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ABSTRACT Ferrography analysis(FA) is an important approach to detect the wear state of mechanical
equipment. Ferrographic image recognition based on deep learning needs a large number of image samples.
However, the ferrographic images of mechanical equipment are difficult to obtain enough high-quality
samples in a short time due to the complexity and low efficiency of the ferrogram making. Therefore, the
recognition method for small sample ferrographic images based on the convolutional neural network(CNN)
and transfer learning(TL) is proposed. Based on the similarity of samples, the virtual ferrographic image
set is designed as the source data of the pretraining model, the tested CNN model is constructed by using
the TL. Based on the AlexNet frame, this paper studies the influence of the CNN internal factors including
network structure, convolution parameters, activation function, optimization mode, learning rate and the
external factors on the classification effect of test samples, and the L2 regularizer is added to solve the
overfitting. According to the classification result of test samples, an optimal parameter combination is
obtained to establish an intelligent recognition model of ferrographic images based on CNN and TL with the
recognition accuracy of 93.75%. Moreover, the t-SNE is used to realize the wear particle recognition process
visualization, which proves the effectiveness of the proposed algorithm. This work provides an effective way
for the ferrographic image recognition of wear particles under small samples.

INDEX TERMS Ferrographic image, convolutional neural network, transfer learning, wear condition

recognition.

I. INTRODUCTION

Wear is one of the main causes of mechanical failure. The
particles produced by wear contain a lot of wear information,
such as the location, type and degree of wear, etc.. Wear
particles mostly exist in the lubricating oil from mechanical
equipment. By using the oil analysis technology, the wear
status monitoring and identification of equipment can be
carried out, and then the potential problems can be found
in time, and the equipment can be effectively maintained.
Oil analysis technology includes ferrography analysis(FA),
spectrum analysis and particle size analysis, etc., which can
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reveal the evolution trend of wear state and the relationship
between the wear state and mechanism [1]-[4]. Among these
methods, the FA is most widely used.

FA is mainly based on the analysis of wear particle images.
According to the shape, size and texture of wear particles,
the wear type and even wear location of mechanical equip-
ment can be determined [5]. The wear condition diagnosis
of equipment are carried out by extracting the features such
as color [6], surface texture [7], boundary dimension [8] and
the relationship between quantitative correlation features and
wear morphology [9]. The traditional wear particle recog-
nition process includes image preprocessing, segmentation
[10], [11], feature extraction and pattern classification [12].
This process is complex and mainly depends on manual
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recognition, which has a poor universality. The high cost,
low efficiency and poor accuracy of manual identification can
be solved by establishing an automatic classification system
[13], and the identification process is objective [14], [15].
As a kind of deep learning model the CNN has a good ability
of feature extraction and generalization and can realize the
automatic classification of wear particles [16], and has been
applied in the image recognition of wear particles. The wear
particle images collected from the oil sample are often blurred
due to the oil pollution and poor light conditions. Wu e al.
[17] proposed a kind of method to improve image quality by
pixel level restoration using larger kernel image, compared to
the traditional method its calculation efficiency is higher and
the more features are extracted. Szatmari et al. [18] applied
the CNN model to the separation of metal wear particles and
bubbles, they established an online fault monitoring system,
and the preliminary experiments show that the method has
strong robustness and anti-noise ability. Wang [19] built a
CNN model to identify seven kinds of ferrographic images
based on deposition chain ferrograph and block debris image,
aiming at the problems of poor universality of traditional
recognition methods. Wu [20] built a Wear-Net wear particle
image classification model and wear-SSD target detection
model based on Reference [19] to classify the single type
debris and detect the composite debris. Although both have
achieved good results, there is also a lack of sufficient data in
the model design. Peng et al. [21] proposed a classification
model of wear particles considering overlapping particles,
they used the Inception-v3 model to automatically extract the
characteristics of wear particles and designed a new network
with three classifiers to determine whether there are fatigue,
oxide and spherical particles in the ferrographic images.
In addition, they also proposed a FECNN model with one-
dimensional convolution operation in CNN to identify wear
particles [22]. Wang et al. [23] proposed an integrated model
of BP neural network and CNN for wear debris classification,
the test results show that the identification rates are all over
80%. An et al. [24] used a CNN model and TL to identify
the fatigue and serious sliding particles, and the accuracy is
89.35%. Peng et al. [25] combined TL and support vector
machine(SVM) to identify four types of wear debris includ-
ing cutting, sphere, fatigue and severe sliding particles, and
they proposed a method to identify the type of wear particles
by extracting the characteristics of wear particles in dynamic
video [26].

The above researches are beneficial to the intelligent recog-
nition of ferrographic images based on the machine learn-
ing, but there is still no optimal solution for small sample
images. In order to solve the low efficiency problem of
ferrographic image production, this paper proposes a new
intelligent recognition approach based on the CNN and TL by
introducing virtual image set to deal with a small sample of
ferrographic images. The structure of this paper is as follows:
Section 1 is the basis of CNN and TL used, Section 2 is
the acquisition method of virtual and measured image set,
Section 3 is to build the recognition model and select the best

VOLUME 8, 2020

parameters, Section 4 is the results and discussion, and the
final section is the conclusion.

Il. BASIS OF METHOD

A. CONVOLUTIONAL NEURAL NETWORK

CNN is an important branch of deep learning, which is a
feedforward neural network [27], [28] according to the bio-
logical receptive field mechanism. The typical structure of
CNN is generally composed of the input layer, convolution
layer(Conv), pooling layer(Pool), fully-connected layer(FC)
and output layer, as shown in Figure 1.

