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ABSTRACT In this study, a wearable prototype system was developed for multiple-gesture rehabilitation
using electrical stimulation controlled by a volitional surface electromyography (sEMG) scan of a healthy
forearm. The purpose of the prototype system is to reconstruct multiple gestures of a paralysed limb and to
simplify the positioning of sEMG detection sites on a healthy forearm. A self-designed eight-channel sEMG
detection armbandwas used to detect the sEMG signal distributions of themuscle groups in healthy forearms.
Linear discriminant analysis (LDA) was used to classify the sEMG signal distributions corresponding to
different gestures, and then the classification results were mapped to corresponding stimulation channels.
The sEMG signal with the maximum root mean square (RMS) was used as the source of stimulus coding for
each gesture. Our proposed mean absolute value (MAV)/number of slope sign changes (NSS) dual-coding
(MNDC) algorithm was used to encode the sEMG signal into an electrical stimulus with a dynamic pulse
width and frequency. The constant-current stimulation armband electrically stimulated multiple muscles in
the affected forearm by means of a circuit designed with a time-division multiplexed stimulation channel.
An experiment involving 6 able-bodied volunteers showed that when the detection armband was located near
the middle of the forearm, the gesture classification accuracy was greater than 90%, and each active sEMG
signal was high. Gesture bridge experiments, including grasping, wrist flexion, wrist extension and finger
extension, were carried out among six hemiplegic subjects and between one able-bodied volunteer acting
as a controller and each of six stroke patients as the controllee. Both sets of results show that the proposed
system can reconstruct these four gestures in the controlled subject with a delay of at most 360 ms and with
a correlation coefficient of > 0.72.

INDEX TERMS Electrical stimulation, linear discriminant analysis (LDA), multiple-gesture reconstruction,
paralysis, surface electromyography (sEMG).

I. INTRODUCTION
Functional electrical stimulation (FES) is a neurorehabilita-
tion technique that is frequently used to maintain and restore
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limb motor function in patients with stroke and spinal cord
injury (SCI) [1], [2]. Enhancing patients’ volitional control
in FES is key to improving its efficacy [3], [4]. Surface
electromyography (sEMG) is used to measure the initiation
of motion in patients and the contraction strength and fatigue
of muscles and thus is commonly used as a basis for control
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in FES systems to increase patients’ participation. Several
sEMG-controlled FES systems have been proposed, such as
EMG-triggered FES [5], [6], proportional EMG-controlled
FES [7] and contralaterally controlled FES (CCFES) [8].
In these techniques, patients’ volitional sEMG signals are
employed to trigger or regulate the FES system to assist
the affected limb’s movement. According to the theory of
Hebbian plastic connections [9], [10], sEMG-controlled FES
can gradually improve the motor rehabilitation effect by
strengthening the synchronous activation of the central and
peripheral nervous systems over time.

Currently, the most commonly used type of FES in the
clinic is based on a ‘switch’; however, this approach lacks
patient participation and thus results in an unsatisfactory cura-
tive effect [4], [11]. In addition, the stimulation intensity of a
‘switch’-based FES system cannot be adjusted dynamically,
and hence, ‘switch’-based FES fails to sufficiently regulate
the evoked strength of the affected limb. Although propor-
tional EMG-controlled FES and CCFES systems allow the
FES intensity to be adjusted in accordance with the sEMG
amplitude or the joint angle recorded by a bending sensor,
they can generate only a single motion at a time [3], [7].
By contrast, most functional tasks, especially those involving
an upper limb, involve the complex spatiotemporal coordi-
nation of multiple muscles [11]. Therefore, the rehabilitation
of single movements performed by single muscles is insuffi-
cient.

For the control of multiple degrees of freedom in CCFES,
the main limitation lies in the difficulty of achieving accurate
control of the affected limb. Although EMG signal classi-
fiers [12]–[15] and sEMG detection arrays [16] have been
widely studied, most of them are used to control multi-
degree-of-freedom robotic prosthetics for amputees or for
interactions in virtual reality. Considering the above limi-
tations, our research group has proposed a novel method
called the electromyography bridge (EMGB). The main idea
of the EMGB is that each target muscle of a paralysed
limb has its own source muscle in a healthy controller limb.
Therefore, in the EMGB, a self-designed algorithm called
the MNDC algorithm is applied to encode the mean absolute
value (MAV) and number of slope sign changes (NSS) of
the sEMG signal into the pulse width and frequency, respec-
tively, of the stimulation [17], thus dynamically modulat-
ing the evoked muscle strength in real time. Subsequently,
our research group has combined the EMGB with lin-
ear discriminant analysis (LDA) for multiple-gesture recon-
struction [18]. However, the method presented in [18] is
time consuming because it requires four sEMG detectors
that need to be attached carefully at four sEMG detec-
tion sites on the forearm to capture the activation of multi-
ple active muscles. Moreover, the system designed in [18]
is relatively bulky and not suitable for patients’ daily
use.

