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ABSTRACT In this work, we present a novel method to intention recognition, based on electroencephalo-
gram (EEG) and eye movement in human-computer interaction(HCI). The fusion of EEG and eye movement
will allow the utmost of the advantages of the two physiological signals. Signals of EEG and eye movement
were collected for feature extraction, recognition network of machine learning pattern was input for intent
recognition, final recognition result was attained by decision-level fusion. We compare the results of the
Intention Recognition Algorithms to those of an experiment involving the intention recognition of the
operator in a simulated flight mission. In most every case, results show that the intention recognition
algorithms performed better than solely rely on single signal.

INDEX TERMS Intention recognition, physiological signals, EEG, eye movement, simulated flight,
decision-level fusion.

I. INTRODUCTION
One of the key targets of the human-computer interaction
intelligence [1] is to improve the user’s intention perception
derived from the human-computer interaction system. It pro-
vides theoretical basis and technical support for the design
of the adaptive human-computer interaction system as well
as reducing personal errors during the operation [2]. Current
common human-computer interaction intention recognition
methods mainly rely on signals of EEG or eye movement.

Brain-computer interface (BCI) is an application form of
EEG signals, which can establish a communication relation-
ship between the human brain and external devices, thus
enabling the brain to control external devices [3]–[5]. BCI
has been applied in fields like medicine [6], [7], neurobiology
[8], psychology [9], [10]. Motor Imagery (MI) Electroen-
cephalogram (EEG) boasts the characteristics of flexibility,
non-invasiveness, low environmental requirements and high
resolution. Therefore, MI is one of the widely application
forms of BCI [11]. The spectrum power of EEG signal during
motion imagination will vary with the content of MI task,
which is called event-related synchronization/ desynchro-
nization (ERS/ERD)[12]. Razi et al. [11] extract features
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of EEG signal and use the machine learning algorithms to
classify it. The average Kappa value of motor imaging recog-
nition is 75%. Amin et al. [13] collect EEG signals, perform
feature extraction and data classification to realize the remote
control of UAV through BCI. However, these intent recogni-
tionmethods only rely on EEG signals without the advantages
of integrating eye movement signals, of which recognition
accuracy rate needs to be further improved.

Studies have shown that visual channels provide more
than 80% of the external information to people. In recent
years, many scholars have studied its user’s intention of
human-computer interaction based on human visual behavior.
Deng M. et al. [14] used eye movement data to analyze
the user’s behavioral intention and emotional experience.
Jang et al. [15] invented a visual search intention recognition
method based on eye movement patterns and pupil charac-
teristics. The results show that accuracy rate can reach more
than 90% when layer support vector machine recognition is
adapted. In addition, eye movement tracking is also widely
applied in user interaction behavior analysis [16], user visual
search analysis [17] and visual stimulus interest analysis [18]
and other fields. These methods only rely on eye movement
signals without fusing EEG signals and fail to make full
use of EEG signals to analyze the cognitive state of human
brain.
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In recent years, many scholars have tried to integrate
multiple physiological information to improve the accuracy
of human-computer interaction recognition. Park U et al.
[19] integrated signals of EEG and eye movement to iden-
tify intentions, and eventually found that the accuracy of
integrated signals of EEG and eye movement recognition
is about 5% higher than that of relying on one single
physiological signal. Postelnicu C et al. [20] combined eye
movement, EEG and gesture characteristics to control the
6-degree-of-freedom manipulator. The results show that the
SUS score is higher than average. Chowdhury et al. [21] sum-
marized the detection methods of automobile drivers’ fatigue
and found that the accuracy of fatigue recognition based on
multiple physiological signals was significantly higher than
that based on one single physiological signal.

Accordingly, this paper has proposed a human-computer
interaction intention recognition method based on the
fusion of EEG and eye movement and the introduction of
decision-layer fusion, which can perform intention recog-
nition while the user is performing human-computer inter-
action. The specific implementation process is as follows:
collecting EEG and eye movement signals of its user for fea-
ture extraction; using pattern recognition algorithms to clas-
sify and identify physiological signal features; performing
decision-level fusion on the classifiable algorithm to obtain
the final result, performing user intention-induced experi-
ments to verify the feasibility of the method. The effect of
different EEG feature extractionmethods and the effect of dif-
ferent machine learning algorithms on recognition accuracy
have also been compared.

