
Received July 1, 2020, accepted July 20, 2020, date of publication July 24, 2020, date of current version August 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011705

Advanced Deep Learning-Based Computational
Offloading for Multilevel Vehicular Edge-Cloud
Computing Networks
MASHAEL KHAYYAT1, IBRAHIM A. ELGENDY 2,3, AMMAR MUTHANNA 4, (Member, IEEE),
ABDULLAH S. ALSHAHRANI5, SOLTAN ALHARBI 6, AND ANDREY KOUCHERYAVY4
1Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah 23218, Saudi Arabia
2School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150090, China
3Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shibin Al Kawm 32511, Egypt
4Department of Communication Networks and Data Transmission, St. Petersburg State University of Telecommunications, 193232 St. Petersburg, Russia
5Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah 23218, Saudi Arabia
6Department of Computer and Network Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 23218, Saudi Arabia

Corresponding author: Ibrahim A. Elgendy (ibrahim.elgendy@hit.edu.cn)

This work was funded by the University of Jeddah, Saudi Arabia, under grant No. (UJ-02-016-ICGR). The authors, therefore, acknowledge
the University’s technical and financial support with thanks.

ABSTRACT The promise of low latency connectivity and efficient bandwidth utilization has driven the
recent shift from vehicular cloud computing (VCC) towards vehicular edge computing (VEC). This paper
presents an advanced deep learning-based computational offloading algorithm for multilevel vehicular
edge-cloud computing networks. To conserve energy and guarantee the efficient utilization of shared
resources among multiple vehicles, an integration model of computational offloading, and resource allo-
cation is formulated as a binary optimization problem to minimize the total cost of the entire system in terms
of time and energy. However, this problem is considered NP-hard and it is computationally prohibitive to
solve this type of problem, particularly for large-scale vehicles, due to the curse-of-dimensionality problem.
Therefore, an equivalent reinforcement learning form is generated andwe propose a distributed deep learning
algorithm to find the near-optimal computational offloading decisions in which a set of deep neural networks
are used in parallel. Finally, simulation results show that the proposed algorithm can exhibit fast convergence
and significantly reduce the overall consumption of an entire system compared to the benchmark solutions.

INDEX TERMS Computation offloading, vehicular edge-cloud computing, autonomous vehicles, 5G,
resource allocation, deep reinforcement learning.

I. INTRODUCTION
IN recent years, the Internet of Things (IoT) and wireless
sensors have becomemore popular in daily life. Additionally,
with the emergence of 5G technology, the capabilities of
communication are gradually improving, which will lead to
a proliferation of new applications with advanced features
such as autonomous vehicles, virtual/augmented reality, face
recognition, and e-Health [1], [2]. However, the limited com-
putational capacity and battery power of vehicles pose a large
challenge to meeting these requirements and ensuring the
required quality of service (QoS)level [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Huan Zhou .

To address the contradiction between the requirements of
these applications and the limitations of resource-constrained
vehicles, a computational offloading concept has been intro-
duced in which resource-intensive computations are migrated
from the vehicles to a resource-rich server for remote exe-
cution, and the results are returned [4]–[8]. Vehicular cloud
computing (VCC) was initially developed to provide vehicles
with flexibility in computing, storage and service capabilities,
thus reducing power consumption and enhancing application
performance. However, high latency is considered the main
challenge for VCC, which makes it unsuitable for real-time
and delay-sensitive applications [9], [10].

Vehicular edge computing (VEC) is considered a viable
and promising new solution for addressing VCC chal-
lenges that has recently been proposed and received much

137052 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7154-2307
https://orcid.org/0000-0003-0213-8145
https://orcid.org/0000-0002-5694-1569
https://orcid.org/0000-0003-4007-7224

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

attention [11]–[14]. In VEC, the computational and storage
capabilities of cloud servers are deployed at the edge of the
radio access network (e.g., roadside units - RSUs), which
is in proximity to vehicles and can offer high QoS and a
cost-efficient solution with low latency [15]. Applications
such as on-vehicle cameras and embedded sensors can ben-
efit from VEC and provide efficient and safe transportation
systems.

