
Received June 16, 2020, accepted July 15, 2020, date of publication July 24, 2020, date of current version August 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011813

Planning Optimal Rejuvenation Policy for Aging
Software Systems via a Two-Layer Model
JINGWEI LI 1, YONG QI 1, (Member, IEEE), GUANGHUA WANG2, AND JINWEI LIN1
1School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2Xi’an Satellite Control Center, Xi’an 710043, China

Corresponding authors: Jingwei Li (lijw66@163.com) and Yong Qi (qiy@mail.xjtu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672421.

ABSTRACT Software rejuvenation is a proactive fault management technique widely used for preventing
performance degradation and failures due to software aging. It works by proactively terminating the system,
cleaning the internal state of the system, and restarting the system. Since rejuvenation incurs extra system
overhead and downtime cost, it is important to determine the optimal time to trigger rejuvenation. This paper
proposes a two-layer model to characterize the system failure behavior and rejuvenation process under aging
condition, planning a time-based rejuvenation policy maximizing the system availability and minimizing
downtime cost. The lower layer is a failure model that uses an analytical model and runtime measurements
to build the failure distribution of the aging system. The upper layer is a rejuvenation model that takes the
failure distribution from the lower layer as input to formulate the availability function and downtime cost
function. Taking these two functions as optimization targets, we can obtain the optimal rejuvenation time.
Compared with the traditional analytical model, the two-layer model modeling software failure considers
runtime measurements, which can describe the aging behavior more accurately. In the experimental part,
we comprehensively evaluate the two-layer model by studying the aging of the web search system. The
results show that the two-layer model reduces unavailability by 18.18% and reduces downtime cost by
31.22% in comparison with the traditional analytical model.

INDEX TERMS Software aging, proactive rejuvenation, two-layer model, availability, downtime cost.

ACRONYMS
p.d.f. probability density function
c.d.f. cumulative distribution function
CTMC Continuous-time Markov Chain
MRGP Markov Regenerative Processes
Cox model Cox proportional hazard model
MLE Maximum Likelihood Estimation
ALT Accelerated Life Test
SLA Service Level Agreement
min minutes
avail-Mem available Memory
AIC Akaike Information Criterion

NOTATION
hw(·) hazard function
F(·) failure distribution
τ time to trigger rejuvenation

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

A(τ) availability function
C(τ) downtime cost function

I. INTRODUCTION
Software systems tend to suffer from performance degrada-
tion after a long period of uninterrupted operation. Contin-
ued performance degradation may eventually lead to service
failure or system crash. This phenomenon is called software
aging in software engineering [1]. Software aging has been
observed in many systems, including web server [2], Linux
operating system [3], virtual machine [4], cloud comput-
ing infrastructure [5], android mobile OS [6], etc. As cloud
computing matures, more and more software systems are
deployed in the cloud. In the cloud, various applications
share platform resources, which increases the risk of system
failure. The reasons of software aging are generally consid-
ered to be software bugs, including resource leak, unreleased
file locks, data corruption, and accumulation of numerical
errors [7], [8]. For instance, a common software bug is that the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 136725

https://orcid.org/0000-0001-8421-5401
https://orcid.org/0000-0002-7682-5653

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

garbage collection mechanism in software programs fails to
completely release the occupied resource. It is almost impos-
sible to achieve fully zero-bug in a software system. Even
high profiled software systems, such as Office and Windows
systems also need to regularly update the system to improve
performance.

There is no clear indicator indicating software aging. Soft-
ware aging is hidden under performance monitoring and can
only be discovered after a failure occurs. For e-commerce
software, unplanned failures may lead to customer loss and
revenue reduction. For mission-critical industrial software,
it may cause catastrophic losses. To prevent performance
degradation and failures caused by aging, software rejuvena-
tion technique is widely used, which works by proactively
freeing up system resources and removing accumulated error
conditions [9]. Familiar rejuvenationmethods include restart-
ing processes, restarting virtual machines, or restarting soft-
ware/hardware [10], [11]. For example, a software hosted on
a virtual machine can take the form of rejuvenation by restart-
ing the virtual machine or restarting software/ hardware.
In fact, it is difficult to locate and remove aging-related bugs
during system operation. Software rejuvenation is an effective
way to cope with software aging. Instead of removing soft-
ware bugs, it regularly cleans up the operating environment
to restore the software to its initial state. However, since
software rejuvenation must terminate the running service,
frequent rejuvenation will affect the availability of the system
and incur extra downtime costs [12]. In planning rejuvenation
policy, an important research issue is to determine optimal
times to trigger rejuvenation.

Reviewing the existing works, rejuvenation policies
involve periodic time and aperiodic time triggered policies.
Under the periodic policy, rejuvenation is triggered at a fixed
time interval, where the time interval is generally determined
by solving an optimization function (e.g., cost function).
On the other hand, the aperiodic policy plans the rejuve-
nation based on the prediction of a certain system metric
(e.g., resource metric). One example is [13], proposed a reju-
venation policy that schedules rejuvenation according to the
predicted time when the critical memory utilization (CMU)
reaches a preset threshold.

Themethods to plan rejuvenation policy can be categorized
into model-based and measurement-based approaches. Gen-
erally, the former approach plans the periodic rejuvenation
time, and the latter approach plans aperiodic rejuvenation
time. The model-based approach usually uses a probabilis-
tic model to describe the aging evolution and rejuvenation
process of the system, determining the optimal rejuvenation
time in terms of an optimization goal formulated from the
model (e.g., minimizing the cost). The measurement-based
approach collects system attributes and applies statistical or
machine learning methods to forecast the failure time of the
system. This type of method determines rejuvenation time
directly based on the prediction of the failure time. The
model-based approach can be easily generalized across dif-
ferent systems. However, since the analytical model usually

makes assumptions about the underlying distribution that
used to describe the system, this may incur deviations in
the estimated results. Conversely, the measurement-based
approach is relatively effective but not easily generalized
since the considered system exhibits its peculiar aging behav-
ior (e.g., seasonal pattern, fractal pattern) and thus the specific
methods are employed.

