, including JSEG [26],
CTM [47], SAS [49], G-graph [50] R-Graph [51], BUP [15]
and AIS [16]. Parameter settings of several comparing meth-
ods are as follows: The bandwidth parameter of mean shift
segmentation is MS(h, 10, Ay 8, Minarea 500).
The parameter (o 1.2, K 400, M 500) of FH is
designed to achieve a more complete semantic region of the
test image. The JSEG algorithm requires three predefined
parameters: 1). quantised-colors = 10, 2). scales = 5, 3),

VOLUME 8, 2020

merging-parameter = 0.78. The key parameter of CTM is
set to (A = 0.2). The parameters of SAS and GL-graph are
provided by the authors in the opened source codes, in which
the number of classes K needs to be predefined. R-graph
proposed multi-class segmentation strategy by utilizing graph
partitions based on eigenvector histogram. There are many
kinds of toolboxs being used, including SE, supepixels, ker-
nel density estimation, and we have tested using the default
parameters values in the corresponding codes. BUP [15] and
AIS [16] are two merging segmentation methods based on
superpixels and experiments implemented with 900 superpix-
els for BUP and self-adaptation for AIS separately.

Firstly, we select seven images from BSD300 for com-
parison with seven other algorithms and display the visual
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FIGURE 7. Segmentation evaluation curves with various training samples
and superpixels(ER) on BSD500.

segmentation effects in Fig.9 and four indexes in Table.2.
In Fig.9, the first column is the original image. From col-
umn 2 to column 8, the segmentation results of various algo-
rithms are JSEG, CTM, SAS, GL-graph, R-graph, BUM and
AIS, and the last column are results of the proposed algo-
rithm. From the perspective of overall visual performance,
our segmentation results are relatively complete, and have
better consistency with human visual cognitive results in local
regions. For example, the overall contours of the objects and
background regions are relatively complete in images 48055,
113004, 118020. For complex images with multiple objects
and cross-mixing regions, the local segmentation results are
visually better than compared algorithms, such as images
65074 and 97033.

137666

From Fig.9, we can observe that JSEG has good adapt-
ability to extract texture regions, but perform badly in
integrity. It is prone to produce over-segmentation or
under-segmentation regions. Results of CTM are similar to
JSEG, but this method takes considerable time to compute
textures. SAS and GL-graph are bipartite-graph-based meth-
ods work on multi-scale superpixels that can conveniently
regroup pixels according to different superpixel results. SAS
and GL-graph work better than other methods in regional
entirety, but they can not work well in complex regions like
in the third row. R-graph depends heavily on the pre-defined
graph partition parameters L, and we can see that the
fixed number of classes(11) provide in [51]) is not suitable
for all image segmentation. The merging process of BUM
is started from smaller superpixels, and the edge of seg-
mentation results will appear uneven. AIS uses four types
of feature constraint merging process, which is obviously
affected by feature weight, and also prone to incomplete
merging.

Table 1 reports the comparison of the evaluation indexes of
the test image in Fig.9. It is clear that, our method performs
the best six times on PRI, five times on VOI, four times
on GCE and BDE. To sum up, the segmentation results and
visual consistency of our method are significantly better than
other algorithms.

The average quantitative evaluation of eight comparison
algorithms on BSD300 is shown in Table 2. From the per-
formance on the whole dataset, PRI and VOI indexes of the
proposed method are superior to other compared algorithms
except BUM and AIS for their superpixels number are opti-
mized, GCE ranks second three and BDE ranks second in
the compared methods. The resolution of the test images in
BSD are 321 x 481. The average time consumption of our
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FIGURE 8. Visual segmentation examples with changing training samples.

FIGURE 9. Visual comparison of segmentation results with eight algorithms. (a).Input images (b).JSEG (c).CTM (d).SAS (e).G-graph
(f).R-graph (g).BUM (h).AIS (i).Ours.

method is 22.8s, including feature extraction, training and with ER, MS and FH takes 5.8 second, extracting all the
region merging. The production of multi-scale superpixels visual features takes 7 seconds, MKL and region merging
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TABLE 1. The segmentation results comparision of eight images.

