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ABSTRACT Private Ethereum blockchain-based systems are demanded in many industry sectors. However,
the throughput performance of these systems does not meet their expectations. Many researchers have
analyzed the performance of private blockchains, but their studies have failed to analyze root causes.
In this paper, we perform a deep function-level bottleneck analysis for the private Ethereum blockchain.
As the Ethereum client application is developed with golang, we leverage pprof, which is a resource-
profiling tool for golang, and custom golang functions to measure the time taken by functions. To easily
configure parameters and conduct our test, we code a shell script that automates the building process of a
private Ethereum blockchain with docker containers.We conducted a series of experiments and identified the
bottleneck function that is called every time a transaction arrives at an Ethereum node. In addition, we also
found that the multi-threading is not well utilized, meaning that there is much room for improvement.

INDEX TERMS Ethereum, private blockchain, performance evaluation.

I. INTRODUCTION
An increasing number of blockchain-based systems have
emerged in recent years; according to one report, more
than 90 Ethereum-based systems have been launched so
far [1]. For example, Augur is an Ethereum-based decen-
tralized prediction market that leverages blockchain’s func-
tionalities such as smart contracts and cryptocurrency.1

However, such a system is suited to cases in which data
and information are ‘‘open.’’ Recently, private blockchains,
for example, private Ethereum and Hyperledger Fabric,
in which only authoritative parties manage blockchains,
have been chosen for multi-site systems that shared among
multiple stakeholders. Such systems bring time-stamping,
tamper-proof and proof-of-existence aspects to enterprise
systems.

Although the transaction verification speed of private
blockchains is typically much faster than that of public ones,
it remains far below the level that enterprises demand. Many

The associate editor coordinating the review of this manuscript and

approving it for publication was Noor Zaman .
1https://www.augur.net/

researchers have analyzed private blockchains in terms of
several performance metrics such as latency, throughput and
resource utilization, for example, [2]–[4]. Dinh et al. analyzed
several performance metrics with Blockbench, a suite of
analysis tools for private Ethereum, Parity and Hyperledger
blockchains [2], [3]. However, the root of bottlenecks has
not been analyzed. In order to improve the performance, it is
necessary to determine what functions and procedures are at
the root of bottlenecks and how much time and resources are
spent on the bottlenecks.

In this paper, we aim to determine the function-level bottle-
neck of the private Ethereum blockchain. For this, we lever-
age pprof, which is a resource-profiling tool for golang,
since the Ethereum client, geth, is developed with golang.
With pprof, we can gain useful performance metrics, such
as processed time, number of created threads, consumed
memory size and blocking by functions. By analyzing the
result of pprof, we narrow down the bottleneck functions in
geth and derive more detailed metrics that pprof cannot
output with our logging functions. In addition, we code a
shell script that easily builds and tests a private Ethereum
blockchain with different parameter settings.
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We conduct a series of experiments with workstations
and test both normal transactions and transactions to exe-
cute functions in several basic smart contracts. As a result,
we identify a bottleneck function that is called every time a
transaction arrives at an Ethereum node. Based on the results,
it is necessary to find ways to improve the performance,
such as pipelining and replacing the bottleneck functions.
For this, we also show that the multi-threading functions are
implemented in geth, meaning that there is much room for
improvement.

The contribution of this paper is three-fold.
1) We have developed a series of codes to easily config-

ure parameters and build and test a private Ethereum
blockchain.

2) We have disclosed the developed toolset at our github
repository so that other researchers can reproduce our
results.

3) We have identified the bottleneck functions in a private
Ethereum blockchain by analyzing the results of our
experiments.

The rest of the paper is organized as follows: The fun-
damentals of Ethereum are presented in Section II. Related
work is summarized in Section III. The proposed method is
described in Section IV. Performance analysis is conducted
in Section V. The conclusions and future work are presented
in Section VII.

FIGURE 1. An illustration of a smart contract and a transaction to execute
a function within it.