In this paper, we propose a two-layer model for the analysis
of software rejuvenation considering runtime measurements,
the availability function and cost function are respectively
established and solved to obtain the optimal rejuvenation
time. The lower layer is a failure model constructed based
on Cox proportional hazard model. The failure model for-
mulates the failure distribution function, which describes
the probability of software failure in the presence of aging.
The upper layer is a rejuvenation model that uses a three
state semi-Markov process to characterize the rejuvenation
process. The rejuvenation model takes the failure distribution
from the lower layer as input to formulate the availability
function and cost function. Based on the two-layer model,
we plan the periodic rejuvenation policy in terms of maxi-
mizing availability and minimizing downtime cost. The Cox
proportional hazard model is widely used in the analysis of
survival data to estimate the effect of multiple risk factors
on survival. We extend the classical semi-parametric Cox
proportional hazard model to the fully parametric model to
formulate the failure distribution of the aging system. Dif-
ferent from the previous analytical model method directly
assumes that the failure distribution is subject to a specific
distribution, we build the failure distribution according to the
runtime measurements. Our approach can be said a combina-
tion of the analytical model and measurement method, which
can be easily generalized to any type of software system.
In the evaluation part, we evaluate the two-layer model on
the web search system and compare it with the purely analyt-
ical model. In comparison with the purely analytical model,
the two-layer model reduces unavailability by 18.18% and
reduces downtime cost by 31.22%.

The main contributions of this paper are the following:
• Introduce survival analysis method to study software
aging and failure, and extend the semi-parametric Cox
model to a full-parametric model to derive the failure
distribution of the aging system.

• Propose a two-layer model that uses an analytical model
and runtime measurements to plan an optimal rejuvena-
tion policy for the aging system.

• Comprehensively evaluate the proposed approach on the
web search system and illustrate its effectiveness.

The remainder of this paper is organized as follows:
Section II overviews the relevant work and clarifies the
differences in our work. In Section III, a failure model is
presented to derive the failure distribution of the aging soft-
ware system, which is used for constructing the rejuvenation
model. Then, in Section IV, we describe the rejuvenation
model and address the optimization problem of planning the
optimal rejuvenation policy. Section V reports the evaluation

136726 VOLUME 8, 2020

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

results. Finally, in Section VI, we summarize the whole
work.

II. RELEVANT WORK
Software aging and rejuvenation are important issues in soft-
ware reliability research, and a lot of effort has been done to
address how to characterize aging behavior and plan optimal
rejuvenation policy.

The stochastic process is widely used in modeling software
aging and rejuvenation. Huang et al. [7] first introduce the
Markov approach to study rejuvenation, in which a four-
state continuous-time Markov chain (CTMC) is constructed
to describe normal, failure-probable, failure and rejuvenation
states of the system. This work proves that rejuvenation can
reduce downtime and cost. Subsequently, the Markov chain
is applied to more complex software systems for rejuvena-
tion analysis. Examples are Wang et al. [14] uses Markov
chain to analyze the rejuvenation policy of cluster server
systems and Ning et al. [15] use Markov chain to study the
multi-granularity rejuvenation policy of system aging at four
granularity levels.

Besides the Markov chain, the semi-Markov process and
the Markov regenerative processes (MRGP) are widely used.
Bao et al. [16] combine the Markov chain and semi-Markov
process to study the rejuvenation policy of the system suf-
fers aging due to resource leaks, where Markov chain is
used to build the performance degradation model, and the
semi-Markov process is employed to construct the rejuve-
nation model. The degradation model provides failure rate
analysis to the rejuvenation model for deriving the availabil-
ity function and determining the optimal rejuvenation time.
Similar work is [9], uses two semi-Markov processes to plan
optimal rejuvenation policy for the UNIX system, with one
for building the rejuvenation model and with the other for
obtaining the failure distribution related parameters required
by the rejuvenation model. Bai et al. [38] uses a semi-Markov
process to construct the analytical model for studying soft-
ware rejuvenation in virtualized systems. Garg et al. [17]
use the Markov regenerative stochastic petri net to model
the rejuvenation behavior of the client-server type system,
unavailability function is formulated based on the model.
Then, the optimal rejuvenation interval is determined by
minimizing the unavailability function. Zheng et al. [18] use
Markov regenerative process to study the rejuvenation of the
transaction system with a Markovian arrival process. Their
model plans a periodic time of rejuvenation policy where the
optimal rejuvenation time is determined by minimizing the
loss probability and response time. Ning et al. [19] construct a
Markov rejuvenation process model to plan a two-granularity
rejuvenation policy for a software system that suffers aging
from OS level and AS level. Recent work of [39] and [40]
focus on the rejuvenation of software systems that perform
computing tasks, and an event transition-based method is
employed for deriving the optimal rejuvenation policy.

In addition to the model-based approaches mentioned
above, there is also a considerable part of the work determines

aperiodic rejuvenation time based on the measurement
approach. In the early studies [20] and [21], they found
that software aging is a chronic process manifests as grad-
ual performance degradation and resource consumption. The
measurement-based approach statistically analyzes perfor-
mance data or resource data in order to detect the aging
trend, forecast the resource exhaustion time, and plan rejuve-
nation. Time series analysis, machine learning method, and
threshold method are widely used for measurement analysis.
Zheng et al. [22] apply a modified Mann-Kendall & Sen’s
slope estimator on the time series data (response time and
throughput) to detect the aging trend and forecast the time to
failure of the web server system. Alonso et al. [23] observed
that resource data exhibits nonlinear characteristic in the web
J2EE application when it suffers aging, in order to capture
the nonlinear behavior, a machine learning method (regres-
sion tree) is applied for forecasting the resource exhaustion
time. Silva et al. [24] proposed a new rejuvenation approach
based on self-healing techniques, which utilize virtualization
to optimize self-recovery actions. The rejuvenation approach
defines the threshold on the performance metric of the
system (e.g., response time), and rejuvenation is triggered
when the detected performance metric exceeds the threshold.
Chen et al. [25] proposed an Entropy-based aging indicator
to predict aging related failures by defining failure threshold
on the aging indicator. Similar work is [26], the authors
proposed a probabilistic aging indicator and they define the
threshold on this aging indicator to predict the failures caused
by aging.