As shown in Figure.1, Conv is used to extract the features
of input images. The input images are extracted by the inner
product operation with the convolution kernel composed of
weight matrix to generate the featured images. The formula
of operation is:

n n
X(k) Zf(z Z W_(k)l(k_]) + b(k)) (1)

ij =~ l+imAj
i=0 j=0

. k—1 .
where X® is the featured map of the output, II(H m)+,, is the

featured map from the upper layer, Wl_(j) is the weight matrix,
b® is the bias, f is the activation function. I, m are two
dimensions of the featured graph of the previous layer, and &
is the current layer. When k& = 1, I indicates the input images.

Pool is to reduce the dimension of the featured map
obtained by the convolution, which makes the feature robust
to the position change of the input images. Meanwhile, Pool
can reduce the amount of model parameters. Pool is usually
the max or average pooling, i.e., taking the maximum or aver-
age value of the eigenvalue in the pooling area.

FC is to map the high-dimensional features from the Conv
and Pool to the sample marker space to realize the classi-
fication. The high-dimensional feature is the input of the
fully-connected layer, and each feature participates in the
calculation as a neuron. The calculation formula is as follows:

® *=1)
5 =X

w4 p® @
where z;.k) is the featured map of the fully-connected layer,
Xl.(k_ D is the featured map processed by dimension reduction
in the (k — 1)-th layer.

For the output feature mapping, the Softmax function is
used to calculate the likelihood probability of each category,
and the category corresponding to the maximum likelihood
probability is taken as the result of data classification and out-
put by the output layer. The Softmax function is as follows:

8
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where y; represents the predicted sample category, P(y;) is the
probability predicted as y; category, and K is the number of

sample categories. Especially, ZlK: PO =1
Then, the classification result is:
P(§) = max(P(y;)), 0<i<K )

137075



IEEE Access

H. Fan et al.: Intelligent Recognition of Ferrographic Images Combining Optimal CNN With TL Introducing Virtual Images

FIGURE 1. Structure of a typical CNN model.

where P(y) represents the probability that the prediction is ¥,
y; represents the real. When y = y;, the prediction result is
correct; otherwise, wrong.

Assuming M is the total number of samples, and N is the
number of correct predictions, then the prediction accuracy
is:

p=1 ®)

Generally, the cross entropy function is used as the loss
function to calculate the error. The error expression between
the predicted value and the real value is:

1 X
Lioss = == ;yi log (9) + (1 —y)log (1=5)  (6)
The cross entropy is a part of KL divergence, which is used
to measure the difference between two different probability
distributions. The smaller the cross entropy is, the smaller the
KL divergence is, and the closer the two distributions are, i.e,
the more accurate the predicted result is.

B. TRANSFER LEARNING

TL is a new kind of machine learning method to deal with
small samples, which relaxes the hypothesis that the train-
ing and test set are independent and equally distributed and
the number of training samples is sufficient [29], aiming to
transfer the existing knowledge to solve the learning problem
of only a few number of labeled samples in the target area
[30].

Figure 2 shows the schematic diagram of TL method, the
large-scale image set is used to train a neural network model,
and then part of the network structure and its parameters in the
pretraining model is transferred to the classification model.
In this paper, the parameters of the convolution layer trained
by the pretraining model is applied to the classification model
by TL scheme. The target image set is used to retrain the
model. In the training process, all the convolution layers
are frozen, and only the fully-connected layer participates in
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the network updating. Finally, the classification results are
obtained.

FIGURE 2. Schematic diagram of the TL used.

Ill. SAMPLE PREPARATION

A. MEASURED SAMPLE PREPARATION

1) EXPERIMENTAL SETUP

In this paper, for the lubricating oil of a gearbox as shown
in Figure 3, an analytical ferrograph as shown in Figure 4 was
used to make the ferrogram. In Figure 4, the ferrogram
making system deposits the wear particles on the glass sub-
strate through a magnetic field generator, and then obtains
the digital images through an imaging system composed of
a microscope and an upper computer. The parameters of
analytical ferrograph are shown in Table 1.

2) FERROGRAM PREPARATION
As shown in Figure 5, the process of preparing the wear
particle ferrogram by an analytical ferrograph shown in Fig-
ure 4 includes five key steps: sampling, dilution, water bath
oscillation, ferrogram making and drying.

As shown in Figure 5, take 6ml oil into a test tube, add
2ml tetrachloroethylene as the diluent, and oscillate in a warm
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FIGURE 3. Gearbox platform used for oil collection.

FIGURE 4. Ferrographic image preparation platform.

water bath for 30min at the frequency of 68 times/min at
65° to make the oil fully diluted to ensure that the stacked
particles are separated during the process and the particles
are evenly distributed. The ferrogram making principle of
analytical ferrograph is shown in Figure 5 (d), a micro quanti-
tative pump is used to press out the lubrication oil in the tube
and make it drop on the ferrogram, the wear particles in the
oil are adsorbed on the ferrogram under a strong magnetic
field, and then the residual oil on the ferrogram is dried by
a heating device, finally an effective ferrogram is made after
the temperature dropping to the room temperature.

3) DIGITAL IMAGE ACQUISITION

Put the prepared ferrogram on the stage of a microscope, and
observe the distribution of the wear particles. Then capture
the debris image by an image acquisition software on the
upper computer. The wear particle types include four cate-
gories and six species [31]. Different types of wear particles
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TABLE 1. Parameters of ferrographic image preparation platform.

Project Parameter

Oil sample / solvent
) 6ml, 2ml
consumption

Water bath oscillation i
65°C, 68 times/min
temperature / frequency

Water bath heating . .
) 330C~1407C, 90s
temperature / time

Microscope min / max o o
. ) 10x objective lense, 50 objective lense
magnification

Microscope
background light )
. . Secondary, automatic
intensity / image
capture ISO
Image capture / save /

2592x1944, 2592x944, 220x160
process resolution

TABLE 2. Types and image characteristics of wear particles.