II. METHODS
A. EEG FEATURE EXTRACTION BASED ON COMMON
SPATIAL DOMAIN MODE(CSP)
Algorithm of CSP mode has proved to be effective in the
analysis of EEG signals based on EDS/ERS, however the
CSP mode algorithm is proposed for the binary classification
problem. Therefore, the CSP algorithm needs to be improved
when multi-classification problem arise, and compare any
two types of categories in order. CSP finds the best projection
direction by spatially projecting the original signal, which
satisfies that the first type signal has the largest variance in
a certain direction and the second type signal has the small-
est variance, thus the projection direction with the largest
difference between the two types is obtained.
E is set as the EEG signal matrix after removing the DC

component, the dimension of which is N ×T . Where N is the
number of EEG data channels, T is the number of sampling
points for each channel. Therefore, the covariance matrix of
the EEG data is,

Ci =
EET

trace
(
EET

) (1)

where ET is the transposed matrix of E , trace
(
EET

)
is

the trace of EET. The average covariance of various EEG
signals is Ci, i ∈ {1, 2}. Therefore, the sum of the average

covariance matrix is:

Cc = C1 + C2 (2)

When Cc is eigenvalue decomposd, it can be known:

Cc = UcλcUT
c (3)

whereUc is the eigenvector matrix of Cc, λc is the eigenvalue

matrix of Cc,.When whitening matrix P =
√
λ−1c UT

c is
constructed, it can be known:

I = PCcPT (4)

where I is the identity matrix. When C1,C2 is transformed,
it can be known:

Si = PCiPT, i ∈ {1, 2} (5)

where, S1 and S2 are of the same eigenvector, of which the
corresponding eigenvalue sum is 1. In other words, S2 is of the
minimal eigenvaluewhen S1 is in the direction of themaximal
eigenvalue; in the direction of the smallest eigenvalue, S2 is
of the maximal eigenvalue when S1 is in the direction of the
minimal eigenvalue otherwise.

If

S1 = Bλ1BT (6)

It can be known: {
S2 = Bλ2BT

λ1 + λ2 = I
(7)

The projection matrix is

W = BTP (8)

It can be seen thatW is matrix of N×N order, the original
signal E is projected to obtain a new signal:

Z = WE (9)

m is generated by projected the selected first m rows and
the last rows. New signal is transformed as follow to obtain
the final eigenvalue:

fj = lg

 var
(
Zj
)

2m∑
k=1

var (Zk)

 , j = 1, 2 · · · 2m (10)

where var
(
Zj
)
is the variance of Zj.

For any four types of signals, every two types of them are
processed by CSP, and 6 projection matrices can be obtained.
For each matrix W , 4 optimal directions are selected front
and back, thus 8 optimal directions are obtained, so is a
6×8 = 48 dimensional feature vector. Then use discriminant
method of Fisher to reduce the dimension, which can reduce
the 48-dimension feature vector to a 3-dimension feature
vector. Finally, the Bayesian classifier is used to classify the
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features after dimensionality reduction according to the prior
probability theory:

P (yi|f ) =
P (f |yi)P (yi)
C∑
j=1

P
(
f |yj

)
P
(
yj
) (11)

where P (yi) is the a priori probability of data labeled type
i, P (yi|f ) is the posterior probability of the sample f whose
characteristics belong to type i, P (f |yi) is the likelihood ratio
of feature f generated by type i. The classification result is i
of the highest value of posterior probability.