This paper proposes a two-layer model that takes into
account runtime measurements to model the rejuvenation
process of the aging software system and plans rejuvenation
policy in terms of maximizing the system availability and
minimizing downtime cost. The two-layer model involves a
failure model and a rejuvenation model, the former model is
used as the input of the latter model to derive explicit opti-
mization functions. We introduce a survival analysis method
to study failure events of software aging and formulate a
failure distribution using runtime measurements. Unlike pre-
vious analytical models that empirically assumes the failure
distribution, our model estimates failure distribution by using
multiple runtime measurements. Section V evaluates that our
model is superior to the empirical model. The rejuvenation
model is described as a three-state Markov process, including
the available state, the failure state, and the rejuvenation state.
The rejuvenation model takes the constructed failure distribu-
tion as the state transition distribution from the available state
to the failure state to derive an availability function and a cost
function. Then, the optimal rejuvenation time is determined
by solving the optimization functions.

III. THE FAILURE MODEL
In this section, we develop a failure model to study the
failure behavior of the aging software system. A failure dis-
tribution is formulated from the model, which describes the
likelihood of system failure due to resource leak. The failure

VOLUME 8, 2020 136727

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

distribution will be used to construct the rejuvenation model
in Section IV.

A. MODEL DESCRIPTION
Considering a runtime software system, intuitively the prob-
ability of system failure is affected by two factors:

1) On the one hand, it is affected by the time factor, since
aging exists in the long-running software system, and it tends
to degrade performance over time.

2) On the other hand, it is affected by system resource
factors, especially Memory-related resources, since the fewer
available resources, the more severe the aging and the greater
the possibility of the system to fail.

For aging software systems, when the failure occurs is a
random event. We use a probabilistic model to describe the
likelihood of system failure. To account for both the time
effect and resource factors in the system’s failure rate, the
Cox proportional hazard model (abbreviated to Cox model)
is employed. In Cox model, the hazard function of a system
consists of two multiplicative parts, the baseline hazard func-
tion and an exponential function including the effects of the
monitoring variables. The hazard function is expressed as:

h (t|zt) = h0(t)exp(γ zt) (1)

where h0(t) is the baseline hazard function related to the
running time. zt is a row vector, named as covariates that
represent the monitoring variables at time t . γ is a column
vector denotes the regression parameters corresponding to the
monitoring variables. Cox model can be interpreted as: the
hazard rate of the system at time t is affected by both the base-
line hazard rate and the monitoring variables. h0(t) defines
the hazard rate when the monitoring variables do not exist,
while zt defines the effect of monitoring variables on the
hazard rate, making the hazard rate increases or decreases on
the basis of the baseline hazard rate, and the coefficient γ

controls the effect of each monitoring variables on the hazard
rate. Cox model is a type of semi-parametric model since
h0(t) has no concrete definition and its parameters cannot
be estimated. To model the failure behavior of the software
system, a concrete expression of the failure distribution is
required. We extend the Cox model as a fully parametric
model in order to derive the failure distribution. We assume
that the h0(t) follows the Weibull distribution, and then the
Cox model is extended as theWeibull Cox model. The hazard
function is written as:

hw (t|zt) =
β

η
(
t
η
)
β−1

exp(γ zt) (2)

where β> 0 and η> 0 are the shape and scale parameters
of the Weibull distribution, respectively. Although we made
assumptions about the baseline hazard function, since our
model considers runtime measurements, the hazard rate esti-
mates can be adjusted through the runtime measurements.
The reason we choose Weibull distribution is due to its versa-
tility of modeling a variety of life behaviors, which is widely

used in reliability and life data analysis [27], also used in
modeling failure distribution of software systems [28], [29].

Equation (2) estimates the instantaneous failure rate.
To estimate the failure probability, we derive the probability
density function (p.d.f.) and the cumulative distribution func-
tion (c.d.f.). Let T be a non-negative random variable denotes
the time to failure. The distribution of T can be characterized
by its p.d.f. and c.d.f. The c.d.f. of T is giving by:

F (t|zt) = Pr (T ≥ t, zt)

=

∫ t

0
f (t | zt) dt (3)

represents the probability that failure has occurred by time t .
In survival analysis, the survival function is given by:

S (t|zt) = Pr(T < t, zt)

= 1− F(t|zt)

represents the probability that a subject can survive beyond
time t , in other words, the failure has not occurred by duration
time t . According to the principle of survival analysis [30], the
survival function is estimated as:

S (t|zt) = exp(−
∫ t

0
hw (t|zt) dt)

Hence, the c.d.f. is derived as:

F (t|zt) = 1− exp(−
∫ t

0
hw (t|zt) dt)

= 1− exp

(
−

(
t
η

)β
exp(γ zt)

)
(4)

Equation (4) will be used as input to the rejuvenation model
to derive the availability and downtime cost functions, the
details will be described in Section IV.

B. MODEL SOLUTION
In (4), parameters η, β, and γ need to be estimated. Given
a known form model and a set of observation data, the
unknown parameters of the model can be estimated by using
the maximum likelihood estimation (MLE) method. MLE
is a statistical method that estimates the parameters of a
probability distribution by maximizing a likelihood function,
so that under the considered model the observed data is most
probable. In MLE method, the likelihood function is defined
as follows:

l (θ) = f (y; θ) =
∏m

i=1
f (yj; θ)

where θ = [θ1,θ2, . . . ,θk]T is the unknown parameters of
a model, f (y;θ) is the joint probability density of random
variables {y1, y2, . . .}, y= {y1, y2, . . . ,ym} is a given set of
observation data. For independent and identically distributed
random variables, f (y;θ) will be the product of univariate
density functions. The likelihood function can be interpreted
as: given a model and a set of observation results, MLE is
to make inferences about the model parameters that is most
likely to have generated the observation results.