In this study, we developed a prototype system called a
wearable EMGB for multiple-gesture reconstruction on the
affected side of the body. In the detection part of the system,

an eight-channel sEMG detection armband is used to detect
the EMG distribution in a healthy forearm, and the channel
with the strongest EMG amplitude is chosen as the detection
site for each gesture. This method not only can ensure the
accuracy of LDA but also can simplify the positioning of the
detection sites. A time-division multiplexed (TDM) design
is used for the stimulator to achieve multi-channel electrical
stimulation. The MNDC algorithm is also adopted to realize
accurate electrical stimulation control. In a preliminary clin-
ical study, the ability of the prototype system to reconstruct
hemiplegic patients’ gestures based on the movements of an
able-bodied person’s hand has been tested. After a patient
has participated in several training sessions and mastered
the use of the detection armband, the CCFES paradigm,
using the healthy side to control the affected side, can be
implemented in combination with the proposed wearable
EMGB.

The objectives of the current study were, first, to develop
a wearable EMGB based on an ARM Core micro-controller
and carry out a test with able-bodied volunteers and a
clinical test to verify the feasibility of using the wear-
able EMGB for real-time gesture reconstruction and, sec-
ond, to simplify the positioning of the sEMG detection
sites while ensuring the sEMG-based gesture classification
accuracy.

II. METHOD
A. EMGB OVERVIEW
The main idea of the EMGB is that each target muscle in a
paralysed limb has its own source muscle in a healthy con-
troller limb [19]. During the voluntary contraction of healthy
muscles, the time-frequency characteristics of an sEMG scan
of the healthy muscles can be encoded into a corresponding
electrical stimulus, which can then be used to stimulate the
corresponding affected muscles. As a result, the activation
state of each healthy source muscle can be simulated in the
paralysed limb in real time.

As shown in the block diagram of the system presented
in Fig. 1, the wearable EMGB consists of an eight-channel
sEMG detection armband and a four-channel constant-
current stimulation armband. The sEMG detection armband
consists of a micro-controller unit (MCU) for sEMG signal
processing and a Bluetooth module for signal transmission.
The stimulation armband consists of a Bluetooth receiving
module, an MCU for stimulation regulation and a constant-
current stimulation circuit. On the healthy forearm, the sEMG
detection armband digitizes the sEMG signals, classifies
the sEMG distribution via LDA and maps the classification
results to the corresponding stimulation channels, locates
the active sEMG signals and encodes them into stimulation
parameters, and finally sends the stimulation channel num-
bers and stimulation parameters to the stimulation armband
via Bluetooth. Based on the stimulation channel numbers and
stimulation parameters, the stimulation armband activates the
corresponding stimulation channels and then generates the
desired electrical stimuli.
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FIGURE 1. Block diagram of the wearable EMGB prototype and photographs of the detection armband and the stimulation armband.

B. HARDWARE DESIGN
In the detection armband, three dry silver electrodes are
adopted for each sEMG detector for reusability. All eight
common-ground sEMG detectors have a double differential
configuration and a right leg driving circuit [19]. The pass-
bands of the sEMG detectors range from 20 Hz to 450 Hz
with a gain of 61 dB, and the voltage range of the output
signals is 0 to 3.3 V. A flat cable is adopted to connect the
eight sEMG detectors in a circle. A rubber band and eight
resin shells are used to form the eight sEMG detectors into an
armband with suitable tightness. As theMCU of the detection
armband we use an STM32F407 micro-controller (STMicro-
electronics, Inc., ITA&FR) because of its integrated digital
signal processing (DSP) instruction and floating-point opera-
tion unit, which enhances the real-time performance of LDA.
The sampling frequency is 1 kHz. A USR-BLE101 Bluetooth
module (Youren Networking Technology Co., Ltd., China)
is used to wirelessly transmit the stimulation parameters
and stimulation channel numbers. The detection armband is
powered by a 3.7-V, 380-mAh, 3.7-cm × 1.8-cm × 0.6-cm
lithium battery.