Type of wear
) Image feature
particles
) . Wear Particle distributed in chain along the
Chain debris o
magnetic line on the ferrograph
Cutting debris Chip-like, spiral and arc-shaped

) ) Thin block, smooth surface with pitting, irregular
Fatigue debris .
outline
Severe sliding

debris

Smooth surface with obvious parallel scratches or

cracks, and the straight edge

produced by different wear mechanisms have different image
characteristics. Table 2 shows the main types of wear particles
and their image characteristics.

The ferrographic images obtained by an imaging system
shown in Figure 4 include the chain, cutting, fatigue and
severe sliding debris, as shown in Figure 6.

When we capture the ferrographic images, the problem of
particle accumulation is inevitable due to the influence of
light conditions and oil state. It is necessary to select the effec-
tive samples from the original samples. Finally, 640 valid
samples were used for the model training, 160 samples per
category. According to training set : test set=8:2, these sam-
ples were randomly divided.

B. DESIGN OF VIRTUAL FERROGRAPHIC IMAGE
According to the debris image obtained by the above exper-
iment, the corresponding virtual ferrographic images were
designed, as shown in Figure 7.

According to the sample similarity principle, the vir-
tual ferrographic images were designed, which consists
of 50 images for each category, i.e., 200 images for 4 cat-
egories. Using the random rotation, brightness and contrast
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= i T _>$ r Ferrogram
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(a)Sampling (b)Dilution (c)Water bath oscillation

FIGURE 5. Preparation process of ferrogram.

adjustment, and other data enhancement methods, the virtual
image samples are expanded to 6500 images for each cate-
gory, i.e., a total of 26000 images. According to training set
: verification set : test set=6:2:2, these virtual images were
randomly divided to train the model.

IV. MODEL RESEARCH

Based on the CNN, a pretraining model and a classification
model for TL are designed. The pretraining model uses the
virtual ferrographic image set, and the classification model
uses the measured ferrographic image set. Based on the
AlexNet frame, this paper studies the model from the aspects
of network structure, parameters, activation function, opti-
mizer and overfitting solution, and analyzes the classifica-
tion effect of the model with different parameters. The pre-
training model is to train the convolution layer parameters
for the image feature extraction, so the convolution layer is
the research focus, including the convolution layer structure,
parameters, activation function and others. The classification
model is to classify the images by the high-dimensional
features extracted from the convolution layer, so the gen-
eralization ability, convergence speed and accuracy are the
main research points, including the fully-connected layer
structure, optimization method, learning rate and regular term
processing. Take the classification accuracy rate and model
convergence rate as the evaluation indexes, When the itera-
tion stops, the optimal combination of network parameters
will be determined, and the intelligent recognition model for
small sample ferrographic images will be obtained. The initial
parameter settings of the model are shown in Table 3.

A. NETWORK STRUCTURE

The network structure is the first problem to be considered
in a CNN model. The recognition effect of wear particles
and the generalization ability of the model are closely related
to the complexity of the network structure. In this paper,
we used the AlexNet as a basic network frame, and adjusted
the location of the pooling layer properly without changing
the numbers of the convolution layer and the pooling layer, so
as to select the network structure more suitable for the target
image classification.

1) POOLING LAYER

Figure 8 is the schematic diagram of AlexNet-based network
structure, which is composed of five convolution layers and
three fully-connected layers, including three pooling layers.
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(d)Ferrogram making

Wear particles
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TABLE 3. Initial parameter settings of the model.

Parameter Value

3x3x4x1

Kernel(lengthxwidthxnumberxstride)

Pooling(mode, lengthxwidthxstride) Max pooling, 2x2x2
L Truncated normal
Weight initialization(initialization o
) distribution, mean=0,
mode, mean, variance) )
variance=0.01

Bias 0

Activation function ReLU
Loss function Cross entropy

Classification function Softmax
Optimization method Stochastic gradient descent

Learning rate 0.001

Train set=30, validation
Batch size(virtual data set)
set=10, test set=10

Batch size(measured data set) Train set=40, test set=10

BN layer None
Regularization None
Dropout None

TABLE 4. Quantitative results of the model when the pooling layer is
located at different positions.

Pooling layer Pool3 Pool4 Pool5
Accuracy 0.8519 0.8442 0.7615
Error 0.4165 0.5320 0.8243

By properly adjusting the position of the third pooling layer,
the recognition accuracy and error of the test set are studied,
and the optimal structure can be selected.

In Figure 8, the third pooling layer is Pool5, and its posi-
tion is adjusted successively after Conv3 and Conv4, i.e.,
Pool3 and Pool4. The performance of the model under the
Pool3, Pool4 and Pool5 is studied respectively. The classi-
fication accuracy and error of the test set are shown in Fig-
ure 9 and Table 4.

It can be seen from Figure 9 (a) and Table 4 that the test
set accuracy of the model under the Pool$ is lower than those
under the Pool4 and Pool3, and the result of Pool3 is slightly
higher than that of Pool4. Accordingly, in Figure 9 (b),
the error value of the model is the smallest when the training
process is stopped under the Pool3. Therefore, the Pool3 is
the best choice, i.e., the third pooling layer should be placed
after the convolution layer 3.
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(a) Chain debris

(b) Cutting debris

(c) Fatigue debris

(d) Severe sliding debris

FIGURE 6. Wear particle image captured in the experiment.