136728 VOLUME 8, 2020

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

According to (4), the p.d.f. of the failure model can be
derived as:

f (t, zt) =
dF (t, zt)

dt

=
β

η

(
t
η

)β−1
exp (γ zt) exp

(
−

(
t
η

)β
exp (γ zt)

)
We assume a set of observation data D = {t1|z1, t2|
z2, t3|z3, . . . ,tm|zm}. For each observation i, where ti is the
failure time and zi is the monitored variables at time ti. We
can then define the likelihood function as:

l (η, β, γ) = f (D; η, β, γ)

=

∏m

i=1
f (ti|zi; η, β, γ)

=

∏m

i=1

β

η

(
ti
η

)β−1
exp (γ zi) exp

(
−

(
ti
η

)β
× exp (γ zi)

)
To facilitate the solution, the log-likelihood function is used,
which is expressed as:

ln [l (η, β, γ)] = ln
∏m

i=1
f (ti|zi; η, β, γ)

= m ln
(
β

η

)
+

∑m

i=1
ln
(
ti
η

)β−1
+

∑m

i=1
γ zi −

∑m

i=1

(
ti
η

)β
exp (γ zi)

The log-likelihood function is used as the objective function
of maximization. Differentiating the objective function with
respect to the parameters η, β, γ , we get the equations as
follows:

∂ln [l (η, β, γ)]
∂η

= 0

∂ln [l (η, β, γ)]
∂β

= 0

∂ln [l (η, β, γ)]
∂γ

= 0

The optimal estimation of η̂, β̂, γ̂ can be obtained by solving
the above equations. In this paper, we employ the Newton-
Raphson method to solve the above nonlinear equations.

IV. THE REJUVENATION MODEL AND OPTIMAL
REJUVENATION POLICY
In this section, we develop a proactive rejuvenation model
to plan the optimal rejuvenation policy. The optimization
functions about availability and downtime cost functions are
formulated and solved for determining the optimal rejuvena-
tion time.

A. MODEL DESCRIPTION
We use a 3-state semi-Markov process to describe the reju-
venation process of the software system in the presence of
aging. Figure 1 depicts the evolution of the three states, where

FIGURE 1. The rejuvenation model that is described with a 3-state
semi-Markov process.

A represents the available state, R represents the rejuvenation
state and F represents the failure state. The initial start-up
system is in state A. The system runs continuously over time
and gradually suffers from performance degradation due to
aging. If the system fails, the system transitions from state A
to state F, while if the rejuvenation operation is performed,
the system transitions from state A to state R. In state F, after
reactive recover is completed, the system is restored and tran-
sition to state A. In state R, after the rejuvenation operation is
completed, the system returns to the initial state of A. The
system is not available in state R and state F. In Figure 1,
Fr (t) ,Ff (t) ,Fb (t) ,Fs (t) are respectively denote the dis-
tribution function of time to rejuvenation, time to failure,
duration of the rejuvenation operation, duration of the recov-
ery operation. The correlation between the failure model and
the rejuvenation model is the failure state F. In the failure
model, we have formulated the distribution function of the
time to failure. Hence, Ff (t)= F (t|zt). The forms of Fb (t)
and Fs (t) could be identified and estimated using standard
statistical methods. Some work gives suggestions in the form
of the two functions, such as [19] suggests Weibull distri-
bution and Pareto distribution for Fb (t) and Fs (t) respec-
tively. Generally, duration of the rejuvenation operation and
duration of the recovery operation are specified according to
software maintenance guidelines [12], [19].

We plan a time-based rejuvenation policy, that is, perform
the rejuvenation after the system runs a period τ from its
startup, i.e., Fr (t) = τ for t > 0. The optimal rejuvenation
time interval τ is determined by maximizing the system
availability and minimizing the downtime cost.

B. AVAILABILITY AND DOWNTIME COST
We use a transition matrix to describe the transitions of the
rejuvenation model, which is expressed as:

P =

 0 PAR PAF
PRA 0 0
PFA 0 0

where PAR represents the transition probability from state
A to state R, PAF represents the transition probability from
state A to state F. PRA and PFA have a similar meaning. The
transition probability can be estimated by the distribution
function, thus we have:

pAF = Ff (τ)

pAR = 1− pAF = 1− Ff (τ)

VOLUME 8, 2020 136729

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

Let π= [πA, πR, πF] is the steady state probability. Accord-
ing to the following properties:

PAR + PAF = 1

PRA = 1

PFA = 1

π = πP

πA + πR + πF = 1

Then, we have:

πA =
1
2

πR =
PAR
2

πF =
PAF
2

Let dAdR and dF respectively denote the sojourn time of
the system in state A, R and F, where dR and dF are also
representing the time required to complete the rejuvenation
operation and the time required to complete the recovery after
a failure. In practice, failure occurs unprepared may lead to
great losses. After a failure occurs, a reactive recovery is
triggered that also needs some tricky operations, such as data
recovery. Hence, the time and cost of reactive recovery is
much greater than proactive rejuvenation [17]. dR and dF are
generally considered as the mean of distribution functions
Fb(t) and Fs(t) in Figure 1. The sojourn time of state A is
given by [31]:

dA =
∫ τ

0
(1− Ff (t))dt

It can be interpreted as: the system did not fail during the
period before the rejuvenation was performed.

As shown in Figure 1, the system is only available in state
A. we derive the steady state availability as follows:

A (τ) =
πAdA

πAdA + πRdR + πFdF

=
dA

dA + PARdR + PAFdF

=

∫ τ
0 (1−Ff (t))dt∫ τ

0 (1−Ff (t))dt+(1−Ff (τ))dR + Ff (τ) dF
(5)

By the failure distribution Ff (t)= F (t|zt), and according
to (4), then we have:

Ff (t) = 1− exp

(
−

(
t
η

)β
exp(γ zt)

)
(6)

In (5), substitute for Ff (t) by (6), we obtain the concrete
expression of the availability function, which is a nonlinear
function about the rejuvenation time τ . Function (5) is used as
the objective function of maximization. We differentiate (5)
with respect to variable τ and set the derivative function equal
to zero, then we employ the bisection method to find the
root of the derivative equation, and this value is the optimal
rejuvenation time τ ∗. Later, section V will illustrate that the
availability function is a concave function (Fig.5), so there
must be a value of τ ∗ that maximizes the availability.