In the stimulation armband, a USR-BLE101 Bluetooth
module is employed to receive messages from the detec-
tion armband. As the MCU of the stimulation armband,
we adopt an STM32F103 micro-controller (STMicroelec-
tronics, Inc., ITA&FR) to modulate the electrical stim-
ulation and activate/deactivate the stimulation channels.
In the constant-current stimulator, an analogue switch chip
is adopted to achieve a TDM design for the realization
of four-channel electrical stimulation [20]. The maximum

output current of the stimulator is 30 mA, and the output
voltage ranges from −60 V to 60 V.
To rapidly discharge the stimulation electrodes and thus

reduce the influence of stimulation artefacts in the CCFES
paradigm, the output stage of each stimulation channel
is equipped with a MAX14803 analogue switch (Maxim
Integrated Inc., USA) to short the stimulation electrodes
after each stimulation. As the stimulation waveform, charge-
balanced bi-directional asymmetric pulses are adopted to
decrease muscle fatigue [21]. The 4 pairs of stimulation elec-
trodes consist of 8 hydrogel electrodes attached to stimulation
sites associated with grasping, wrist flexion, wrist extension
and finger extension, corresponding to the first, second, third
and fourth stimulation channels, respectively. The stimula-
tion armband is powered by a 12-V, 1000-mAh, 5.1-cm ×
1.5-cm × 1.5-cm lithium battery.

C. POSITIONING ANALYSIS OF THE DETECTION
ARMBAND
For gesture reconstruction using the EMGB, the positioning
of the detection sites is critical because the sEMG signals in
the EMGB are used not only for gesture classification but
also for stimulation encoding. For multiple-gesture recon-
struction, the positioning process becomes much more time
consuming due to the increase in the number of detection
sites. In this study, we propose an eight-channel detection
armband that surrounds the forearm, and we select the chan-
nel with the largest root mean square (RMS) signal for each
gesture as the detection site to simplify the positioning of the
detection sites. However, to ensure the accuracy of gesture
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FIGURE 2. EMG detector distribution in the detection armband. (a) Top
view of the distribution of the EMG detectors on the forearm. (b) Cross
section of the 8 EMG detectors evenly distributed on the bisectrix at A-A.

classification while obtaining the strongest sEMG signals,
a suitable reference position for the detection armband needs
to be determined.

In this study, the detection sites for grasping, finger exten-
sion, wrist flexion and wrist extension, which are common
targets of training in gesture rehabilitation, were investi-
gated [3], [5], [11]. As shown in Fig. 2, to determine the
reference position of the detection armband, the forearm was
first divided into 5 equal parts from the distal 1 / 5 to the
proximal 1 / 10, and these bisectrices were numbered from
1 to 6 (distal to proximal). Second, the detection armband
was placed around the first bisectrix, with the eight sEMG
detectors uniformly distributed. The subjects were required
to complete the training procedure for the wearable EMGB
(described in section II-D) with moderate force to generate
an LDA model. Then, the LDA model was tested as the
subjects successfully performed grasping, finger extension,
wrist flexion andwrist extension four times. Each gesture was
maintained for 4 s, with an interval of 2 s. Thus, the sEMG
signal distribution and classification accuracy for a single
bisectrix were obtained. The detection armband was then
moved to the next bisectrix. This process was repeated until
the sEMG signal distributions had been acquired and the clas-
sification accuracies determined for the whole forearm. Six
able-bodied volunteers participated in this detection armband
positioning analysis.

The RMS was calculated to represent the sEMG intensity,
as shown in the following formula:

RMS =

√√√√√ N∑
i=1

(xi − xB)2

N
,|xi − xB| > Nthr (1)

Here, Nthr is 1.5 times the standard deviation (SD) of a 1 s
data sample of background noise and xB is the average of the

same data sample of background noise. Four RMSmaps were
drawn, corresponding to the sEMG signal distributions asso-
ciated with the four gestures, and for each gesture, the region
with the largest RMS was chosen as the detection site. The
four RMSmaps were normalized and were thenmultiplied by
the maximum normalized RMS on the same bisectrix among
all fourmaps to obtain the RMS products. The larger the RMS
product is, the more balanced the bisectrix is among the four
gestures. Finally, the classification accuracy and the RMS
product for each bisectrix were combined to determine the
best bisectrix, that is, the reference position for the detection
armband.