No. | index| JSEG | CTM | SAS | G-graph | R-graph | BUM | AIS | Ours(Rank)
PRI 0.8224 | 0.8646 | 0.8759 | 0.8760 0.8862 0.8133 | 0.7567 | 0.8906(1)
24036 | VOI | 1.5173 | 1.8437 | 1.2281 | 1.2281 1.4639 1.6657 | 2.2097 | 1.1092(1)
GCE | 0.1353 | 0.1755 | 0.0972 | 0.0973 0.0732 0.1711 | 0.1708 | 0.0724(1)
BDE | 11.160 | 11.634 | 9.2182 | 9.2275 8.1456 10.942 | 10.737 | 8.3313(2)
PRI 0.8954 | 0.8809 | 0.9013 | 0.9014 0.8839 0.8559 | 0.8484 | 0.9062(1)
25098 | VOI | 2.4249 | 3.4136 | 1.8810 | 1.8812 3.1447 2.1745 | 2.0368 | 2.1384(4)
GCE | 0.2069 | 0.2175 | 0.2035 | 0.2035 0.1697 0.2101 | 0.1641 | 0.2455(6)
BDE | 11.998 | 12.387 | 11.215| 11.208 10.836 12.087 | 13.897 | 9.6294(1)
PRI 0.8952 | 0.7954 | 0.9053 | 0.9053 0.8586 0.8287 | 0.8234 | 0.9276(1)
48055 | VOI | 1.2090 | 3.1659 | 1.2848 | 1.2847 1.9775 1.7040 | 1.9662 | 0.8715(1)
GCE | 0.1067 | 0.1185 | 0.1139 | 0.1139 0.1075 0.1970 | 0.1691 | 0.0548(1)
BDE | 10.297 | 14.454 | 11.515| 11.526 8.4490 19.300 | 16.036 | 9.3773(2)
PRI 0.9427 | 0.9422 | 0.9420 | 0.9420 0.9529 0.8073 | 0.8416 | 0.9356(6)
65074 | VOI | 1.9696 | 2.6482 | 1.6061 | 1.6035 2.0376 2.2369 | 2.3785 | 2.1066(5)
GCE | 0.2560 | 0.2211 | 0.1821 | 0.1817 0.2024 0.1502 | 0.2016 | 0.2926(5)
BDE | 3.6686 | 4.5892 | 5.5878 | 5.5854 3.9733 7.5400 | 6.9726 | 4.2362(3)
PRI 0.7753 | 0.7609 | 0.7706 | 0.7707 0.7426 0.7697 | 0.7551 | 0.8207(1)
97033 | VOI | 2.4656 | 3.0302 | 2.1951 | 2.1949 3.2403 2.2482 | 2.1694 | 1.7042(1)
GCE | 0.1599 | 0.1349 | 0.2306 | 0.2307 0.2269 0.2314 | 0.3084 | 0.2019(3)
BDE | 19.583 | 16.279 | 22.482 | 22.207 23.337 16.796 | 27.932 | 6.9220(1)
PRI 0.7291 | 0.7223 | 0.8088 | 0.8018 0.7262 0.7440 | 0.7662 | 0.8977(1)
111344| VOI | 2.9647 | 3.7268 | 1.4839 | 2.0605 3.3526 1.7983 | 1.7387 | 0.7535(1)
GCE | 0.1463 | 0.1067 | 0.2192 | 0.1767 0.0803 0.1975 | 0.1459 | 0.0597(1)
BDE | 8.0407 | 8.2169 | 5.9001 | 6.4110 8.5130 8.2605 | 12.381 | 2.2077(1)
PRI 0.8776 | 0.8805 | 0.8909 | 0.8909 0.8903 0.8302 | 0.8895 | 0.9018(1)
118020 VOI | 2.2463 | 2.9203 | 2.0509 | 2.0510 2.9193 2.0008 | 1.9742 | 1.5324(1)
GCE | 0.2843 | 0.1911 | 0.2919 | 0.2919 0.1454 0.2382 | 0.2671 | 0.1762(2)
BDE | 7.6198 | 7.2389 | 8.7596 | 8.7582 6.8327 10.648 | 7.9588 | 5.8014(1)
TABLE 2. The segmentation results comparison on BSD300.
| JSEG | CTM | SAS | G-graph | R-graph | BUP | AIS | Ours
PRI 0.7756 | 0.7263 | 0.8319 | 0.8384 0.8370 0.8587 | 0.8359 | 0.8453
VOI | 23217 | 2.1010 | 1.6849 | 1.8010 3.4467 1.5947 | 1.1795 | 1.5473
GCE | 0.1989 | 0.2071 | 0.1779 | 0.1934 0.1342 0.1968 | 0.1613 | 0.1720
BDE | 14.40 9.42 11.29 10.66 14.09 10.89 10.62 10.33