Availability and downtime cost are two different concerns.
To determine the optimal rejuvenation time can also be con-
sidered from the perspective of minimizing downtime cost.
Let cF and cR denote the cost of failure and the cost of
rejuvenation per unit time respectively, then the downtime
cost per unit time can be expressed as:

C (τ) =
πRdRCR + πFdFCF
πAdA + πRdR + πFdF

=
PARdRcR + PAFdFcF
dA + PARdR + PAFdF

=

(
1− Ff (τ)

)
dRcR + Ff (τ) dFcF∫ τ

0 (1− Ff (t))dt +
(
1− Ff (τ)

)
dR + Ff (τ) dF

(7)

In (7), substitute for Ff (t) by (6), we obtain the concrete
expression of the downtime cost function, which is a nonlin-
ear function of the rejuvenation time τ . Function (7) is used
as the objective function of minimization. Similar to before,
we differentiate (7) with respect to τ and set the derivative
function equal to zero, then we employ the bisection method
to find the root of the derivative equation, and this value is the
optimal rejuvenation time τ ∗. In section V, we illustrate that
the downtime cost function is a convex function (Figure 6),
so there must be a value of τ ∗ that minimizes the downtime
cost.

V. CASE STUDY
In this section, we comprehensively evaluate the failure
model and the rejuvenation model by studying the aging
of the web search system. The experimental results show that
the proposed model can be used as a reliable method to plan
the optimal rejuvenation time.

When experimenting to study the software aging, long
periods of runtime are required to observe system fail-
ures. To reduce the observation time, the Accelerated life
test (ALT) approach proposed in [32] and [33] is adopted
to accelerate the software aging. The mechanism of the
ALT method is to activate aging-related bugs so that they
result in software aging. For example, activation of Memory-
related bugs can result in a Memory leak. Memory leak
has been demonstrated to be one of the main causes of
software aging and it occurs frequently in running software
systems [34]. Several papers have studied the effects ofMem-
ory leaks on software aging [23], [35]. In this paper, we
employ the injectMemory leakmethod to accelerate software
aging.

Software failure not only refers to system crash, but
also includes that the software system is still running but
cannot provide normal functions or services, for example,
violation of the Service level agreement (SLA). The lat-
ter kind of failure is common in practice. For the web
search system, its normal service requires that the response
time no more than 300 ms [36], [37]. Hence, we define
that the web search system fails when its response time
exceeds 300 ms.

136730 VOLUME 8, 2020

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

TABLE 1. Configurations of the server machine and client machine.

FIGURE 2. The monitored performance data of web search during 1200
minutes of continuous operation.

A. EXPERIMENT SETUP
The experimental platform composed of two physical
machines, one as a server and the other as a client, and the
two physical machines are connected by a switch. Table 1 lists
the configurations of the twomachines.We deploy the Cloud-
suite’s Web search to the platform, where the server machine
contains an index of the text and fields found in a set of
crawled websites and, the client machine sends random key-
word query requests to the server end. The Cloudsuite’s web
search relies on the Apache Solr search engine framework,
and the client machine uses the Faban load generator to
simulate real-world clients that send requests to the server
node. The server machine is the test system, so we study the
aging of the server end during the system operation.

In order to accelerate software aging, we inject Memory
leaks on the server machine by using Lookbusy (version: 1.4).
Lookbusy is a simple load generator that can occupy a certain
amount of Memory according to the user’s need so that the
occupiedMemory is not available for other software systems.

During the web search operation, we leverage the Vmstate
tool (version: procps-ng 3.3.9) to collect the resource met-
rics and parse system logs to collect performance metric.
As an example, Figure 2 and Figure 3 depict the collected
performance data and resource data of web search dur-
ing 1200 minutes of continuous operation, in which Mem-
ory leaks gradually increases from 500 MB to 1500 MB.
As the software system works in a highly dynamic envi-
ronment, the collected data has great fluctuations. In the
time series data, we identify the failure point as the first

TABLE 2. Resource metrics used for studying the aging of the web server
system.

TABLE 3. Failure data and its corresponding monitoring variables.

point of 10 consecutive points with response time exceed-
ing 300ms. Failure time is the time from the beginning of
system operation to system failure. As shown in Figure 2,
the failure occurs after the system runs for 1128 min. That
is to say, from 1128 min, at least 9 consecutive detection
points have a response time of more than 300ms. Figure 3
shows the resource data collected by Vmstate. 4 different
types of resource metrics are collected, all of which are
Memory-related metrics. Table 2 explains the meaning of
resource metrics.

According to (4), the failure distribution is estimated in
terms of the failure time data and its corresponding mon-
itoring variables. In this case study, we choose Swpd and
available Memory (short for avail-Mem) as candidates for
monitoring variables, where the avail-Mem is the sum of
Free, Buffer, and Cache. In the next section, we will analyze
the candidate variables and model the optimal failure model.

Table 3 lists the 10 sets of failure data and its corresponding
monitoring variables obtained by the experiment. It is worth
noting that since fluctuations in the monitoring variables
(As shown in Figure 3), we take the average value of the
monitoring variables of five points before and after the failure
point as the monitoring variables. For example, when the
failure time is 1128 min, values of Swpd and avail-Mem
respectively are the average of 10 monitored values from
1124 to 1133 min. For the two monitoring variables, the more
consumption of Swpd, the greater the probability of system
failure, but the less the avail-Mem, the more likelihood of
system failure. The Swpd and avail-Mem are denoted as z1
and z2, respectively. Since the monitored data value is large,
it will increase the computational complexity of the model.
We use the normalization method to process the data, it is
executed as follows:

zi =
zi − zimin

zimax − zimin
, i = 1, 2

VOLUME 8, 2020 136731

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

FIGURE 3. The monitored resource data of web search during 1200 minutes of continuous operation.

where z1max = 1815808 and z1min = 38116,z2max =
4736088 and z2min = 2450316 are respectively the maximum
and minimum values for z1 and z2. When training the Cox
model to estimate the model parameters, the number of sam-
ples needed is generally 5-10 times of model variables. In our
model, two parameters are considered, so 10 sets of data are
sufficient.