D. ALGORITHMS FOR GESTURE CLASSIFICATION AND
STIMULATION GENERATION
Compared with the artificial neural network (ANN) and
support vector machine (SVM) algorithms, LDA achieves a
similar classification accuracy and is less computationally
expensive for small datasets; thus, it is more suitable for
our study [13], [22]. Hudgins time-domain features, such
as the MAV, number of zero crossings (NZC), NSS and
wave length (WL), are usually used in sEMG-based motion
classification because of their simplicity of computation and
high classification accuracy [23], [24]. For these reasons,
LDA and Hudgins time-domain features were adopted in our
study.

The length of a data window was 150 ms, and the data
windows of all eight channels were defined as an analysis
frame. The step of the analysis frame was 50 ms. To reduce
the computational resources consumed, it was necessary to
determine whether each analysis frame contained sEMG
before performing feature calculations and classification.

The WL features in the eight detection channels were used
as a reference for analysing whether a frame contained an
sEMG signal. Once a WL feature in any channel in an analy-
sis frame exceeded the corresponding pre-set WL threshold,
this analysis frame was identified as a motion frame. TheWL
threshold for each channel was set as follows: First, the aver-
age WL and WL SD of 200 consecutive analysis frames
containing background noise were calculated. Then, the WL
threshold for the channel was set to the sum of the average
WL and 3 times the WL SD. The LDA model was trained
on 320 motion frames of grasping, finger extension, wrist
flexion andwrist extension (80motion frames each). The pos-
sible classification results were grasping, wrist flexion, wrist
extension, finger extension and no gesture, corresponding to
channels 1, 2, 3, and 4 of the stimulator and no stimulation,
respectively. To improve the gesture reconstruction accuracy,
a classification result was sent only when three consistent
results were consecutively generated.

Our MAV/NSS dual-coding (MNDC) algorithm was used
to encode theMAVandNSS of an sEMG signal into thewidth
and frequency, respectively, of the corresponding electrical
stimulus to simulate autonomous forces [17]. The sEMG sig-
nal with themaximumRMS in each gesture framewas chosen
as the coding source for the electrical stimulus. To improve
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FIGURE 3. Flow chart of the training and bridging stages for the EMGB system.

the universality of the MNDC algorithm, the MAV and NSS
of the sEMG signal need to be normalized individually before
encoding. The generalized MNDC algorithm for wrist exten-
sion is shown in (2) and (3).

Npw = 1.09NMAV (2)

Nf = 1.09NNSS (3)

The generalized MNDC algorithm for wrist flexion is given
in (4) and (5).

Npw = 0.82NMAV (4)

Nf = 1.09NNSS (5)

Npw and Nf are the normalized stimulus pulse width and
frequency, respectively, and NMAV and NNSS are the normal-
ized MAV and NSS of the sEMG signal, respectively. The
coefficients for grasping and finger extension were simply
set to 1. The ranges of the stimulus pulse width and stimulus
frequency were 200–700 µs and 20–60 Hz, respectively.
As shown in Fig. 3, the gesture reconstruction process in

the wearable EMGB system consists of two stages: a training
stage and a bridging stage. For the training stage, the subjects
were asked to relax, and when a gesture was successfully
completed, this was interactively indicated by LED indicators
on the wearable EMG device. Finally, the WL thresholds for
the eight channels and the trained LDA model parameters
were obtained and stored in the RAM of the STM32F407
MCU. In the bridging stage, once a gesture frame was cap-
tured, the sEMG signal of this gesture frame was classified
by the LDA model obtained in the training stage, and the
classification result was mapped to a stimulation channel.
At the same time, of the eight detection channels, the channel
with the maximum RMS was chosen to encode the electrical
stimulus. Finally, the stimulator output the stimulus to the
corresponding stimulation channel.

E. EXPERIMENTAL PROTOCOLS
This study was approved by the Institutional Ethics Commit-
tee (IEC) for Clinical Research of ZhongDa Hospital, which
is affiliated with Southeast University (Nanjing, China). The
participants were recruited from the inpatient stroke reha-
bilitation programme at ZhongDa Hospital. Six able-bodied,
right-handed volunteers (1 female and 5 male) aged 23 to
29 years and six stroke patients (2 females and 4 males)
aged 44 to 70 years participated in this study. All subjects
were asked to refrain from intense upper limb movement
for at least 48 hours before the study, and each participant
signed an informed consent form. The experimental scheme
consists of two parts: part one was the positioning analysis
of the detection armband, and part two was the real-time
bridging test. The 6 able-bodied volunteers participated in
both parts, and the 6 stroke patients and one able-bodied
volunteer participated in part two.