With the development of computational offloading for
VEC systems, numerous approaches and models have been
recently proposed in which some systems handle a single
objective and others handle multiple objectives [16], [17].
Additionally, conventional methods have mostly been used
for solving these optimization models [13], [18], while differ-
ent intelligent algorithms based on deep learning have been
recently used [19], [20]. On the one hand, edge servers have
a small scale with limited processing capacity in comparison
with cloud servers, which may cause congestion and lead to a
longer processing time delay for the computational offloading
of a large number of vehicles if they offload their computa-
tional tasks to the same server [21]. On the other hand, finding
an optimal solution in time-variant dynamic systems such as
multiuser wireless VEC networks is challenging. Therefore,
motivated by these considerations, a VEC network is consid-
ered in which our environment is composed of multiple edge
servers that are connected to a single cloud server. In addition,
there are sets of vehicles that can process their computa-
tional tasks remotely at one of the available edge servers or
cloud servers. Furthermore, a distributed deep learning-based
computational offloading algorithm is developed to handle
the performance optimization. The main contributions of this
study are summarized as follows:
• We formulate an integration model of computational
offloading, and resource allocation as a binary opti-
mization problem whose objective is to minimize the
weighted sum cost of entire system in terms of the
energy consumption and latency for multilevel vehicular
edge-cloud computing networks.

• We transform the above problem into an equivalent rein-
forcement learning form and then, propose an efficient
algorithm based on distributed deep learning to solve
this problem and derive computational offloading deci-
sions.

• Finally, simulation results are conducted to prove the
effectiveness of our proposed model and algorithm on
the overall performance of an entire system in terms of
energy and time in comparison with other benchmark
solutions.

The rest of the study is organized as follows. An overview
of related works on computational offloading policies is
presented in Section II. An introduction of our system
model in terms of communication and computational mod-
els and the formulation of the optimization problem is
presented in Section III. Next, we design a distributed
deep Q learning algorithm for solving the optimization
problem in Section III-D. Simulation experiments are con-

ducted to demonstrate our offloading model and algorithm
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK
Recently, numerous approaches and optimization mod-
els have been proposed for addressing the challenges of
vehicles using mobile edge computing (MEC) by apply-
ing the computational offloading concept. Most of these
optimization models can be solved using conventional
methods [13], [18], whereas recently, deep learning algo-
rithms have been recently adopted as an effective method for
solving these models [19], [20]. In the following subsections,
a brief overview of the common models based on the solving
methods is presented.

A. CONVENTIONAL-BASED METHODS
Minimizing the weighted sum of the energy consumption
and latency for vehicular users was considered the main goal
of [22]. The authors jointly optimized the transmission power
and uploading time, as well as the local CPU frequency and
the offloading ratio for the computational and communication
resources, respectively. In addition, an efficient algorithm
was developed to derive the optimal computational offloading
decision for this problem.

A cloud-mobile edge computing collaborative computa-
tion offloading approach was presented in [23], in which
the resource allocation and computational offloading were
jointly formulated as nonconvex optimization problem with
the objective of maximizing the system utility. Then,
game-theory and Lagrange multiplier methods were utilized
to find the optimal resource allocation and offloading deci-
sion by designing a distributed computational offloading and
resource allocation algorithm.

Xu et al. [24] proposed an edge computing-enabled com-
putation offloading approach for addressing the privacy con-
flicts computational tasks for the internet of connected vehi-
cles. First, the privacy conflicts between the computational
tasks were formally analyzed. Then, the routing vehicles
from the origin vehicle to the destination vehicle were
acquired. Finally, an efficient nondominated sorting genetic
algorithm was adopted to minimize the execution delay and
reduce the energy consumption of edge computing devices.
Zhou et al. [25] formulated a reverse auction-based incentive
as an integer optimization problem whose objective was to
maximize the mobile network operator revenue under delay
constraints. In addition, two algorithms the greedy winner
selection algorithm and the dynamic programming winner
selection algorithm were developed to solve this problem in
an efficient way.