B. EVALUATION OF THE FAILURE MODEL
To analyze whether Swpd and avail-Mem are useful to con-
struct the failure model, we use F-test to verify the signifi-
cance of the two variables on the failure model. According to
the F-test’s theory, we propose the following hypothesis:
H0: The failure model without considering monitoring

variables, i.e. the hazard function of the failure model is
simplified to the baseline hazard function, which is expressed
as:

hw (t) =
β

η
(
t
η
)
β−1

H1: The failure model considering monitoring variables z1
and z2, i.e., the hazard function of the failure model is
expressed as:

hw (t|zt) =
β

η
(
t
η
)
β−1

exp(γ1z1 + γ2z2)

H0 is the null hypothesis, H1 is the alternative hypothesis.
At the significance level of α= 0.05, the computed p-value is
0.017, since p-value< α, it indicates less than 5% probability
the null hypothesis is correct. Therefore, we reject the null
hypothesis and accept the alternative hypothesis. That is to
say, the monitoring variables z1 and z2 have a significant
effect on the failure model.

The F-test verifies that the monitoring variables have a
significant effect on the failure, but it does not mean that both

z1 and z2 have significant contributions to the failure model.
To analyze the effect of each monitoring variable on the fail-
ure model, we use the Akaike information criterion (AIC) to
estimate which variable can build the optimal failure model.
AIC deals with the trade-off between the goodness of fit of
the model and the simplicity of the model, which can be
estimated by:

AIC = −2lnL + 2K

where L is the maximum value of the likelihood function for
the model, K is the number of the monitoring variables in the
model. Given a set of candidate models, the preferred model
is the one with theminimumAIC value. For the two candidate
monitoring variables, there will be three candidate models,
as shown in Table 4. The first two columns list the candidate
models and their descriptions, and the last three columns list
the lnL, K , and AIC values of each candidate model. The
results show that failure model-2 with the minimum AIC
value. Therefore, failure model-2 is the optimal failure model
that will be used to construct the rejuvenation model. The
failure model-2 has the following failure distribution:

F (t|z2)= 1− exp

(
−

(
t
η

)β
exp(γ2z2)

)
(8)

We estimate the parameters in failure model-2 using the
MLE method described in Section III.B, and results are list
in Table 5. It can be seen from the table that the coefficient
γ2 is a negative value, indicating that the avail-Mem has a
negative and significant effect on the failure, that is, the less
available Memory, the more likelihood of failure.

When not considering runtime measurements (monitoring
variables), the failure model-2 is simplified as the baseline
model. We compare the failure model-2 with the baseline
model in terms of the goodness of fit. For a probabilistic

136732 VOLUME 8, 2020

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

TABLE 4. Selection of the optimal failure model based on AIC.

TABLE 5. The parameters of failure model-2 estimated by the MLE
method.

TABLE 6. Comparison of the goodness of fit between failure model-2 and
baseline model.

FIGURE 4. Comparison of failure probability between failure model-2 and
baseline model, where failure model-2 is the failure model with
monitoring variable avail-Mem and baseline model is the failure model
without monitoring variable.

model, we use log-likelihood to measure the goodness of fit.
Since the log-likelihood is what we are maximizing in the
model training, so the larger the log-likelihood value, the
better the model fitting effect. Table 6 lists the comparison
results of the two models. We can see that failure model-2 is
superior to the baseline model. Figure 4 illustrates the failure
distributions of the two models, where the solid line denotes
the c.d.f. of the failure model-2 and the dotted line denotes
the c.d.f. of the baseline model. It can be seen from the figure
that failure model-2 has a higher probability of failure than
the baseline model, indicates that the system with Memory
leak is more likely to fail than the system without Memory
leak.

FIGURE 5. Availability versus rejuvenation trigger time.

FIGURE 6. Downtime cost versus rejuvenation trigger time.

C. EVALUATION OF THE REJUVENATION MODEL
According to Section IV.B, we derive the optimal rejuvena-
tion time by maximizing the availability function and mini-
mizing the downtime cost function. Specifically, the failure
model Ff (t) is replaced by the optimal failure model-2. The
form of the failure model-2 is shown in (8), and the model
parameters are list in Table 5. In (5) and (7), substitute for
Ff (t) by (8), we can estimate the optimal rejuvenation time.

We assume that the mean time to recover from a failure
is 5 min, i.e., dF = 5 min, and the mean time required
for the rejuvenation operation is 1 min, i.e., dR = 1 min.
We also assume that the cost of failure is $100 per min,
i.e., cF = $100/min, and the cost of rejuvenation is $10 per
min, i.e., cR = $10/min. Figure 5 shows the rejuvenation
trigger time versus the availability of the system, where the
maximum availability found is A (τ ∗) = 0.9982 and the
corresponding optimal rejuvenation time interval is τ ∗ =
627 min. Figure 6 plots the rejuvenation trigger time versus
the downtime cost of the system, where the minimum cost
found is C (τ ∗) = 0.0249 and the corresponding optimal
rejuvenation time interval is τ ∗ = 458 min.

D. COMPARISON
Compared with the traditional analytical model, the effective-
ness of the two-layer model proposed in this paper is reflected
in the integration of runtime measurements to correct the

VOLUME 8, 2020 136733

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

TABLE 7. Comparison of rejuvenation optimization between the
two-layer model with and without monitoring variables.

analytical model. We compare the two cases with and without
system measurement, i.e., the two-layer model with moni-
toring variables and the two-layer model without monitoring
variable. Table 7 lists the comparison results. It can be seen
that compared to the model without considering the monitor-
ing variables, our model reduces the unavailability by:

(1− 0.9978)− (1− 0.9982)
1− 0.9978

× 100% = 18.18%

similarly, our model reduces the downtime cost by:

0.0362− 0.0249
0.0362

× 100% = 31.22%

The comparison results indicate that runtime measurement
can improve the effectiveness of the two-layer model.

VI. CONCLUSION
Long-running software systems inevitably suffer aging, lead-
ing to gradual performance degradation and eventually ser-
vice failure. Unplanned software failures negatively affect
system reliability. Software rejuvenation is an effective fault
management technique that is widely adopted to counter-
act the aging effect and prevent failure. The benefit and
effectiveness of software rejuvenation can be greatly affected
by the rejuvenation policy. A frequent rejuvenation will affect
the system availability and incurs extra downtime costs.
The research on determining optimal rejuvenation time is
an important issue. In this paper, we derive the optimal
time-based rejuvenation policy maximizing the system avail-
ability andminimizing the downtime cost. A two-layer model
is proposed that includes a failure model and a rejuvenation
model works together to derive the optimal rejuvenation time.
The failure model is constructed based on the Cox propor-
tional hazard model, using runtime measurements to derive
a failure distribution of the system. The rejuvenation model
is built based on the semi-Markov process, which takes the
failure distribution from the failure model as input to derive
an availability function and a downtime cost function. Then,
optimal rejuvenation time is derived in terms of the two
functions. The case study conducted on the web server system
have shown that our model can be used as a reliable method
for planning the optimal rejuvenation policy.