2) FULLY-CONNECTED LAYER

The TL of the pretraining model is only used for the feature
extraction, i.e., the convolution layer, so the fully-connected
layer needs to be redesigned and trained in the classification
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(a) Chain debris

(b) Cutting debris

(c) Fatigue debris

(d) Severe sliding debris

FIGURE 7. Virtual ferrographic images designed.

model. Increasing the number of fully-connected layers will
deepen the network structure, make the model more complex
and generate more random factors. In this paper, on the
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FIGURE 8. Schematic diagram of AlexNet-based CNN structure.

basis of AlexNet frame, the number of fully-connected layers
is decreased layer by layer, and the effect on the model
classification is studied. It can be seen from Figure 8 that
AlexNet frame contains three fully-connected layers. There-
fore, the performance of models with 1, 2 and 3 fully-
connected layers is studied here, and the results are shown
in Figure 10 and Table 5.

1.0
=
2
g
5]
g
&
02F =—a=—Poo0l4
o1k —=—Pool5
0 50 100 150 200
Epoch
(a) Test accuracy
g
[

0 50 100 150 200
Epoch
(b) Test error

FIGURE 9. Performance curves of the model when the pooling layer is
located at different positions.

The results in Figure 10 and Table 5 show that with the
decrease of the number of fully-connected layers, the recog-
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FIGURE 10. Effect of the number of fully-connected layers on the model.

TABLE 5. Quantitative results of the number of fully-connected layers on
the model.

FC number 1 2 3
Accuracy 0.6327 0.7731 0.8519
Error 0.9839 0.5603 0.4165

nition accuracy of the model decreases, and the model tends
to be underfitting. Meanwhile, the error increases with the
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TABLE 6. Quantitative results of the model under different parameter
initialization methods.

Initialization anuor;;:j;:d Normal Uniform
methods S distribution distribution
distribution
Accuracy 0.8519 0.5442 0.5769
Error 0.4165 1.9832 3.0104

decrease of the total number of connecting layers. In this
paper, the network structure of three fully-connected lay-
ers shows a better classification effect. Therefore, three
fully-connected layers are selected to build the classification
model.

B. INITIALIZATION OF WEIGHT PARAMETER

This paper studies three initialization methods of weight
parameters, including the normal distribution, the truncated
normal distribution and the uniform distribution. The formu-
lae are:

1 ey

fx) = mae 2175 @)

5P
S, 8,a,b) = (8)

) — e
o d

fo=4d—c 7 ©)
0, others

Equations (7) and (8) respectively represent the probability
density, u is the mean value and § is the standard deviation
of the normal distribution and truncated normal distribution,
a and b are the upper and lower limits of variable value range
in the truncated normal distribution. The difference between
the truncated snormal distribution and the normal distribution
is that the truncated normal distribution limits the value range
of variables, a = pu — 26, b = p + 25. Equation (9)
represents the probability density of the uniform distribution,
c and d are upper and lower limits respectively. Different
weight initialization methods produce the parameters that
obey different distribution, and the larger or smaller weight
is not conducive to classification. If the weight is too large,
the gradient explodes easily, and if the weight is too small,
the gradient will disappear. This paper studies the classifi-
cation of the model based on the above three initialization
methods of weight parameters, and the results are shown
in Figure 11 and Table 6.

It can be seen from Figure 11 that when the parameters
are initialized with the normal distribution and uniform dis-
tribution, the performance of the model is relatively close.
Compared with normal distribution data, the truncated nor-
mal distribution data are more centralized, more data are
distributed near the mean value, and the model training speed
is faster. In Table 6, when the truncated normal distribution is
used for the initialization, the recognition accuracy of model
is higher, the convergence speed is faster, and the error is
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==a=Normal initializer
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FIGURE 11. Performance curves of the model under different parameter
initialization methods.

smaller. Therefore, this paper chooses the truncated normal
distribution to initialize the weight parameters.

C. HYPERPARAMETER IN CONVOLUTION LAYER

The convolution layer extracts the image features by the
convolution operation between the convolution kernel and
image. Choosing the reasonable parameters can enrich the
image features extracted in the convolution process and make
the model classification better. The convolution operation
parameters include the convolution kernel size, number and
convolution stride.

1) CONVOLUTION KERNEL SIZE

The convolution kernel is composed of multi-dimension data,
and its function is similar to that of filter. The size of convolu-
tion kernel is related to the range of receptive field. The larger
the convolution kernel is, the larger the range of receptive
field is, the more parameters are, and the slower the network
operation speed is. When 1 x 1 kernel is selected, the receptive
field is a number. When the multiple 1 x 1 convolution
kernels are used, each input can be regarded as a neuron.
The process of convolution operation is the linear operation
between multiple input neurons and multiple weights. At this
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FIGURE 12. Schematic diagram of equivalent receptive field of convolution kernel with scopy = 1.

TABLE 7. Quantitative results of the model under different convolution
kernel sizes.

Sizes of kernel 3x3 5%x5 7x7
Accuracy 0.8519 0.4712 0.6135
Error 0.4165 9.4759 3.7204

time, the convolution layer can be regarded as the fully-
connected layer. Therefore, 1 x 1 convolution kernel is not
used.

The schematic diagram of the receptive field correspond-
ing to convolution kernels of 3 x 3,5 x 5 and 7 x 7 is
shown in Figure 12. When the convolution stride scon, = 1,
it can be seen from Figure 12 that the receptive field of
two 3 x 3 convolution kernels is the same as that of one
5 x 5 convolution kernel, and the receptive field of three
3 x 3 convolution kernels is the same as that of one 7 x 7
convolution kernel.

In this paper, we study the classification effect of the model
when the convolution kernel size is 3 x 3,5 x Sand 7 x 7
respectively. The results are shown in Figure 13 and Table 7.

It can be seen from Figure 13 that under the same number
of convolution kernels, when the size of convolution kernels
is 3 x 3, compared with the large-scale convolution ker-
nels, the parameters are less, the calculation speed is faster,
the performance on the test set is better than the other two
large convolution kernels. And in Table 7, the model accuracy
is higher, and the convergence speed is faster. Therefore,
the convolution kernel of 3 x 3 is chosen in this paper.