1) POSITIONING ANALYSIS OF THE DETECTION ARMBAND
Each of the 6 able-bodied volunteers wore the detection
armband on his or her right forearm, ensuring that the eight
detection electrodes were in close contact with the skin. The
subjects were asked to complete the processes described in
section II-C to obtain the sEMG intensity distributions and
the classification accuracies for the whole forearm. Finally,
the RMS map and classification accuracy for each bisectrix
were compared, the bisectrix with the largest RMS product
was identified, and the general reference location for the
detection armband was summarized. MATLAB R2015 was
used to visualize the RMS maps of sEMG intensity. The PC
used for the analysis had a 2.3 GHz Intel CPU and 4 GB of
memory.

2) BRIDGING TEST
In the bridging test, the 6 able-bodied volunteers were ran-
domly divided into three groups, with two volunteers in each
group. One volunteer wore the detection armband on his or
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her right forearm and acted as the controller, and the other
volunteer wore the stimulation armband on his or her right
forearm and acted as the controllee. After each experiment,
the participants switched roles, and the test was repeated.
In total, 6 functional reconstruction experiments were con-
ducted. To avoid cheating, the volunteer acting as the con-
trollee wore a blindfold and was asked to avoid active motion.
In the clinical trials, each stroke patient wore the stimulation
armband on the affected side, and the able-bodied volunteer
wore the detection armband and acted as the controller. The
patients were encouraged to imagine performing the corre-
sponding gestures during reconstruction.

In the bridging test with the able-bodied volunteers,
the subject acting as the controller was required to alter-
nately perform wrist extension and wrist flexion 8 times each
and then alternately perform finger extension and grasping
8 times each. The angles of the hand joints of the controller
and controllee were tracked using a Leap Motion sensor
(Leap Ltd., San Francisco). In this experiment, the knuckle
angle was defined as the average metacarpophalangeal joint
angle (DMPJ) of the four fingers, excluding the thumb, and the
wrist joint angle (DWJ) was defined as the angle between the
palm and the forearm. The neutral position in the effective
gesture range of the two angles was set to 0◦. The cross-
correlation of the normalized DMPJ and DWJ of each partici-
pant were then calculated as formula (6).

ρ2xy(m) =

(∑
x(n)y(n+ m)

)2∑
x2(n)

∑
y2(n)

(6)

where x(n) and y(n) are the joint angle trajectories of the
controller and controllee, respectively, and m is a variable
related to the delay time (Td). Thus, the correlation and
synchronization between the joint angles of the controlling
and controlled limbs could be obtained.

The subject acting as the controller then performed the
four gestures 80 times with voluntary variations in duration;
the four gestures were performed in a random order, with an
even distribution of the number of times each gesture was per-
formed, in accordance with a random table. A reconstruction
was considered successful if the controlled hand produced
the same gesture as that performed by the controlling hand
within 0.5 s. Then, the success rate (Rs) for each of the four
gestures was calculated.

In the clinical experiment, the controlled subject was
required to perform each of the four gestures 20 times, sep-
arated into four groups. Each group contained only one kind
of gesture. The correlation and synchronization between the
joint angles of the controlled and controlling limbs were
calculated from the reconstruction data corresponding to the
first 8 repetitions of each movement, and the success rate of
the reconstruction of each movement was calculated from the
overall data. The 0◦ positions of the finger joint and wrist
joint, the recording device, the cross-correlation calculation
method, and the judgement of successful reconstruction were
the same as theywere in the bridging test with the able-bodied
volunteers.

FIGURE 4. sEMG RMS maps of subject A recorded during the four
gestures: (a) grasping, (b) wrist flexion, (c) finger extension, and (d) wrist
extension.

TABLE 1. Motion classification accuracy (CA), macro F1, kappa statistics
and the number of times associated with the RMS product peak for each
bisectrix.