II. ETHEREUM BLOCKCHAIN
Ethereum is a blockchain-enabled decentralized open-source
platform for decentralized systems [5]. On Ethereum, devel-
opers can write codes (smart contracts) that control digi-
tal currency (ether) and run smart contracts via transaction
execution. FIGURE 1 illustrates a toy example of a smart
contract and of code execution via a transaction. In this

example, a developer designed a smart contract code foo,
which stores integer x, in which users can update its value
as x = x + y and obtain 1 wei (the smallest denomination
of ether) if x is greater than five by calling the function of
bar(y) via transaction. Any programmable procedures, that is,
calculation, data storing and cryptocurrency transfer, can be
realized with a smart contract. In Ethereum, the JavaScript-
like programming language Solidity is often used to code
smart contracts.

In the case of many businesses, there is a demand to
leverage the features of blockchain, for example, time-
stamping and tamper-proofing, for which purposes the private
blockchain is often demanded, since transactions should be
kept private in most business cases. Ethereum is developed
for both public and private blockchains. The public Ethereum
is operated by a large number of voluntary nodes, and block
creation is done byminers. Hence, the consensus among them
is achieved with Proof-of-Work (PoW), which is similar to
Bitcoin. Proof-of-Stake (PoS) is another consensus algorithm
designed for public Ethereum that allows miners with more
cryptocurrency to mine blocks more easily than others with
less cryptocurrency.

Private Ethereum, meanwhile, is designed to allow limited
users to access a shared blockchain. Hence, some authori-
tative entities manage a blockchain, which is grounded in a
more relaxed assumption than the public one. Hence, the con-
sensus is achieved by PoA [6] in the form of the Clique
algorithm, which requires much less computation than PoW
by eliminating the ‘‘crypto-puzzle’’ in PoW. In PoA, the task
of block creation is executed by predetermined authorized
nodes, that is, sealers.

Ethereum is an open-source software written in golang2

whose code is easy to analyze and modify. Once the codes
are compiled, a command-line interface called geth is gen-
erated. geth can be run on major operation systems such as
Linux, macOS and Windows.

III. RELATED WORK
Blockchain-enabled systems are used in many fields, includ-
ing finance, logistics and the biomedical industry [10]. This
means that such systems may require rapid transaction pro-
cesses and rigorous security and privacy measures. Many
researchers have thus studied the performance of blockchains
in terms of security aspects. In the following, we summarize
this research in terms of two discrete topics: performance
measurement and smart contract analysis.

A. PERFORMANCE MEASUREMENT
Dinh et al. developed Blockbench, a suite of analysis tools
for private Ethereum, Parity andHyperledger blockchains [2],
[3]. They evaluated several performance metrics, including
throughput and latency, with the tools that they developed.
Furthermore, nine smart contracts, for example, a key-value

2The source code can be obtained from https://github.com/ethereum
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TABLE 1. Comparison of state-of-the-art studies that include private Ethereum and our study.

store and name-registrar contract, were implemented and
compared.

Loghin et al. analyzed the energy-efficient aspect of
blockchains [11]. They evaluated throughput-to-consumed
energy with three low-power computers, namely Raspberry
Pi 3, NVIDIA’s Jetson TX2, and a high performance com-
puter with an Intel Xeon processor. Their analysis revealed
several interesting facts. For example, blockchain nodes oper-
ating on Jetson TX2 achieved around 80% and 30% of the
throughput of Parity and Hyperledger, respectively, while
using 18× and 23× less energy, respectively, compared to
powerful servers with the Intel Xeon processor.

Bez et al. analyzed the throughput of PoW-based
Ethereum [8]. They set up a local Ethereum blockchain and
measured the throughput by varying the number of miners
from 1 to 8. They showed that the average number of transac-
tions was about 8.17 and 11.07 transactions per second (TPS)
for 1 and 8 miners, respectively.

Hao et al. analyzed the latency and throughput of pri-
vate Ethereum and Hyperledger Fabric blockchains [7]. They
chose PoW and PBFT as consensus algorithms of Ethereum
and Hyperledger Fabric, respectively. They conducted an
experiment to determine how the throughput was improved
by skipping the consensus process, and their results showed
that the throughput was almost doubled.

Rouhani and Deters measured transaction process time for
private Ethereum and Parity [4]. Similarly, Pongnumkul et al.
measured the latency and throughput of smart-contract execu-
tion in private Ethereum and Hyperledger Fabric [12]. They
tested three basic smart contracts: (i) account creation, (ii)
mint and (iii) coin transfer for both blockchains.