2) NUMBER OF KERNELS

Only one convolution kernel is needed for a single channel
image convolution. However, for the RGB three channel color
image, each channel needs a convolution kernel to do the
convolution operation with the image. Using the multiple
convolution kernels can be regarded as describing the image
from multiple perspectives, reflecting more complete infor-
mation of the image and more extracted feature information.
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1.0

Test accuracy

0 50 100 150 200
Epoch

(a) Test accuracy

Test cost

0 50 100 150 200
Epoch
(b) Test error

FIGURE 13. Performance curves of the model under different convolution
kernel sizes.

The more convolution kernels are, the better the effect is. Too
many convolution kernels may interfere with the extracted
image information and make the model overfitting. This
paper studies the performance of the model under the 4, 8,
16, 32 and 64 convolution kernels, and the results are shown
in Figure 14 and Table 8.
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FIGURE 14. Performance curves of the model under different convolution
kernels.

TABLE 8. Quantitative results of the model under different convolution
kernels.

Number of 4 8 16 32 64
kernel
Accuracy  0.8519  0.8692  0.6942  0.7673  0.6596

Error 0.4165 1.1307 11.4983 14.7860  21.7846

It can be seen from Figure 14 and Table 8 that the number
of convolution kernels has no regular effect on the model.
When the number of convolution kernels is greater than 8§,
the error increases gradually, the convergence speed of the
model slows down, and the volatility of the data is also
increasing.

As the accuracy of the model is close when the number
of convolution kernels is 4 and 8, and the accuracy is still
rising when the number of convolution kernels is 8, increase
the number of iterations to obtain the better training results.
The test results of the model after the number of iterations
increased are shown in Figure 15, and the quantitative results
are shown in Table 9.

It can be seen from Figure 15 and Table 9 that with the
increase of iteration times, the model can obtain the higher
accuracy and lower error under the 8 convolution kernels.
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FIGURE 15. Performance curves of the model after increasing the number
of iterations.

TABLE 9. Quantitative results of the model after increasing the number
of iterations.

Number of kernel 4 8
Accuracy 0.7981 0.8865
Error 0.6710 0.3771

Therefore, 8 convolution kernels are selected to construct the
model.

3) CONVOLUTION STRIDE

The convolution stride represents the amount of data between
two convolution operations in the receptive field. When the
stride is less than or equal to the kernel size, the receptive
fields of the two convolution operations will be closely con-
nected or overlapped. The convolution layer can extract the
feature information of the image completely, and the model
classification is good. When the stride is greater than the
convolution kernel size, the receptive fields of the convolution
operation will lose part of the image information, and the
extracted features are insufficient, and the model classifica-
tion result is poor. This paper studies the performance of the
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TABLE 10. Quantitative results of the model under different convolution
steps when the convolution kernel size is 3 x 3.

S comv 1 2 3 4
Accuracy 0.8692 0.7327 0.4981 0.5115
Error 1.1307 0.6852 1.0399 1.0718

model when the strides are 1, 2, 3 and 4 respectively, and the
results are shown in Figure 16 and Table 10.

1.0
09 F
0.8
0.7
0.6
0.5

Test accuracy

0 50 100 150 200
Epoch
(a) Test accuracy

25

20

Test cost

o

100
Epoch
(b) Test error

FIGURE 16. Performance curves of the model under different convolution
steps when the convolution kernel size is 3 x 3.

As shown in Figure 16, with the increase of convolution
step, the performance of the model on the test set becomes
worse and worse. When s,y = 1, the overlapped part of the
receptive field is the most, the feature extracted by kernels is
more abundant, and the performance of the model in the test
set is the best. In Table 10, when s.,,, = 1, the accuracy is
larger than others. Therefore, the stride is taken as s¢on, = 1.

D. HYPERPARAMETER IN POOLING LAYER

Pooling is also called subsampling. A filter similar to the
convolution kernel is used to take the maximum or average
value of the specified region of the characteristic graph output
by the convolution operation. The output data of pooling is
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TABLE 11. Quantitative results of the model under different pooling
methods.

Pooling method Max pooling Average pooling
Accuracy 0.7865 0.6442
Error 0.6582 0.9129

far less than the input data, so the pooling can reduce the
dimension of data.

1) POOLING METHOD

There are two ways of pooling: max pooling and average
pooling. Max pooling is to take the maximum eigenvalue of
the specified area in the feature map as the output value;
average pooling is to take the average eigenvalue. For the
two pooling methods, the results are shown in Figure 17 and
Table 11.

1.0
09k Max poolﬁng
Avg pooling
=
2
g
B
Z
[
0.2
0.1F
0 50 100 150 200
Epoch
(a) Test accuracy
8
6
= 4

(—e— Max pooling
—=— Avg pooling

0 50 100 150 200
Epoch

(b) Test error

FIGURE 17. Performance curves of the model under different pooling
methods.

It can be seen from Figure 17 that under two pooling
methods, the max pooling can obtain higher accuracy, faster
convergence speed and lower error, so the maximum pooling
is selected.

2) POOLING AREA SIZE
The pooling size is similar to the kernel except that it performs
different operations. The pooling area specifies the size of the
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TABLE 12. Quantitative results of the model under different pooling area
sizes.

TABLE 13. Quantitative results of the model under different pooling
steps.

C 2 3 4
Accuracy 0.8981 0.5615 0.6981
Error 1.0931 1.1215 1.4268

area where the pooling operation is performed, and then run
the pooling function within the area. When the side length
of the pooling area C = 1, it is equivalent to copy the
feature map, which has no effect on the training process,
so the minimum value is 2. The size of the pooling area affects
the size of the output characteristic map of the pooling layer.
When the pooling area is too large, the amount of data in the
output characteristic map is insufficient, resulting in the poor
classification results. The results are shown in Figure 18 and
Table 12.