F. STATISTICAL ANALYSIS
To assess whether the location of the detection armband had a
significant effect on the motion classification accuracy, a one-
way analysis of variance (ANOVA) (among the 6 bisectrices)
was performed on the classification accuracy results. Pair-
wise comparison with Bonferroni correction was performed
if a significant main effect was observed. Differences with
P < 0.05 were considered significant.
A t-test was performed to assess theRs differences between

the bridging results from the able-bodied volunteers and the
clinical experiment. Pairwise comparison with Bonferroni
correction was performed if a significant main effect was
observed. Differences with P < 0.001 were considered sig-
nificant.

The statistical analyses were performed using SPSS Statis-
tics 19.0.

III. RESULTS
A. POSITIONING ANALYSIS OF THE DETECTION
ARMBAND
Fig. 4 shows subject A’s RMS maps recorded during the four
gestures after cubic spline interpolation. In relation to human
anatomy, the yellow areas shown in Fig. 4 (a), Fig. 4 (b),
Fig. 4 (c) and Fig. 4 (d), correspond to the flexor digito-
rum superficialis, the flexor carpi radialis and flexor carpi
ulnaris, the extensor carpi ulnaris, and the extensor digitorum,
respectively.
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FIGURE 5. RMS product distribution of subject A.

FIGURE 6. Confusion matrix for each bisectrix. TL: true label, PL:
predicted label, GP: grasping, WF: wrist flexion, FE: finger extension, WE:
wrist extension.

FIGURE 7. Stimulus generation results from the real-time bridging test for
subject A. The EMG signals in the red solid boxes are the stimulus coding
sources corresponding to the respective stimulus channels.

Fig. 5 shows subject A’s RMS product distribution, which
peaks at the fourth bisectrix. The classification accuracy (CA)
values for the four gestures on different bisectrices and the
number of times each bisectrix associated with the maximum
RMS product are illustrated in Table 1. The one-way ANOVA

FIGURE 8. Bridging test results for controller A and controllee B: (a) the
trajectories of DMPJ and (b) the trajectories of DWJ. The blue and red lines
correspond to controller A and controllee B, respectively.

results comparing the CAs for each bisectrix show that the
CAs for the third, fourth and fifth bisectrices are significantly
higher than those for the other bisectrices (∗P < 0.05). The
macro F1 for each bisectrix is greater than 0.88 and reveals
that a classification with high recall and precsion has been
achieved. The kappa statistics for each bisectrix is greater
than 0.82 and indicates the high consistency of the classifi-
cation.

Fig. 6 shows the confusion matrices of the CA for each
gesture with the detection armband at each bisectrix. The con-
fusion matrices indicate the same results: the third, fourth and
fifth bisectrices yield higher CAs than the other bisectrices,
as in Table 1.

B. BRIDGING TEST
Fig. 7 shows representative stimulus generation results from
the real-time bridging test. For each gesture, the channel in
the red box has the maximum RMS and is therefore selected
as the stimulus coding source.

Fig. 8 show the normalized DWJ and DMPJ trajectories of
subjects A and B in the bridging test involving the healthy
volunteers. As seen from Table 2, the mean maximum corre-
lation coefficients of DWJ and DMPJ between the controller
and controllee in the bridging test with the able-bodied vol-
unteers were 0.84 ± 0.04 and 0.87 ± 0.03, respectively.
These results indicate that the wearable EMGB can be suc-
cessfully used to reproduce desired gestures in a controlled
hand.

Fig. 9 depicts the maximum correlations in DWJ and DMPJ
and the corresponding delays from Fig. 8. The mean delays
inDWJ andDMPJ between the control hand and the controlled
hand were approximately 270± 62.2 ms and 305± 33.9 ms,
respectively, which satisfy the time-delay requirements for
real-time neural prosthesis control [25].

As seen from Table 3, the mean Rs values from the 6 ran-
domized controlled trials of grasping, finger extension, wrist

137336 VOLUME 8, 2020



Z. Bi et al.: Wearable EMG Bridge—a Multiple-Gesture Reconstruction System Using Electrical Stimulation

TABLE 2. Maximum correlations and delays in the bridging test with
able-bodied volunteers.

TABLE 3. Rs results from the randomized motion control test with
able-bodied volunteers.