ACKNOWLEDGMENT
The authors are very grateful to anonymous reviewers for
their constructive comments.

REFERENCES
[1] D. L. Parnas, ‘‘Software aging,’’ inProc. 16th Int. Conf. Softw. Eng. (ICSE),

1994, pp. 279–287.
[2] S. Jia, C. Hou, and J. Wang, ‘‘Software aging analysis and prediction in a

Web server based on multiple linear regression algorithm,’’ in Proc. IEEE
9th Int. Conf. Commun. Softw. Netw. (ICCSN), May 2017, pp. 1452–1456.

[3] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, ‘‘Software aging
analysis of the linux operating system,’’ in Proc. IEEE 21st Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2010, pp. 71–80.

[4] L. Cui, B. Li, J. Li, J. Hardy, and L. Liu, ‘‘Software aging in virtualized
environments: Detection and prediction,’’ in Proc. IEEE 18th Int. Conf.
Parallel Distrib. Syst. (ICPADS), Dec. 2012, pp. 718–719.

[5] J. Araujo, R. Matos, P. Maciel, and R. Matias, ‘‘Software aging issues on
the eucalyptus cloud computing infrastructure,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (ICSMC), Oct. 2011, pp. 1411–1416.

[6] D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono,
‘‘Software aging analysis of the Android mobile OS,’’ in Proc. IEEE 27th
Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2016, pp. 478–489.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, ‘‘Software reju-
venation: Analysis, module and applications,’’ in Proc. 25th Int. Symp.
Fault-Tolerant Comput. (FTCS), 1995, pp. 381–390.

[8] M. Grottke, R. Matias, and K. S. Trivedi, ‘‘The fundamentals of software
aging,’’ in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops (ISSREWksp),
Nov. 2008, pp. 1–6.

[9] K. Vaidyanathan and K. S. Trivedi, ‘‘A comprehensive model for software
rejuvenation,’’ IEEE Trans. Dependable Secure Comput., vol. 2, no. 2,
pp. 124–137, Feb. 2005.

[10] K. S. Trivedi and K. Vaidyanathan, ‘‘Software aging and rejuvenation,’’
in Wiley Encyclopedia of Computer Science and Engineering. Chichester,
U.K.: Wiley, Dec. 2007.

[11] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa,
‘‘Workload-based software rejuvenation in cloud systems,’’ IEEE Trans.
Comput., vol. 62, no. 6, pp. 1072–1085, Jun. 2013.

[12] J. Alonso, R. Matias, E. Vicente, A. Maria, and K. S. Trivedi, ‘‘A com-
parative experimental study of software rejuvenation overhead,’’ Perform.
Eval., vol. 70, no. 3, pp. 231–250, Mar. 2013.

[13] J. Araujo, R. Matos, P. Maciel, F. Vieira, R. Matias, and K. S. Trivedi,
‘‘Software rejuvenation in eucalyptus cloud computing infrastructure:
A method based on time series forecasting and multiple thresholds,’’
in Proc. IEEE 3rd Int. Workshop Softw. Aging Rejuvenation (WoSAR),
Nov. 2011, pp. 38–43.

[14] D. Wang, W. Xie, and K. S. Trivedi, ‘‘Performability analysis of clus-
tered systems with rejuvenation under varying workload,’’ Perform. Eval.,
vol. 64, no. 3, pp. 247–265, Mar. 2007.

[15] G. Ning, K. S. Trivedi, H. Hu, and K.-Y. Cai, ‘‘Multi-granularity software
rejuvenation policy based on continuous time Markov chain,’’ in Proc.
IEEE 3rd Int. Workshop Softw. Aging Rejuvenation (WoSAR), Nov. 2011,
pp. 32–37.

[16] Y. Bao, X. Sun, and K. S. Trivedi, ‘‘A workload-based analysis of software
aging, and rejuvenation,’’ IEEE Trans. Rel., vol. 54, no. 3, pp. 541–548,
Sep. 2005.

[17] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, ‘‘Analysis of software
rejuvenation using Markov regenerative stochastic Petri net,’’ in Proc. 6th
Int. Symp. Softw. Rel. Eng. (ISSRE), 1995, pp. 180–187.

[18] J. Zheng, H. Okamura, L. Li, and T. Dohi, ‘‘A comprehensive evaluation
of software rejuvenation policies for transaction systems with Markovian
arrivals,’’ IEEE Trans. Rel., vol. 66, no. 4, pp. 1157–1177, Dec. 2017.

[19] G. Ning, J. Zhao, Y. Lou, J. Alonso, R.Matias, K. S. Trivedi, B.-B. Yin, and
K.-Y. Cai, ‘‘Optimization of two-granularity software rejuvenation policy
based on the Markov regenerative process,’’ IEEE Trans. Rel., vol. 65,
no. 4, pp. 1630–1646, Dec. 2016.

[20] L. Bernstein, ‘‘Innovative technologies for preventing network outages,’’
AT&T Tech. J., vol. 72, no. 4, pp. 4–10, Jul. 1993.

[21] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi, ‘‘A method-
ology for detection and estimation of software aging,’’ in Proc. 9th Int.
Symp. Softw. Rel. Eng. (ISSRE), 1998, pp. 283–292.

[22] P. Zheng, Y. Qi, Y. Zhou, P. Chen, J. Zhan, and M. R. Lyu, ‘‘An auto-
matic framework for detecting and characterizing performance degradation
of software systems,’’ IEEE Trans. Rel., vol. 63, no. 4, pp. 927–943,
Dec. 2014.