Test accuracy

0 50 100 150 200
Epoch
(a) Test accuracy
30
25
20

Test cost

50 100 150 200
Epoch
(b) Test error

FIGURE 18. Performance curves of the model under different pooling
area sizes.

As shown in Figure 18 and Table 12, when the side
length of pooling area C = 2, the model has the high-
est accuracy, the smallest error and the best performance
on the test set. Therefore, the pooling area size should
be 2 x 2.
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Spoul 2 3
Accuracy 0.8981 0.6154
Error 1.0931 1.1298

3) POOLING STRIDE

The pooling stride spp0; is similar to the convolution step
size Scony, Which refers to the interval of each movement
of the area when the pooling operation is performed. When
Spool > C, part of the eigenvalues will be lost, resulting in
the poor model classification effect due to the insufficient
feature data. When spor = 2 and spor = 3 respectively,
the performance of the model is studied, and the results are
shown in Figure 19 and Table 13.
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(a) Test accuracy
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FIGURE 19. Performance curves of the model under different pooling
steps.

The results show thatin the case of C = 2x2, when sppo; >
2, the feature extraction of the featured map from the pooling
layer to the convolution layer is not complete, and there is
no effective feature classification, the recognition accuracy of
the model is reduced, and the performance is poor. Therefore,
in this paper the pooling step size spoor = 2.
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E. ACTIVATION FUNCTION

For the output value of the linear operation in the convolu-
tion or fully-connected layer, its characteristic is often not
linearly separable, so it is necessary to introduce the nonlinear
factor to meet the classification requirement. The activation
function can realize the non-linearity of the output result of
linear operation. The expressions of sigmoid, tanh and ReLU
functions are as follows:

sigmoid(z) = 15— (10)
eZ _ e*Z

tanh(z) = ———— 11

anh(3) =~ (11)

ReLU(z) = max(z, 0) (12)

where z is the output value of the linear operation.

With the action of three different activation functions, the
performance of the model is shown in Figure 20 and the
quantitative result is shown in Table 14.
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0.3
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0.1 F
L L L )
0 50 100 150 200
Epoch
(a) Test accuracy
30
25
20
g
&
—a—ReLU
=—a— Sigmoid
== Tanh
0 50 100 150 200

Epoch
(b) Test error

FIGURE 20. Performance curves of the model under different activation
functions.

As shown in Figure 20, the sigmoid function has an input
value distributed in the saturated area of the function, so that
the derivative of the function is O when the error back prop-
agation occurs, the gradient of the loss function disappears,
and the parameters are not fully trained. After the migration,
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TABLE 14. Quantitative results of the model under different activation
functions.

Activation . .
function ReLU Sigmoid Tanh
Accuracy 0.8212 0.2212 0.9231
Error 1.1790 1.3882 0.1904

the parameters do not have the ability to extract the image
features, so the accuracy is kept at about 20%, and the model
still keeps the result of random classification. Compared with
the accuracy and error of the model in the test set, the tanh
function converges faster than ReLU. And we can get the
highest accuracy for the tanh function in Table 14. Therefore,
the tanh is selected as the activation function.

F. OPTIMIZATION METHOD

The classification accuracy of the model is an important index
to evaluate the model effect. The higher the accuracy is,
the smaller the error between the predicted and the actual
category is. The model optimization is to minimize the error
and achieve the highest classification accuracy. The error
between the predicted and actual value is reflected by the loss
function. Therefore, solving the minimum value of the loss
function is a key step in the model optimization. The gradient
direction of the loss function is the fastest increasing direc-
tion of the function, so the minimum value of the function
can be obtained along the gradient decreasing direction. The
optimization methods based on the gradient descent scheme
include Mini-batch gradient descent (Mini-BGD), gradient
descent with momentum (Momentum) and Nesterov accel-
erated gradient (NAG).

1) MiNi-BGD

The essence of Mini-batch sample training method is to
use the stochastic gradient descent (SGD) method to update
parameters in each small batch, and calculate the gradient of
the loss function in each batch respectively. The parameter
updating method is as follows:

IL(Wiiitq)
Wnew = Wold — UT
i+
L 0Ly (19
new old abi:i+q

where g is the number of samples per batch. At each time,
only a small part of data in the training set is used to calculate
the gradient and update the parameters. Therefore, the direc-
tion of gradient descent is not always strictly in the direction
of the minimum value.

2) MOMENTUM

The Momentum method is an improvement of Mini-BGD,
which uses the exponential weighted average to obtain the
mean value of different parameter gradients in the current
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Mini-batch, and then updates the parameters with the mean

value of gradients. ‘
If Bg(wjifﬁq) - VW, OL(bi:i+q)
Witi+

= Vb, the parameter is
updated as follows:

0biitq

Wnew = Wold — nVVW,

(14)
buew = bola — nVvb,

where Vyw, and Vy,, represent the gradient mean value of
the sum of w and b, and the calculation method is:

Vew, = aVyw,_ | + (1 —a)VW,

(15)
VVbr = O[VVbr,1 + (1 — ot)Vbr

where Vyw, | and Vy,, | represent the mean value of the
gradients of w and b in r — 1 batch, VW, and Vb, represent the
gradients of w and b in ¢ batch, and « is the hyperparameter
controlling the weighted average of the index.

0.9
== Mini-BGD
08 == Momentum
0.7 —e—NAG
g
£ 0.6
Q
g 05
g
= 04
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7
6
5
2 4
Q
5
=3
2 —=— Mini-BGD
=== Momentum
1 —e—NAG
1 1 1 J
0 50 100 150 200
Epoch
(b) Test error

FIGURE 21. Performance curves of the model under different
optimization methods.