Recently, a multi-user, multi-server vehicular edge com-
puting environment was studied in [26], where the computa-
tional offloading and task scheduling were jointly formulated
as a mixed-integer non-linear programming problem whose
objective was tomaximize system utility. In addition, a hybrid
intelligent with a low-complexity algorithmwas developed to
obtain the near-optimal solution. However, the main draw-

VOLUME 8, 2020 137053

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

back of [22]–[24], [26] was that they did not address the
issue of obtaining the optimal policy in time-variant dynamic
systems.

B. DEEP LEARNING-BASED METHODS
Currently, deep learning algorithms have been widely utilized
in many aspects of life, such as natural language processing,
gaming, IoT, computer vision, and speech recognition [27].
More specifically, reinforcement learning has been applied in
a few recent studies of vehicular edge computing systems [20]
to empirically cope with large-scale complex problems. For
example, in [28], a novel decentralized resource allocation
approach based on deep reinforcement learning was proposed
for handling the latency constraints of vehicle-to-vehicle
communications.

In [29], spectrum allocation and computing and stor-
age resources were jointly studied for a multi-access edge
computing-based vehicular network in which two archi-
tectures of mobile edge computing were formulated as
multi-dimensional optimization problems. Then, an equiv-
alent reinforcement learning form was derived from the
above problems, and an efficient algorithm based on a
deep deterministic policy gradient algorithm was developed
to rapidly solve these problems and satisfy the quality-of-
service requirements of vehicular applications.

Recently, Zhan et al. [30] and Luo et al. [31] investigated
computational offloading and data scheduling for vehicular
edge computing systems. In [30], Zhan et al. formulated
computational offloading scheduling as an optimization prob-
lem whose objective was to minimize the long-term cost
in terms of energy consumption and delay. Then, an equiv-
alent Markov decision process was modelled to address
the problem. Subsequentl, an efficient deep reinforcement
learning-based algorithm was designed to solve this prob-
lem and obtain the optimal solution. In [31], communica-
tion and computational resources for data scheduling were
jointly considered where the data bandwidth and computa-
tional offloading could be provided to the vehicles through
a roadside unit across the road. Afterwards, computation,
caching, communication, and collaborative computing were
formulated as optimization problems to minimize the cost
of data processing under latency constraints. Finally, deep
reinforcement learning was utilized to derive an optimal data
scheduling strategy. However, most of these works dealt with
a one-level environment which colud cause congestion and
lead to a longer processing time delay for computational
offloading if a large number of vehicles offloaded their com-
putational tasks to the same server. In addition, using conven-
tional RL (e.g., Q-Learning) and other conventional methods
is considered computationally prohibitive for large-scale
environments.

III. SYSTEM MODEL
A. NETWORK MODEL
In this work, we consider a vehicle edge network (VEN)
environment with a one-way road, a single cloud server,

a set of M roadside units (RSUs) distributed across the road
and a set of N vehicles moving along the road, as shown
in Fig. 1. In addition, there is a vehicle edge computing
server(VEC)1 placed at each RSU which can provide with
the storage and computational capabilities through a wireless
channel. Furthermore, all the RSUs are connected with a
cloud server through a backbone router that can manage and
control the communication between them. We denote the set
of vehicles as N = {1, 2, . . . ,N } in which each vehicle has
an intensive computational task that can be completed by
itself or be offloaded to and executed by the VEC server
or the cloud server. In addition, we denote the set of RSUs
as M = {1, 2, . . . ,M}. Furthermore, we denote the set of
computing servers as K = {0, 1, 2, . . . ,M ,M + 1}, where
0 and M + 1 denote the vehicle itself and the cloud server,
respectively.