Schäffer et al. clarified the effects of parameter choices for
private Ethereum [9]. More specifically, throughput, latency
and scalability are evaluated when varying the parameters
such as (i) block interval, (ii) block size, (iii) number of nodes
and (iv) computational resources (CPU, memory and network
bandwidth). The performance was tested in PoW and PoA
consensus algorithms and two different smart contracts. They

concluded that the bottlenecks of a network are non-trivial
factors in the blockchain.

Kim et al. developed NodeFinder, a measurement tool for
the Ethereum network [13]. They measured the performance
of a network side that affects information propagation delay
and a consensus algorithm.

The above papers pertain to Ethereum and other blockchain
networks; the following papers only deal with Hyperledger
Fabric.

Baliga et al. evaluated the performance and scalability
features of Hyperledger Fabric version 1.0 [14]. They per-
formed a series of experiments, to measure the throughput
and latency characteristics of the blockchain by subjecting it
to the different sets of workloads.

Nasir et al. conducted a performance analysis of the two
versions of Hyperledger Fabric, v0.6 and v1.0 [15]. The
performance evaluation was assessed in terms of execution
time, latency and throughput, by varying the workload in
each platform up to 10,000 transactions. The authors also
analyzed the scalability of the two platforms by varying
the number of nodes up to 20 nodes. They concluded that
although Hyperledger Fabric v1.0 consistently outperformed
Hyperledger Fabric v0.6, its performance did not reach the
performance level of traditional database systems under high-
workload scenarios.

Sukhwani et al. presented a performance model of
Hyperledger Fabric v1.0+ using Stochastic Reward Nets
(SRN) [16]. The authors used Hyperledger Caliper as the
evaluation platform and clarified that the performance bot-
tleneck of the ordering service, which is nearly equiva-
lent to sealing in private Ethereum, and writing data into a
blockchain could be mitigated using a larger block size by
sacrificing latency.

Thakkar et al. analyzed the impact of various configuration
parameters, for example, block size and resource allocation,
on throughput and latency in Hyperledger Fabric v1.0 [17].
The authors provided six guidelines on configuring param-
eters to attain the maximum performance. They introduced
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three optimizations to improve the overall performance by
16× (i.e., from 140 TPS to 2,250 TPS).

Ampel et al. presented a performance analysis of the
Hyperledger Sawtooth blockchain [18]. The authors showed
that throughput can be improved by increasing the number
of transactions in a block up to a certain point. They also
analyzed the relationships among transaction rates, latency
and memory consumption.

B. ANALYSIS OF SMART CONTRACT
The above papers mainly deal with performance analysis
regarding throughput and latency in different scenarios.Many
papers have analyzed the contents of smart contracts and their
transactions.

Furthermore, Bartoletti et al. revealed that Ethereum’s
smart contacts were often misused for Ponzi schemes, also
known as high-yielding investment programs [19]. They
traced the flow of Ponzi-scheme-related money collected by
their open-source tool and analyzed the smart contracts of
collected Ponzi schemes. Chen et al. also proposed a method
of detecting Ponzi schemes in Ethereum using machine-
learning technique [20]. They used user accounts information
and smart-contract codes to calculate features which are used
to train supervised machine-learning classifiers.

Torres et al. investigated another type of smart contract that
lures Ethereum users, namely, honeypots [21]. Honeypots are
smart contracts that involve an obvious flaw that allows a
user to steal Ethereum from the contract by transferring some
amount of Ethereum to the contract. However, a trapdoor is
actually set, and once the user tries to exploit this vulnerabil-
ity, it prevents the attempt from succeeding. The researchers
developed a tool called HoneyBadger to automatically detect
honeypot smart contracts in Ethereum, and they identified
690 such smart contracts, which had collected more than
$90,000 for the honeypot creators.

The above examples reveal that Ethereum’s smart-contract
analyzers are necessary to detect and avoid attacks against
smart contracts. Many useful tools of analysis are available,
for example, [22]–[24].

C. LIMITATION OF THE EXISTING STUDIES
TABLE 1 lists the summary and comparison of existing
research on private blockchains and our study. Although
many researchers clarified performance metrics in various
scenarios as listed in this table, no root cause analysis has
been done. In other words, important facts, for example,
what functions are the bottlenecks of performance and how
much they affect performance, have not been investigated.
Hence, the objective of this paper is to clarify function-level
bottlenecks in private Ethereum. We chose private Ethereum
as our target since it is one of the most successful private
blockchains.