B. EXTRACTION OF EYE MOVEMENT SIGNAL FEATURE
RED5 eye tracker is applied to collect eye movement
data with sampling frequency reaching 500 Hz. The eye
movement feature can reflect the user’s eyemovement behav-
ior. In this paper, five physiological characteristics are col-
lected for analysis, they are of fixation point X coordinate
(FX), fixation point Y coordinate (FY), pupil diameter (PD),
fixation time (FT) and saccade amplitude (SA). The five types
of eye movement features mentioned above can be directly
obtained from the data analysis software of the eye tracker.

The fixation point X coordinate (FX) and fixation point Y
coordinate (FY) represent the direction of fixation point X
and fixation point Y of user during his or h human-computer
interaction, which can reflect the position of user’s fixation
point on the screen.

Pupil diameter (PD) can be regarded as one of the indi-
cators reflecting the user’s real-time cognitive load. When
the cognitive load increases, the pupil diameter increases;
the pupil diameter will decrease otherwise. Therefore, user’s
cognitive state can be reflected through the indicator.

The fixation time (FT) can reflect the difficulty of its
user in processing visual information. The processing time
will be longer when faced with complex information, so this
indicator can reflect the user’s cognitive state.

Usually, the saccade amplitude (SA) is reflected as the
amplitude between fixation points, reflecting the difficulty of
user for processing the visual information.When visual infor-
mation is roughly processed, the saccade amplitude becomes
larger; Otherwise, when the user When visual information
is smoothly processed, the saccade amplitude turns smaller.
Therefore, it can reflect the user’s cognitive state.

C. SVM CLASSIFIER
SVM classification algorithm is a machine learning
classification algorithm based on statistical learning theory.
It is different from the ordinary optimization algorithm in pur-
suit of minimum experience risk. SVM algorithm improves
the generalization ability of the algorithm, minimizes expe-
rience risk and confidence range by minimizing the struc-
tured risk, preferably solving the problems of over-learning,
model selection, dimensionality disaster and nonlinearity in
algorithm of pattern recognition under small sample condi-
tions. The essential of the algorithm is to find the optimal

classification plane that maximizes the classification interval
between the two types.

Let the sample set be:

D = {(x1, y1) , · · · , (xl, yl)} x ∈ Rn

y ∈ {+1,−1} (12)

where n is sample dimension, l is the number of samples, the
classification plane hyperplane of n dimension, which can be
expressed as:

〈w, x〉 + b = 0 w ∈ Rn b ∈ R (13)

Thus the classification interval can be 2/‖w‖. Obviously,
when ‖w‖ takes the minimum value, the classification inter-
val reaches the maximum. Therefore, the question to obtain
the maximum classification interval can be transformed into
solving the following constrained optimization problem:

min ‖w‖2/2

s.t. yi (w · xi + b)− 1 . . . 0, i = 1, 2, · · · , l (14)

The solution vectorw∗ is the support vector when the prob-
lem is linearly separable, and the classification function of the
support vector machine is determined by the support vector.
Support vector machine describes the decision function of the
optimal classification hyperplane, which can be expressed as:

f (x) = sgn
(〈
w∗, x

〉
+ b

)
(15)

The method of projecting the non-linear transformation of
the sample into a high-dimensional space is usually used to
make the sample separable in this high-dimensional feature
space when the problem is linearly inseparable. According to
the Mercer condition, the decision function is:

f (x) = sgn

(
l∑
i=1

αiyiK (x, xi)+ b

)
(16)

where K (x, xi) is the kernel function, αi is Lagrange
multiplier.

D. THEORY OF D-S EVIDENCE
Theory of D-S evidence is an imprecise reasoning method
proposed by Dempster and perfected by Shafer, his student.
It can be applied to deal with uncertain information, and the
required conditions are less strict than theory of Bayesian
probability. The theory can not only deal with the uncertainty
caused by imprecise prior knowledge, but it also can handle
the uncertainty caused by ignorance.