TABLE 4. Maximum correlations, delays and Rs values for grasping (GP)
and finger extension (FE) in the bridging test involving stroke patients.

flexion and wrist extension were 90.0 ± 4.4%, 89.1 ± 3.7%,
92.5 ± 2.7%, and 94.1 ± 2.0%, respectively.
Fig. 10 shows the normalized DWJ trajectories of grasping

and finger extension and the normalized DMPJ trajectories of
wrist flexion and wrist extension for patient 4 in the clinical
bridging test. Fig. 11 shows themaximum correlations inDWJ
and DMPJ and the corresponding delays from Fig. 10.
As seen from Table 4 and Table 5, the mean maximum

correlation coefficients of DWJ or DMPJ for grasping, fin-
ger extension, wrist flexion and wrist extension between the
controller and the patient were 0.83 ± 0.05, 0.87± 0.02,
0.89± 0.05 and 0.89± 0.04, respectively. Themean delays in
the reconstruction of grasping, finger extension, wrist flexion
and wrist extension were 366 ± 95.8 ms, 296 ± 46.3 ms,
293 ± 35.0 ms, and 308 ± 23.1 ms, respectively. Patient I
was unable to carry out the grasping bridging test due to
discomfort with the electrical stimulation; thus, there are
no grasping data for patient I. The mean Rs values in the
6 clinical trials of grasping, finger extension, wrist flexion
and wrist extension were 64± 23.2%, 74.1± 13.9%, 90.8±
3.7% and 93.3 ± 2.5%, respectively.

TABLE 5. Maximum correlations, delays and Rs values for wrist
flexion (WF) and wrist extension (WE) in the bridging test involving stroke
patients.

FIGURE 9. Maximum correlations and corresponding delays between
controller A and controllee B: (a) the correlation and synchronization of
DMPJ and (b) the correlation and synchronization of DWJ. In each panel,
the red circle indicates the maximum correlation and the corresponding
delay.

As shown in Fig. 12, pairwise comparisons using
Bonferroni adjustment revealed that, in the clinical trials,
the bridging of wrist flexion and wrist extension resulting in
significantly higher Rs values than the bridging of grasping
and finger extension (∗∗∗P < 0.001). In addition, in the
bridging of grasping and finger extension, the Rs between
able-bodied volunteers was much higher than that between
an able-bodied volunteer and a stroke patient (∗∗∗P< 0.001).

IV. DISCUSSION
First, this paper studied the effect of the position of the detec-
tion armband on the detected sEMG intensity and the gesture
CA. The position analysis showed that wearing the detection
armband near the third, fourth or fifth bisectrix of the forearm
not only allows a strong sEMG signal to be detector for each
of the four gestures but also ensures a high CA ( > 90%).

As presented in Table 3, the real-time bridging test results
for the able-bodied volunteers show the success rates for the
reconstruction of the four gestures were all greater than 85%.
In addition, in the clinical trials, the successful reconstruc-
tion of gestures in hemiplegic patients under the control of
able-bodied volunteers indicates that the wearable EMGB
can provide an effective means of gesture training. In addi-
tion, the bridging test results from both the test with the
able-bodied volunteers and the clinical trials indicate that the
delay time between the controlling limb and the controlled
limb is approximately 300ms, satisfying the requirements for
a real-time neural prosthesis [1], [25]. However, there were
also some unsuccessful cases in the randomized controlled
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FIGURE 10. Bridging test results for an able-bodied person and stroke
patient 4: (a) MGP, DMPJ during grasping; (b) MFE, DMPJ during finger
extension; (c) WWF, DWJ during wrist flexion; and (d): WWE, DWJ during
wrist extension. The blue and red lines correspond to the able-bodied
person and stroke patient 4, respectively.

FIGURE 11. Maximum correlations and corresponding delays between
the able-bodied person and stroke patient 4 during the four gestures:
(a) the correlation and delay in DMPJ during grasping(GP), (b) the
correlation and delay in DMPJ during finger extension(FE),
(c) the correlation and delay in DWJ during wrist flexion(WF), and (d) the
correlation and delay in DWJ during wrist extension(WE). In each panel,
the red circle indicates the maximum correlation and the corresponding
delay.

trials in the latter half of the bridging test with the able-
bodied volunteers. This may have been due to muscle fatigue
or characteristic changes in the skin-electrode interface dur-
ing repetitive movements of the controlling or controlled
limbs [12], [26], which also appeared in the clinical trials.
In the clinical trials, the mean success rates for the recon-
struction of wrist extension and wrist flexion (93.3 ± 2.5%
and 90.8± 3.7%, respectively) were significantly higher than
those for finger extension and grasping (74.1 ± 13.9% and

FIGURE 12. Mean Rs values from bridging tests with able-bodied
volunteers (A-A) and with an able-bodied volunteer controlling a stroke
patient (A-S). The results are shown as the mean Rs± SD (%) (n = 6).
∗∗∗P < 0.001, as determined by pairwise comparison using Bonferroni
adjustment. GP: grasping, WF: wrist flexion, FE: finger extension, WE:
wrist extension.