IV. PROPOSED METHOD
To perform the function-level bottleneck analysis, we first
leverage pprof, which is a golang tool to measure CPU,

FIGURE 2. Golang code snippets to measure process time to a geth log.

memory and input/output (I/O) utilization, blocking time and
mutex by functions. The root causes of bottleneck and func-
tion calls can be found by analyzing the results of pprof.
However, pprof itself cannot provide more detailed statis-
tics, such as the time taken to process a transaction. Hence,
we inserted the codes shown in FIGURE 2 to measure the
process time ofgeth’s functions in the least intrusivemanner
possible. This specially craftedgethwas installed into sealer
nodes.

A. SYSTEM OVERVIEW
FIGURE 3 provides an overview of our testbed design. Our
testbed is composed of three entities: i) bootnode, ii) sealer
and iii) sender. Through a bootnode, nodes can join the
specified private Ethereum blockchain and find each other.
A sealer is an authoritative node that verifies transactions,
seals blocks and broadcasts them to other nodes, while a
sender is a node that sends transactions into the blockchain.
A bootnode and Nseal (Nseal ≥ 3) sealers are deployed to a
workstation, and the sealers manage a blockchain. Similarly,
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TABLE 2. Example of geth log.

FIGURE 3. System configuration for performance analysis.

Nsend (Nsend ≥ 1) senders are deployed to other workstations.
The web3 package of JavaScript (JS) is used to allow senders
to send transactions. Sealers and senders execute geth to run
a private Ethereum client.
Docker and docker-compose are used to easily

deploy a series of nodes to workstations.3 Since network
latency has been well investigated in some papers, for exam-
ple, [9] and [13], we try to eliminate its effect. Hence, three
workstations are connected through 1-Gigabit Ethernet in a
local network. Clock drift among workstations might cause
inaccurate measurement. In order to avoid this, the system
time of all the workstations was synchronized with a common
network time protocol server pool.ntp.org. The following
operations are executed in order with a shell script:

1) Set parameters, for example geth and the number of
nodes, the type of transactions to be sent.

2) Build docker containers of a bootnode, sealers and
senders.

3) Deploy them and start geth in each container.

3A series of codes are disclosed at https://github.com/kentaroh-
toyoda/private_ethereum_performance_analysis

4) Wait until every geth client has been started and
synced.

5) Start pprof and docker stats logging.
6) Send Ntx transactions from senders.
7) Forward all log files in a workstation.
8) Stop every container.

B. TYPES OF LOG
After deployment, four types of logging are started.

1) geth log: TABLE 2 shows an example of this. The
output of logs in the form of functions in geth are
chronologically stored by nodes. We can extract use-
ful information such as the time taken by functions,
when transactions and blocks are propagated and when
senders have sent each transaction.

2) JS log: The output of JS log by sender. As shown in
TABLE 3, a datetime is recorded for each success-
fully sent transaction with its nonce and hash values.
By combining this and the geth log, we can calculate
the latency using each sent transaction and how each
transaction is sealed in blocks.

3) pprof log: pprof is a versatile profiling tool, and
one can specify the type of resource to be monitored.
For example, if the CPU profile is specified, pprof
monitors the utilization of CPU for 30 seconds and
records the cumulative process time of executed func-
tions. A log file is stored as the pb.gz file format and can
be output and visualized in several ways, in text and in
graph, as shown later in FIGURES 11 and 12.

4) docker stats log: Sealers’ resource utilization, for
example, CPU, memory and network I/O, are traced.

TABLE 5 shows the list of logs and nodes. As a bootnode
is only responsible for managing node information, only a
geth log is collected, and it is used simply to verify that
the blockchain network works. Sealers store the log files of
geth, pprof and docker stats so that function-level
root cause analysis is performed. By contrast, as we are
interested in the latency of sending transactions, senders store
geth, JS and docker stats logs.

C. TYPES OF TRANSACTION AND SMART CONTRACT
There are two types of transactions: i) a normal transaction
that sends an ether from an account to another and ii) a
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TABLE 3. Example of sent transactions log.

TABLE 4. Example of docker stats log.