Set 2 as recognition framework, m is a credibility
distribution function on the interval [0, 1], also known as
the Mass function, indicating the happening degree to the
evidence supports event A. m(∅) = 0, and it satisfies:∑

A⊆2

m(A) = 1 (17)

For ∀{A,B,C} ⊆ 2, according to the Dempster synthesis
rule, any two Mass functions of 2, the synthesis method
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FIGURE 1. Diagram of Physiological Signals-based Intention Recognition.

of m1 and m2 is:

m1 ⊕ m2(A) =
1
K

∑
B∩C=A

m1(B) · m2(C) (18)

K =
∑

B∩C 6=∅

m1(B) · m2(C) (19)

For ∀A ⊆ 2, according to the Dempster synthesis
rule, the synthesis method of any finite Mass function
m1,m2, · · · ,mn of 2 is
m(A) = (m1 ⊕ m2 ⊕ · · · ⊕ mn) (A)

=
1
K

∑
A1∩A2∩···∩An=A

m1 (A1) · m2 (A2) · · ·mn (An)

(20)

K =
∑

A1∩A2···∩An 6=∅

m1 (A1) · m2 (A2) · · ·mn (An) (21)

E. HUMAN-COMPUTER INTERACTION INTENTION
RECOGNITION OF DECISION-LEVEL FUSION
The process of decision-level fusion is shown in the Figure 1.
First, pre-processing and feature extraction are performed on
the collected physiological signals to obtain feature vectors
corresponding to the physiological signals, whereafter the
EEG and eye movement signal feature vectors are respec-
tively classified by a classifier, and finally the classification
results of each classifier are fused under DS evidence theory
to obtain the fusion result of decision layer.

Assuming thatA1,A2, · · · ,Ak is cognitive intent of k types
classified by quasi-physiological signals, the recognition
framework is

2 = {A1,A2, · · · ,Ak} (22)

The dentification algorithm of recognition function of
each physiological signal feature for each type of intent
credibility is:

mi (A1,A2, · · · ,Ak ,2) = (piqi1, piqi2, · · · , piqk , 1− pi)

(23)

where mi is the credibility distribution function of physiolog-
ical feature recognition algorithm of type i, i = 1, 2 · · · n.
The correct rate of the first physiological feature

recognition algorithm
Where pi is the credibility of the physiological character-

istic identification of type i. qij is the judgment sample of
the physiological characteristic identification of type i as the
credibility of cognitive intention of type j, j = 1, 2 · · · k .
For any cognitive intent Aj in the recognition framework

2, the rule of Dempster decision rule adapted multiple
physiological feature classification is:

m
(
Aj
)
= (m1 ⊕ m2 ⊕ · · · ⊕ mn)

(
Aj
)

j = 1, 2, · · · , k

(24)
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FIGURE 2. The Experimental environment.

FIGURE 3. Location of electrode.

It can be obtained from equation (23), equation (24) and
equation (19)

m
(
Aj
)
=

1
K

 ∑
i=1,2,...,n

(1− pi)
∏

h=1,2,··· ,n;h6=i

phqj

+

∏
i=1,2,...,n

piqj

 (25)

K =
∑

i=1,2,··· ,n

(1− pi)
∏

h=1,2,··· ,n6=i

phqj +
∏

i=1,2,··· ,n

phqj

+

∏
i=1,2,··· ,n

(1− pi) (26)

where the algorithm accuracy rate pi is usually is determined
by the correct accuracy rate of training sample, and the credi-
bility qij of cognitive intention is determined by the algorithm
output calculation:

qij =
1

2C2
k

∑
j6=h

Fi
(
Aj,Ah

)
+ k − 1

 j, h = 1, 2, · · · , k

(27)

where j, h is cognitive intention serial number, k is the num-
ber of cognitive intention types, Fi

(
Aj,Ah

)
is the judgment

based on cognitive intention and classification, Fi
(
Aj,Ah

)
∈

{+1,−1}.
Not only the category of unknown samples but also the

probability that the samples belong to each category can

FIGURE 4. Experimental interface of motor imaginary.

FIGURE 5. Experimental paradigm of motor imaginary.

be output when D-S decision-level fusion interaction inten-
tion discriminating method is used. For the D-S evidence
theory, the credibility allocation and assignment problem is
effectively and intuitively solved by the overall classifica-
tion accuracy rate obtained by machine learning algorithm
training.