136734 VOLUME 8, 2020

J. Li et al.: Planning Optimal Rejuvenation Policy for Aging Software Systems via a Two-Layer Model

[23] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, ‘‘Adaptive on-line
software aging prediction based on machine learning,’’ in Proc. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2010, pp. 507–516.

[24] L. M. Silva, J. Alonso, and J. Torres, ‘‘Using virtualization to improve soft-
ware rejuvenation,’’ IEEE Trans. Comput., vol. 58, no. 11, pp. 1525–1538,
Nov. 2009.

[25] P. Chen, Y. Qi, X. Li, D. Hou, and M. Rung-Tsong Lyu, ‘‘ARF-predictor:
Effective prediction of aging-related failure using entropy,’’ IEEE Trans.
Dependable Secure Comput., vol. 15, no. 4, pp. 675–693, Aug. 2018.

[26] J. Li, Y. Qi, and L. Cai, ‘‘A hybrid approach for predicting aging-related
failures of software systems,’’ in Proc. IEEE Symp. Service-Oriented Syst.
Eng. (SOSE), Mar. 2018, pp. 96–105.

[27] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. Matias, Jr., and K.-Y. Cai,
‘‘A comprehensive approach to optimal software rejuvenation,’’ Perform.
Eval., vol. 70, no. 11, pp. 917–933, Nov. 2013.

[28] A. Kumar and M. Saini, ‘‘Cost-benefit analysis of a single-unit system
with preventive maintenance andWeibull distribution for failure and repair
activities,’’ J. Appl. Math., Statist. Informat., vol. 10, no. 2, pp. 5–19,
Jan. 2015.

[29] G. Levitin, L. Xing, and H. Ben-Haim, ‘‘Optimizing software rejuvenation
policy for real time tasks,’’ Rel. Eng. Syst. Saf., vol. 176, pp. 202–208,
Aug. 2018.

[30] L. Tian and R. Olshen. Survival Analysis. Stanford University,
Stanford, CA, USA. Accessed: Jan. 2020. [Online]. Available:
https://web.stanford.edu/~lutian/coursepdf/slideweek1.pdf

[31] D. Chen and K. S. Trivedi, ‘‘Analysis of periodic preventive maintenance
with general system failure distribution,’’ in Proc. Pacific Rim Int. Symp.
Dependable Comput. (PRDC), 2001, pp. 103–107.

[32] R. Matias, P. A. Barbetta, K. S. Trivedi, and P. J. F. Filho, ‘‘Accelerated
degradation tests applied to software aging experiments,’’ IEEE Trans.
Rel., vol. 59, no. 1, pp. 102–114, Mar. 2010.

[33] J. Zhao, Y. Jin, K. S. Trivedi, and R. Matias, Jr., ‘‘Injecting memory leaks
to accelerate software failures,’’ in Proc. IEEE 22nd Int. Symp. Softw. Rel.
Eng. (ISSRE), Nov. 2011, pp. 260–269.

[34] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, ‘‘A survey of soft-
ware aging and rejuvenation studies,’’ ACM J. Emerg. Technol. Comput.
Syst., vol. 10, no. 1, pp. 1–34, Jan. 2014.

[35] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo, ‘‘Memory
leak analysis of mission-critical middleware,’’ J. Syst. Softw., vol. 83, no. 9,
pp. 1556–1567, Sep. 2010.

[36] R. Rojas-Cessa, Y. Kaymak, and Z. Dong, ‘‘Schemes for fast transmission
of flows in data center networks,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 3, pp. 1391–1422, 3rd Quart., 2015.

[37] B. Vamanan, J. Hasan, and T. N. Vijaykumar, ‘‘Deadline-aware datacenter
tcp (D2TCP),’’ ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 115–126, Aug. 2012.

[38] J. Bai, X. Chang, F. Machida, K. S. Trivedi, and Z. Han, ‘‘Analyzing
software rejuvenation techniques in a virtualized system: Service provider
and user views,’’ IEEE Access, vol. 8, pp. 6448–6459, 2020.

[39] G. Levitin, L. Xing, and L. Luo, ‘‘Joint optimal checkpointing and rejuve-
nation policy for real-time computing tasks,’’ Rel. Eng. Syst. Saf., vol. 182,
pp. 63–72, Feb. 2019.

[40] G. Levitin, L. Xing, and Y. Xiang, ‘‘Optimizing software rejuvenation
policy for tasks with periodic inspections and time limitation,’’ Relia. Eng.
Sys. Saf., vol. 197, pp. 1–10, May 2020.

JINGWEI LI received the B.S. and M.S. degrees
in computer science from Lanzhou University,
China, in 2010 and 2013, respectively. She is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Technology, Xi’an
Jiaotong University, China. Her research interests
include performance optimization, big data analyt-
ics, and efficient resource management.

YONG QI (Member, IEEE) received the Ph.D.
degree from Xi’an Jiaotong University, China.
He is currently a Full Professor with the Depart-
ment of Computer Science and Technology, Xi’an
Jiaotong University. His research interests include
operating systems, distributed systems, cloud
computing and big data systems, as well as system
security and application. He is a member of the
ACM.

GUANGHUA WANG received the B.S. and
M.S. degrees in computer science from North-
east Forestry University, in 2011 and 2014,
respectively. He currently works as an Engineer
at the Satellite Control Center, Xi’an, China.
His research interest is network operation and
maintenance.

JINWEI LIN received the B.S. degree in computer
science from Xi’an Jiaotong University, China,
in 2018, where he is currently pursuing the mas-
ter’s degree with the Department of Computer
Science and Technology. His research interests
include cloud computing and power camping.

VOLUME 8, 2020 136735

	INTRODUCTION
	RELEVANT WORK
	THE FAILURE MODEL
	MODEL DESCRIPTION
	MODEL SOLUTION

	THE REJUVENATION MODEL AND OPTIMAL REJUVENATION POLICY
	MODEL DESCRIPTION
	AVAILABILITY AND DOWNTIME COST

	CASE STUDY
	EXPERIMENT SETUP
	EVALUATION OF THE FAILURE MODEL
	EVALUATION OF THE REJUVENATION MODEL
	COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	JINGWEI LI
	YONG QI
	GUANGHUA WANG
	JINWEI LIN