TABLE 5. List of logs and nodes.

transaction to execute a smart contract. The following four
types of smart contracts are prepared4:
1) DoNothing: A program that does not execute any-

thing.
2) CPUheavy: A program of quick sort with a given

number.
3) KVstore: A program of a key-value data storage.
4) FungibleToken: A simple token management

application that consists of two functions: (i)
mint(value), in which tokens are created by
value, and (ii) burn(value), in which tokens are
subtracted by value.

V. PERFORMANCE EVALUATION
A series of measurements were conducted with the shell
script described in the previous section and the parameters
listed in TABLE 6. Resources (# of CPU and RAM) assigned
to each sealer container were varied to determine the effect
on the performance. We first analyzed performance metrics,
and then bottlenecks. Miner.gaslimit and miner.gastarget are
the maximum and target values of total gas consumption in a
block, which means that we can roughly control the number
of transactions involved in a block. Since we do not want
to limit the number of transactions in a block, these values
are set sufficiently high. For the same reason, the number
of pooled transactions to be sealed can be controlled by the

4DoNothing, KVstore and CPUheavy are distributed in
https://github.com/ooibc88/blockbench/tree/master/benchmark/contracts/
ethereum while FungibleToken is found in https://github.com/kentaroh-
toyoda/private_ethereum_performance_analysis/tree/master/sender-
sc/tools/smart_contracts/FungibleToken.

TABLE 6. Parameters for performance evaluation. All workstations have
the same specification in terms of OS, CPU and RAM.

series of parameters of txpool.*, and they are all set to 65,536,
which means that our setting is far enough to accommodate
tens of thousands of transactions in a block. The evaluation
was repeated so that at least 100 results were obtained.

A. PERFORMANCE ANALYSIS
The performance metrics that we measured were i) through-
put, ii) latency and iii) resource utilization. Throughput is
defined as the number of successfully processed transac-
tions per second. Latency, meanwhile, is defined as the time
elapsed for a specific process according to the evaluated item.
We measured CPU, memory and network I/O with docker
stats. A boxplot is primarily used to visualize statistical
data, as it can easily display the distribution of data [25].

Before analyzing function bottlenecks, we measured the
latency of transaction submission. In this experiment, we used
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FIGURE 4. Latency of transactions (normal transactions, NCPU = 4, M = 4
GB, B = 1 s).

only one sealer, and a total of 5,000 transactions were sent
out. Hence, a nonce, which is a sequential index used to
generate a transaction, was incremented from 0 to 4,999.
Transactions were generated through a web3 package in JS
and are sent out via senders’ geth. The transactions were
then verified by sealers and propagated among them. Hence,
the first delay occurred when transactions were generated.
This could bemeasured from senders’geth logs. The second
one occurred when the transactions were sent out by senders’
geth client, which could be measured through JS log files.
The last one could be measured at the sealers’ side and was
defined as the time difference between when a transaction
was received by a sealer for the first time and when it was sent
out. FIGURE 4 shows the delay associated with these three
types. This figure indicates that it took about 0.5 seconds to
generate 5,000 transactions and 1.7 seconds for a sender to
send out them. In addition, it took approximately 2.8 seconds
for a sealer to receive 5,000 transactions. As sealers must
process not only transactions but also other tasks, such as
block generation, more delay was accumulated over time.

FIGURE 5. Throughput versus the number of CPU assigned to each sealer
(normal transactions, Nseal = 3, M = 4 GB, B = 1 s).

FIGURE 6. Maximum CPU utilization.

FIGURE 7. Throughput versus memory size (normal transactions, Nseal
= 3, NCPU = 4, B = 1 s).

Throughput was then clarified when normal transactions
were processed in the deployed blockchain. FIGURE 5 shows
TPS versus the number of CPUs assigned to each sealer.
Throughput increased as the number of CPUs increased.
However, the growth gradually slowed down. We then see
how much CPU was utilized. FIGURE 6 shows CPU uti-
lization measured by docker stats after the transactions
were sent out. CPU utilization is defined as the maximum
CPU utilization divided by the number of assigned CPUs. For
example, when CPU utilization is 400% in docker stats
with a docker container that is assigned eight CPUs, the max-
imum CPU utilization is 50%(= 400%/8). FIGURE 6 shows
that as the number of CPUs increased, the CPU utilization
decreased. This result can be explained in two ways. The first
is that the workload of gethmay not have been high enough
to use all the CPUs up. The second explanation is that there
might have been a disk I/O bottleneck rather than a CPU
bottleneck. Similarly, we clarified how memory size affects
throughput. FIGURE 7 shows throughput versus assigned
memory size. We can see that throughput remained stable
except for the case of 1 GB, meaning that memory size did
not affect throughput as long as enough memory size, that is,
2 GB in our case, was assigned.
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FIGURE 8. Throughput versus the number of sealers (normal transactions,
NCPU = 4, M = 4 GB, B = 1 s).