III. EXPERIMENTS
A. PARTICIPANTS
In order to verify the scientificity and effectiveness of the
proposed human-computer interaction intention recognition
method, it is necessary to collect EEG and eye movement
data of the user during his or her human-computer interaction.
24 male users (four of whom could not be used as effective
participants because the data collection rate was less than
50%), with an age range of 18 to 22 years (M = 23.4,
SD = 2.1) were recruited in this research. Before the experi-
ment, each user was familiar with the experiment process and
precautions and had signed an informed consent form.

B. EXPERIMENT PRODUCERS
The experiment environment is as shown in the Figure 2.
The curtains were closed during the experiment. Only
experiment users and operators could enter and close other
electronic devices to eliminate light changes and other
electromagnetic signal interference during each experi-
ment. Experimental equipment consists of DELL computer,
RED5 eye movement tester and Neuroscan 32 brain con-
duction electroencephalograph. The sampling frequency of
the eye movement signal was 50 Hz; the display resolution
was 1280 × 1024 pixels, and the screen brightness was
300 cd/m2; the distance between the user and the screen was
about 60 cm, and the eyes of the user are about the same
height as the center of the screen. The electrode distribution
of the Neuroscan 32 brain conduction electroencephalograph
adopted international standard 10-20. The left mastoid was
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FIGURE 6. Recognition accuracy under different processing methods.

TABLE 1. Accuracy of eye movement classification prediction under
different feature.

used as the reference electrode, and the middle prefrontal
lobe was the ground electrode. Additionally, the vertical and
horizontal channel electrooculogram signals were collected
at a sampling frequency of 250 Hz. 50 Hz notch and 0.05 ∼
10 Hz online band-pass filter was adapted to ensure that the
electrode impedance is less than 5k�, EMG and electroocu-
logram artifacts were removed after the signal is collected.

TABLE 2. Average classification prediction accuracy under different EEG
processing algorithm.

The classic motor imagination experiment paradigm was
adopted in the research. As shown in the figure 5, the screen
displayed ‘‘relax’’ before the operation imagination starts
for 2s, and the user was relaxed and ready to start; then the
screen displayed ‘‘preparation’’ for 1s, prompting the user to
prepare to start operation imagination. Next, the screen pre-
sented the operation interface. The user’s operations included
‘‘Move left’’, ‘‘Move right’’, ‘‘Attack’’ and ‘‘Launch a mis-
sile’’. The icon turned yellow when the user needs to operate
the imagination, and the user performed different operation
imaginations according to the different prompts. The total
time for each operation is 9s.

C. RESULTS
In the experiment of 3.1, we collected five eye movement
parameters: fixation point X coordinate (FX), fixation point
Y coordinate (FY), pupil diameter (PD), fixation time (FT),
and saccade amplitude (SA). FX and FY synthesize a type of
feature as a fixation point feature. The extracted four types
of eye movement features of the test user were used as the
basis for algorithm classification, and the eye movement data
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TABLE 3. Classification accuracy with EEG & eye movement data in training set.

of 20 participants was preprocessed and had been performed
feature extraction, 60% of which was used as the training set,
and 40% of which was used as the test set. The classification
accuracy was shown in the Table 1 when SVM algorithm
was adapted to perform operation imagination classification.
It can be seen from the Table 1 that the greater the number of
eye movement indicators, the higher the recognition accuracy
is, and the location characteristics of the fixation point have
a greater impact on the accuracy, showing that the location
feature of the fixation point can better reflect the user’s
intention, but since the fixation point was unstable in the
experiment, it is necessary to combine other eye movement
features to improve the recognition reliability. The five eye
movement features selected in this research had an accu-
racy rate of 85.34% for the cognitive intention experiment,
indicating that the selection of eye movement indicators is
effective.