3) NAG

NAG is an improvement of Momentum method. The gradient
of the loss function in the next batch data is calculated in
advance, and then it is combined with the gradient descent
direction of the loss function in the previous batch, so as
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FIGURE 22. Training and test performance curves of the model.

TABLE 15. Quantitative results of the model under different optimization
methods.

Optimization

Mini-BGD Momentum NAG

method
Accuracy 0.9231 0.9423 0.9462
Error 0.1904 0.2102 0.2426

to modify the gradient descent direction and obtain the true
gradient direction of loss function in the current batch, so as
to make the gradient descent faster.

Assuming that g; represents the cumulative value of the
gradient of the 7-th iteration, there is:

& =vY8-1+nVL(w —ygi—1) (16)

In Equation (16), g;—1 indicates the gradient accumulation
value in the ¢t — 1 batch, y is the gradient attenuation rate,
w — y g;—1 means to update the weight parameter according
to the gradient in the first batch to obtain the weight parameter
in the next batch, VL(w—y g;_1) represents the gradient of the
loss function with respect to the weight in the next batch, g;
represents the actual gradient of the loss function with respect
to the weight in the ¢ batch. Therefore, the updating mode of
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parameters under the NAG method is:

Whew = Wold — §(W)
bnew = bold - gt(b)
Three different optimization methods were adopted, and

the performance of the model is shown in Figure 21 and
Table 15.
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(b) Error

FIGURE 23. Performance curves of the model after adding regularization.

It can be seen from Table 15 that the above three opti-
mization methods have little influence on the accuracy of
the model, the difference is that the gradient descent speed
is different. The convergence rates of Momentum and NAG
are faster than that of Mini-BGD in Figure 21. Compared
with Momentum, NAG is faster and the fluctuation is less,
i.e., the model is more stable. Therefore, NAG is used as the
optimization method to update the parameters.

G. OVERFITTING

Overfitting is a common phenomenon in the process of model
training. The reason is that the model can achieve good results
in the training set, but the performance in the test set is very
poor. In this case, some noise features in the training set are
over fitted, resulting in the insufficient generalization ability.
There are two indexes to judge overfitting: deviation and
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TABLE 16. Quantitative results of the model.

Accuracy
Deviation Variance

Train set Test set

0.9942 0.9462 0.0057 0.0481

variance. Deviation refers to the error rate of training set, and
variance refers to the difference between the error rate of test
set and training set. Figure 22 is the training and test result of
the model. And Table 16 shows the quantitative classification
result of the model.
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FIGURE 24. Performance curves of the model under different learning
rates.

It can be seen from the Table 16 that the deviation of the
model is 0.57% and the variance is 4.81%. The performance
of the model in the test set is not as good as that in the training
set, and there is overfitting. By adding L2 regularizer [32]
to regularize the objective function, the overfitting can be
prevented.

Regularization is to control the parameters by adding the
restriction rules to the objective function, so as to avoid too
many parameters in the training process. The objective func-
tion of adding the regular term can be expressed as follows:

L* = Lipss + ©(w) (18)
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where L* represents the objective function, L, represents
the loss function of cross entropy, and ®(w) represents the
regular term.

As for L2 regularizer, the formula is:

A
@Mw=5wﬁ (19)

where, A represents the regular coefficient.

With the L2 regularizer, the performance of the model is
shown in Figure 23.

It can be seen from Figure 23 that variance decreased from
4.81% to 1.97%. The L2 regularizer can effectively alleviate
the overfitting. But the accuracy firstly increases and then
decreases, and the error firstly decreases and then rebounds.
The difference between the maximum value of accuracy and
the value at the end of training is 50.29%. According to the
results, the learning rate is too large, and when the gradient
drops it crosses the minimum value of the objective function
resulting in the error rebounding.

When the learning rate decreases from 0.001 to 0.0001,
the performance of the model improves significantly. Fig-
ure 24 shows the performance of the model on the training
set when the learning rate is set as 0.001 and 0.0001.
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FIGURE 25. Performance curves of the model under exponential decay
learning rate.
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FIGURE 26. Performance curves of the model under different regular
term coefficients.

TABLE 17. Quantitative results of the improved model.

Accuracy
Deviation Variance

Test set

0.9289

Train set

0.9514

0.0486 0.0226

TABLE 18. Quantitative results of the model under different regular term
coefficients.

Accuracy
A Deviation Variance
Train Test
0.125 0.9615 0.9135 0.0385 0.0481
0.25 09514 0.9289 0.0486 0.0226
0.5 0.9183 0.9212 0.0817 -0.0029
1 0.8091 0.8615 0.1909 -0.0524
2 0.6779 0.7115 0.3221 -0.0337

It can be seen from Figure 24 that when the learning
rate decreases, although the performance of the model has
picked up, the overall change trend has not changed, and the
accuracy rate still shows the trend of increasing firstly and
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FIGURE 27. Final structure of the optimal model.

TABLE 19. Final parameters of the optimal model.

Parameter

Value

Pretraining model Classification model

Kernel(lengthxwidthxnumberxstride)
Pooling(mode, lengthxwidthxstride)
Weight initialization(initialization mode, mean, variance)
Bias
Activation function
Loss function
Classification function

Optimization method

Learning rate

Batch size

Regularization

3x3x8x]
Max pooling, 2x2x2
Truncated normal distribution, mean=0, variance=0.01
0
Tanh
Cross entropy
Softmax
NAG
Exponential decay mode
0.001
(initial learning rate =0.0001)
Train set=30, validation
Train set=40, test set=10
set=10, test set=10

None L2 regularization, A =0.25

then decreasing. The difference between the maximum value
of accuracy and the value at the end of training is still 2.88%.
Therefore, a decay method of learning rate is considered to
make the model converge quickly by using a large initial
learning rate. With the gradual decline of learning rate in the
model training, the gradient will not cross the minimum value
in the process of decline, and keep the trend of continuous
decline.