FIGURE 9. Throughput versus block interval (normal transactions, NCPU
= 4, M = 4 GB, Nseal = 3).

We also clarified how Nseal and B affect throughput. FIG-
URE 8 shows throughput versus the number of sealers.
Throughput decreased as the number of sealers increased.
For instance, throughput decreased to about 500 TPS when
the number of sealers was six. This occurred because sealers
should transfer more transactions and blocks among them-
selves, thus making it more difficult to achieve a consen-
sus. FIGURE 9 shows throughput versus block intervals.
As expected, the longer the block interval was, the longer the
duration for which the transactions needed to be involved in
the blocks. However, this might be true only when sealers are
in the same local network, and network latency can be almost
ignored.

FIGURE 10 shows the throughput by the smart contracts.
As this figure shows, the median value of throughput was
1,250 TPS in DoNothing, meaning that the process time
was almost same as that of a normal transaction given the
same parameter choice. The throughputs of KVstore and
FungibleToken’s mint functions were around 1,150 TPS
and lower than that of DoNothing. We can also see that the
throughput of FungibleToken’s burn function was about
770 TPS, much lower than that of the above three functions.

FIGURE 10. Throughput by the smart contracts (Nseal = 3, M = 4 GB, B
= 1 s).

TABLE 7. Top-five bottlenecks and their mean process time measured by
pprof.

These functions were composed of one operation each, that
is, storing, addition and subtraction. We can also see the
slight difference among them due to their differing levels of
complexity. As CPUheavy iterates comparison and storage
many times, its median value was around 40.

B. BOTTLENECK ANALYSIS
Given that we clarified the numerical aspects of PoA
Ethereum, we then performed the bottleneck analysis to
determine the root causes of performance limitation. We first
identified the functions that had a significant impact on the
sealers’ transaction process with pprof, which counts the
number of function calls and monitors the process time for
30 seconds. TABLE 7 lists the top-five functions that had
a significant impact on the process of transactions. As this
table shows, runtime.cgocall was the most dominant
function. Actually, this function was used to call functions
in C language from golang. To identify what functions called
runtime.cgocall, we used pprof’s visualization tools.
FIGURE 11 shows a cropped call flow with information on
pprof’s CPU profiling. The process time of functions is
also indicated in a box. From this figure, we can see that
runtime.cgocall, called by crypto.Ecrecover,
took 5.91 seconds for its calculation.

In addition, we used pprof’s flame graph represen-
tation, shown in FIGURE 12. In a flame graph, func-
tion calls are vertically displayed and the horizontal
length of functions represents how much time is spent
on the functions. As this figure (and the implemented
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FIGURE 11. An example of a function call trace by pprof (normal transactions, cropped).

FIGURE 12. An example of a flame graph by pprof (cropped).

golang file) show, crypto.Ecrecover only called
secp256k1.RecoverPubkey, which recovers a pub-
lic key from a signature in a transaction. Eventually,
secp256k1.RecoverPubkey called its C language
implementation, C.secp256k1_ext_ecdsa_
recover.

FIGURE 13. The histogram of the crypto.Ecrecover call count after the
transactions were sent out.

FIGURE 13 shows the histogram of the call count of
crypto.Ecrecover after the transactions were sent out.
We used our logging function (FIGURE 2) to measure the
number of function calls per second and the average pro-
cess time of a function. As three sealers were deployed,
the result was obtained by averaging each sealer. As FIG-
URE 13 shows, after the transactions were sent out, that
is, elapsed time was ≥ 0 s, the number of function calls
was suddenly increased, often exceeding 2,500 per sec-

ond. From the series of log files, the average process
time of a crypto.Ecrecover was found to be around
400 microseconds. Hence, almost 100% (2, 500/ s × 400
ms) of the computation was spent on crypto.Ecrecover
during a thousands of transactions were being processed.