takes 10 seconds. The time consumption of JSEG(4.7s) and
SAS(6.5s) are lower than our methods due to the development
tool is C Language. The time performance of our method
is close to R-graph(19s) and BUM(21.2s), and better than
G-graph(26.8s), AIS(>30s),and CTM(>1 minutes).

D. SEGMENTATION ON PASCAL VOC 2012

Extensive experiments are conducted on PASCAL VOC
2012 datasets, and compared with two state-of-the-art
deep learning segmentation methods Mask-RCNN [52] and
COB [53]. COB established a single CNN forward pass
for multi-scale contour detection and it combined multi-
scale oriented contours for hierarchical segmentation. The
Mask-RCNN is designed on the base of the region pro-
posal network(RPN). It uses ROIAlign to refine region fea-
tures of ROI and locates the corresponding binary mask
as segmentations by RPN. Both of the two methods are
well trained semantic segmentation networks and have excel-
lent performance in target segmentation of various natural
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scenes. PASCAL VOC benchmark contains 11315 images,
and 3812 images are used for test in this section. The most
noteworthy feature of PASCAL dataset is that the image
contains salient objects regions, and it was mainly used for
testing of image and objects segmentation tasks. Fig.10 shows
some qualitative results of the three compared algorithms and
the overall performance test are shown in Table 3 with four
segmentation indexes. From the comparison of segmentation
results in Fig.10, it can be observed that our method can
reduce false segmentation and produce clear segmentation
results and contours. Moreover, the results of large-scale data
sets are sufficient to demonstrate the generalization ability of
our proposed method for diverse scenarios. From the quanti-
tative results, we can see that the segmentation performance
on four standard measurements of the proposed method algo-
rithm is more accurate than that of Mask-RCNN and COB.
Therefore, we argue that our strategy to learn the features of
a single image is more pertinent than CNN architecture, and
obtain accurate segmentations.
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FIGURE 10. Visual segmentation examples on PASCAL VOC arranged by:(a,f).Input image (b,g). Groundtruth (c,h). Results of Ours (d,i). Results of COB (e,j).
Results of Mask-RCNN.
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TABLE 3. The segmentation results comparison on PASCAL VOC.

| COB | Mask_RCNN | Ours
PRI 0.7257 0.8113 0.8759
VOI 0.9031 0.7086 0.6463
GCE 0.1137 0.0897 0.1043
BDE 49.41 28.80 26.70

V. CONCLUSION

In this paper, we propose a segmentation strategy in using
class labels of pixels from training SVM to merge regions
on a single image. It is interesting to seek the best fusion
scheme with MKL by combining color, texture and object
clues to classify pixels. Thus, the class labels are used to
refine the pre-segments results as segmentation. That will be
a meaningful step towards weakly supervised image segmen-
tation. Compared with previous state-of-the-art algorithms,
we can see that our algorithm further improve the accuracy
of segmentation by testing on open datasets. In the future,
we are trying to find for more dimensional features and
combinatorial optimization, learning guidance segmentation
at the super-pixel level, and expect better performance.
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