H. LEARNING RATE

Learning rate plays an important role in finding the mini-
mum value of loss function. When the learning rate is too
large, the step of gradient descent is too large, and the loss
function may cross the minimum value point, resulting in the
situation that the error firstly drops then rises, and finally
oscillates in a certain range; when the learning rate is too
small, the parameter updating speed is too slow. Therefore,
in this paper the learning rate is set in the way of exponential
decay. The learning rate decays at a certain rate during the
training process, so that the model converges rapidly without
crossing the minimum value. The training speed and accuracy
of the model are taken into account. The expression is as
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follows:

Ndecay = 1 * o *decay (20)

where ngecqy Tepresents the learning rate after attenuation,
n represents the initial learning rate, o represents the decay
rate of learning rate, s represents all iterations, and Sgecay
represents the decay stride of learning rate.

It can be seen from Figure 24 that when the learning rate
is 0.0001, the performance of the model is better than 0.001,
$0 0.0001 is taken as the initial learning rate.

The model is trained in the form of exponential decay, and
the results are shown in Figure 25.

It can be seen from Figure 25 that after the learning rate
is set in the exponential decay mode, the performance of the
model is stable.

I. COEFFICIENT OF REGULARIZER

After the learning rate is set in the exponential decay mode,
the model classification results are shown in Table 17. Under
the L2 regularization, the variance of the model is reduced
from 4.81% to 2.26%. The test results are closer to the
training results, which effectively suppresses overfitting.
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(a) Conv5

(b) FC6

(c)FC7

(d) FC8

FIGURE 28. Visualization process of fully-connected layer.
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In Equation (21), as a coefficient of regular term, A indi-
cates the degree of parameter restriction. In this paper, five
regularization coefficients are selected, and the results are
shown in Figure 26 and Table 18.

It can be seen from Figure 26 and Table 18 that as the
coefficient of the regular term increases gradually, the restric-
tion on the parameters increases gradually, which makes the
model deviation show an upward trend and the model tends
to be underfitting. Considering the deviation and variance,
choose A = 0.25, at this time the results of test set and training
set are the closest, and the deviation is in an acceptable range.

V. RESULTS AND DISCUSSION

A. OPTIMAL MODEL

Based on the above model research, an optimal CNN model
for the intelligent recognition of small sample ferrographic
images is established. Figure 27 is the structural diagram of
the optimal model. The network structure of the pretraining
model is completely consistent with the classification model.
The parameter settings are shown in Table 19.

The parameters in Table 19 achieved a better effect than
others in the above research process. Taking the virtual
images as the input of the pretraining model, the pretraining
model is built by using the parameters in Table 19. The
target image features were extracted by the convolution layer
parameters obtained by the pretraining model. The feature
vector of the images was used as the input of the classification
model to train the fully-connected layers to get the optimal
classification model. The performance of the classification
model was tested by test set. A total of 160 samples were
tested for four wear particle types, of which 150 samples
were correctly classified and 10 samples were incorrectly
classified, the classification accuracy is 93.75%.

B. VISUALIZATION

The t-SNE algorithm was used to verify the classification
performance of the model on the test set, which can map
the data of a high-dimensional space to a low-dimensional
space while preserving the local characteristics of the data set.
By observing the separability of data in a low-dimensional
space, it can verify whether the data are separable in a high-
dimensional space. The mapping of the high-dimensional
data for the fully-connected layer in the 2D space is shown
in Figure 28.

Figure 28 (a), (b), (c) and (d) respectively show the map-
ping of high-dimensional output data by Conv5 and FC6,
FC7 and FC8 in 2D space by t-SNE algorithm. It can be seen
from Figure 28 that after the convolution and pooling of the
original images, the final output featured data via ConvS5 is
disordered. After two layers of fully-connected layer process-
ing, the featured data began to cluster according to a certain
rule. After the third fully-connected layer, the categories of
featured data are very clear. The results show that the reduced
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data can be divided in a low dimension space, and the high
dimension data can also be divided. The classification result
of Figure 28 (d) is consistent with the classification accuracy
of 93.75%, which proves that the intelligent classification
model based on the CNN and TL of ferrographic images
established proposed in this paper is enough effective.

VI. CONCLUSION

Wear condition recognition is an important topic in the fault
diagnosis of mechanical equipment, and the analytical fer-
rograph is widely used for the wear particle recognition.
In order to deal with the low efficiency and accuracy problem
of ferrographic image recognition, a new intelligent approach
combining CNN with TL introducing the virtual images is
proposed, which is very suitable for the intelligent recogni-
tion of small sample ferrographic images.

(1) In order to meet the needs of the classification model,
four types of wear particle sample were obtained by an ana-
lytical ferrograph. Based on the sample similarity, the vir-
tual ferrographic images corresponding to the different types
of wear particle were designed. In addition, the number of
ferrographic image samples needed by the training model
was obtained by the data enhancement, and the data set was
reasonably divided. Introducing the virtual image samples is
one of the innovation points in this paper.

(2) The training and classification models were built inde-
pendently. Based on the AlexNet frame, the influence of
each parameter on the classification effect of the CNN model
was studied, and the optimal parameter combination was
obtained. Using an exponential decay to set the learning rate,
the problem that the model is difficult to converge was effec-
tively restrained. By adding a regular term, the overfitting
was restrained and the generalization ability of the model was
improved.

(3) The intelligent recognition of wear particle ferro-
graphic images under small sample data was realized by
using the TL. The visualization of fully-connected layer was
realized by using the t-SNE, and the classification accuracy
is 93.75%, which proves the deep learning model for the
mechanical wear condition recognition proposed in this paper
to be effective.
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