FIGURE 14. Throughout versus the number of concurrencies in
core/tx_cacher.go.

We analyzed how multi-threading in golang was uti-
lized in geth. In golang, goroutine, a lightweight
thread managed in golang, is used for threading. The
core.(*txSenderCacher) cache shown at the top-
right corner consists of the concurrent threads dealing with
crypto.Ecrecover. The number of created threads
is equal to the number of CPU cores as defined in
core/tx_cacher.go. To investigate how the concur-
rency set in core/tx_cacher.go is effective, we varied
the number of concurrency from 1 to 32 as the number
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TABLE 8. Threats to validity.

of CPU cores of our workstations is 32. FIGURE 14
shows throughput versus the number of concurrencies in
core/tx_cacher.go. As this figure shows, throughput
did not improve even though the number of concurrencies
increased. From this result, there is enough room for CPU
utilization, and thus, further improvement may be possible
by extending the idea of concurrency.

FIGURE 15. Throughput with and without Cgo (normal transactions, Nseal
= 3, NCPU = 4, M = 4 GB, B = 1 s).

Now, we know that the bottleneck was in the process of
public key recovery from a signature. Hence, the straight-
forward approach to fix the bottleneck was not to use
the C-implemented crypto.Ecrecover. As the native
golang version of crypto.Ecrecover is also provided
in the current geth, we evaluated the throughput with and
without C functions from golang (Cgo), and the result is
shown in FIGURE 15. As this figure shows, throughput
was slightly degraded when the native golang version of
crypto.Ecrecover was used. Hence, it is necessary to
explore other ways to improve throughput.

VI. THREATS TO VALIDITY
In order to clarify the validity of our findings, it is important
to assess the threats to validity. For this, we refer to Runeson
and Höst’s guidelines for assessing the threats to validity in
software engineering [26]. There are four validity types: (i)

construct validity, (ii) internal validity, (iii) external validity
and (iv) reliability. TABLE 8 lists the possible threats to valid-
ity. We identified three threats that are relevant to internal
validity, external validity and reliability.

First, there is a threat to internal validity due to the fact
that CPU usage provided in FIGURE 6 may not fully reflect
geth’s computation workload. When the number of CPUs
is four or eight, it is possible that CPUs are not fully utilized
since they might be idle during the time spent waiting for I/O.

Second, we identified a threat to external validity. As we
only conducted tests with geth 1.19.10-stable for private
Ethereum,we cannot generalize our findings to other versions
of geth and public (PoW-based) geth. Since our toolset is
independent of its versions and consensus algorithms, we can
mitigate this threat by testing our methodology in different
environments. However, it is necessary to take into account
the effect of network latency for evaluating the bottleneck of
public Ethereum.

Finally, there is a threat to reliability due to the fact that
the measured performance metrics may depend on the spec-
ification and other running processes of workstations. More
specifically, all the quantitative results, that is, delay of trans-
actions, throughput, CPU usage and memory consumption,
may be dependent on the specification of workstations, for
example, equipped CPU, memory and disk speed. Since our
toolset can be deployed to other workstations, this threat
can be mitigated by collecting more results from different
workstations. Furthermore, the threat is also affected by the
running processes of workstations. We have mitigated this
threat by executing the minimum processes in the Docker
containers.

VII. CONCLUSION AND FUTURE WORK
We have analyzed the function-level bottleneck of the private
PoA Ethereum blockchain by leveraging pprof, a golang’s
profiling tool, and our custom functions. We have clari-
fied that the bottleneck of the current PoA Ethereum is
the repeated calculation of the crypto.Ecrecover func-
tion that extracts a public key from a signature. Although
there are two implementations of crypto.Ecrecover in
PoA Ethereum, — Cgo-based and non-Cgo-based ones —,
a slightly better throughput can be achieved via the former.
More than 1,000 TPS can be achieved in most smart-contract
settings, which is much fewer than 10,000 TPS that are often
demanded. However, we have also clarified that much room
for improvement remains; the multi-thread functionality by
goroutine does not seem to be well utilized in the current
geth. Hence, we will seek a novel pipelining approach to
achieve better throughput in future work.
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