Four methods, SVM, CSP+SVM, CSP+Fisher, were
selected to explore the impact of different machine
learning methods and data preprocessing methods on
human-computer interaction intention recognition to identify
the EEG data set of 20 participants, 60% was used as the
training set and 40% was used as the test set. The final

recognition accuracy rate of each subject is shown in Figure 6.
It can be seen that for different participants, the accuracy
rate of the algorithm recognition is slightly different from the
standard deviation. The recognition results of the different
EEG processing algorithm are shown in Table 2. The recog-
nition accuracy of the CSP+SVM algorithm is significantly
higher than that of the other two algorithms (P<0.5), and the
standard deviation of this method is the smallest, indicating
that the algorithm has low sensitivity and strong general-
ization ability, which is suitable for processing EEG data.
From the perspective of recognition accuracy, the average
recognition accuracy of CSP method is 77.08%, which is
higher than the average accuracy of 66.09% without adapting
feature extractionmethod. In the case of adapting CSP feature
extraction method, the average recognition accuracy of the
SVM algorithm is 77.08%, while the average recognition
rate of the Fisher method is 69.59%. It shows that for the
CSP feature extraction method, the recognition accuracy of
the SVM algorithm is slightly higher than that of the Fisher
algorithm.

CSP+SVM method was adapted to preprocess the EEG
data before SVM algorithm was trained. The feature extrac-
tion was performed on the eye movement data, and the
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TABLE 4. Comparison of % accuracies of classifiers based on different feature.

fixation point position (FX&FY), pupil diameter (PD), fix-
ation time (FT) and saccade amplitude (SA) were selected.
Four types of eye movement features were trained with SVM
algorithm, and the cross-contrast method were used to deter-
mine the SVM algorithm parameters. The recognition results
of the training set are shown in Table 3.

According to D-S theory, three cognitive intentions in this
experiment constitute a recognition framework 2 = {Move
left, Move right, Attack, Lunch a missile}, and the average
value of the sample of 20 participants in the Table 3 is
used as the recognition accuracy rate, thus it can be known
that {p1, p2} = {0.852, 0.744}, the eye movement and EEG
recognition methods are caused by the uncertainty resulted
from ignorance {m1(2), m2(2)} = {0.148, 0.256}. The
test samples corresponding to the training samples are sepa-
rately classified by adapting the SVM algorithm and perform
decision-level fusion classification based on the D-S theory.
The recognition results are shown in Table 4.

The experiment results show that the recognition rate of the
test sample is lower than that of the training sample, but the
decrease is not sharp, the accuracy of EEG data decreases by
0.78%, and the accuracy of eye movement data recognition

decreases by 0.57%, indicating that SVM algorithm is of
strong generalization ability. Comparing the accuracy of eye
movement and EEGdata recognition, it is found that the accu-
racy of eye movement data recognition, 84.60%, is higher
than that of EEG data recognition 73.60%, indicating that
the accuracy of eye movement data for human-computer
interaction intention recognition is higher than that of EEG
data. According to DS evidence theory, the decision-level
fusion of data can achieve a maximum recognition accuracy
of 93.54%, and an average recognition accuracy of 89.22%,
which is higher than the accuracy of eye movement and EEG
data recognition, and the variance of the data recognition
accuracy is only 2.56, which shows that the data fusion
method based on DS theory has low sensitivity to samples
and strong generalization ability, proving that D-S theory
has advantages in the identification of multiple physiological
information intentions.

IV. CONCLUSION
To solve the problem that the traditional human-computer
interaction intention recognition accuracy is relatively
low, and different physiological information cannot be
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effectively fused, EEG and eye movement information fusion
human-computer interaction intention recognition method
based on DS evidence theory was designed to recognize the
user’s human-computer interaction. intention. The EEG and
eye movement signals were separately extracted and classi-
fied by collecting the user’s raw data, whereafter the D-S evi-
dence theory was adapted to fuse the EEG and eye movement
signal classification results. The experiment results show that
the EEG eye movement information fusion human-computer
interaction intention recognition method based on D-S evi-
dence theory has the characteristics of high accuracy and
strong generalization ability, which lays the foundation for
the future of adaptive design of human- interaction interface.
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