64± 23.2%, respectively, ∗∗∗P< 0.001), as shown in Fig. 12,
partly because the flexor carpi radialis and flexor carpi ulnaris
are located on the dorsal and palmar surfaces of the forearm,
respectively, and are easy to recruit through electrical stim-
uli. In addition, to achieve independent finger extension and
grasping, stimulation electrodes are often attached to the front
of the forearm to avoid recruiting the muscles responsible
for wrist flexion and wrist extension, resulting in a rela-
tively lower level of muscle recruitment for finger extension
and grasping. Moreover, most stroke patients need a higher
current intensity for stimulation than able-bodied volunteers
do [27, 28], which accelerates muscle fatigue and further
decreases the success rate of finger extension and grasping
reconstruction. A comparison between the bridging results
from the able-bodied subjects and the clinical trials shows
that there are no significant differences in the mean success
rates for wrist extension and wrist flexion (92.5 ± 2.7% vs.
93.3± 2.5% and 94.1± 2.0% vs. 90.8± 3.7%, respectively).
The main reason is that all the selected patients had suffered
a stroke within 3 months prior, and therefore, the muscle
atrophy and motor unit alienation were moderate. However,
themean reconstruction success rates for finger extension and
grasping were significantly higher in the able-bodied subjects
than in the stroke patients (90.0± 4.4% vs. 74.1± 13.9% and
89.1 ± 3.7% vs. 64 ± 23.2%, ∗∗∗P < 0.001, respectively).
The main reason is partly the same as the reason for the
accelerated process of muscle fatigue discussed above.

Table 6 illustrates the comparison between wearable
EMGB and other gestures reconstruction systems. Cunning-
ham David A. et al. [29] proposed a CCFES system to
reconstruct wrist extension and wrist flexion of the affected
hand of hemiplegic patients. This CCFES system employed
a data glove to detect the gestures from the healthy hand
and thus to trigger fixed electrical stimulation on the affected
side. Dingguo Zhang et al. [30] proposed a CCFES system
to enhance the gestures of the affected hand. In this system,
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TABLE 6. The Comparison between wearable EMGB and other gestures
reconstruction systems.

the stimulation intensity of each channel was pre-set accord-
ing to the sEMG bias between the healthy forearm and the
affected forearm during performing one customized ges-
ture. However, the stimulation intensity could not be con-
trolled by users during enhancing stage. Compared with
these two CCFES systems, wearable EMGB can reconstruct
four customized gestures and adjust the stimulation intensity
volitionally.

In addition, the training procedure for the wearable EMGB
may be difficult for stroke patients to perform. Although the
healthy limb of a stroke patient is almost the same as that of
an able-bodied person, the gestures of a stroke patient before
and after the training stage are usually not consistent or inde-
pendent. For instance, wrist flexion and wrist extension in
stroke patients are always accompanied by finger extension,
resulting in a low accuracy in the classification of gestures;
consequently, more training guidance is required to improve
the training effect.

The detection armband and the stimulation armband of
wearable EMGB employ a wearable and wireless design to
enable their use in the daily life of patients. The eight-channel
detection armband greatly reduces the difficulty of detec-
tion site selection. In addition, beyond just the four hand
movements studied here (grasping, finger extension, wrist
extension, and wrist flexion), the wearable EMGB can also
reconstruct even more subtle finger movements.

V. CONCLUSION
A wearable real-time controlled multi-channel EMGB has
been proposed. The detection armband based on eight sEMG
detectors greatly reduces the difficulty of detection site selec-
tion. LDA for gesture classification based on sEMG and
a four-channel stimulation armband are used to realize the
real-time control of an affected limb by a healthy limb. Bridg-
ing test results from both tests with able-bodied volunteers
and clinical trials show that four hand movements performed
on the controller side can be reconstructed with high accuracy
and low delay on the controlled side. In the future, further
study will be necessary on how to simplify the positioning of
the stimulation sites to facilitate patients’ daily use.
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