Let xi,j ∈ {0, 1} denotes the binary computational offload-
ing decision for the computational task of vehicle i, which
can be assigned to be executed at server j. More specifically,
when (xi,0 = 0), the computational task of vehicle i will
be executed locally; when (xi,M+1 = 1), the computational
task of vehicle i will be offloaded and executed at the cloud
server; when (xi,j = 1,∀j ∈ [1..M]), the computational task
of vehicle i will be offloaded and executed at one of the VEC
servers. Overall, each computational task of vehicle i must
be executed only one time by one of those servers (including
server 0), while

∑M+1
j=0 xi,j = 1.

In this paper, we assume that all vehicles are moving along
the road and that their trajectories can be predicted using
existing approaches [32], [33].

In the following subsections, the communication and com-
putational models are presented within more detail, followed
by the formulation of our optimization problem for multilevel
vehicular edge-cloud computing networks.

B. COMMUNICATION MODEL
Let us begin with an introduction of the communication
model in which our environment has M RSUs and N vehi-
cles where each vehicle has an intensive computational task
that needs to be completed by the vehicle itself or will
be offloaded to and executed by the VEC server or cloud
server. The computational task can be defined using a tuple
{ai, bi, ci}, where ai describes the total data size of the compu-
tational task that can be offloaded (i.e., code and parameters),
bi is the total data size for the result that comes back from the
server and ci denotes the total number of CPU cycles required
to accomplish the computational task. The values of ai, bi
and ci can be obtained through careful profiling of the task
execution [34], [35].

In this paper, we have considered that an orthogonal fre-
quency is used for multi-vehicle transmissions in the same
cell to mitigate the intracellular interference for uplink trans-
mission [36], [37]. Regarding the Shannon law, the uplink and
downlink data rate for the communication between vehicle i

1In this study, RSUs and VEC server are used interchangeably.

137054 VOLUME 8, 2020

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

FIGURE 1. System model.

and connected RSU j is given as:

rUi,j = BUi,jlog2(1+
pTi G

2

ωBUi,j
) (1)

rDi,j = BDi,jlog2(1+
pTj G

2

ωBDi,j
) (2)

where BUi,j and B
D
i,j denote the uplink and downlink channel

bandwidth, respectively, and pTi and pTj denote the transmis-
sion power of vehicle i and RSU j, respectively, whereas ω
and G denote the density of noise power and the correspond-
ing channel gain between the vehicle and the connected RSU,
respectively.

Subsequently, as mentioned above, the computational task
of vehicle i will be assigned for execution at the best place
depending on the vehicle location one of the edge servers or
the cloud server through the edge server with the maximum
uplink and downlink transmission data rate and then the result
will be returned. Based on that, where there is neither uplink
nor downlink for local execution, we can assign it as rUi,0 =
rDi,0 = ∞. In addition, the uplink and downlink for offloading
and executing the computational task at the cloud server can
be expressed as follows [40]:

rUi,M+1 = max
j∈M

rUi,j (3)

rDi,M+1 = max
j∈M

rDi,j (4)

Consequently, the total communication time and energy
for executing all the computational tasks of vehicle i can be
calculated as follows:

TCommi = TUi + T
D
i + νxi,M+1 (5)

ECommi = pTi T
U
i + p

R
i T

D
i (6)

where pRi and ν denote the reception power of vehicle i and
the propagation delay for transferring the computational task

between VEC nodes and the cloud server, respectively, which
is a predetermined value regardless of the number of vehicles.
TUi and TDi denote the time for uplink and downlink of the
computation task, respectively, which can be expressed as:

TUi =
M+1∑
j=0

ai
rUi,j

xi,j (7)

TDi =
M+1∑
j=0

bi
rDi,j

xi,j (8)

C. COMPUTATIONAL MODEL
In the computational model, our system has N vehicles con-
nected with M RSUs. We consider that each vehicle has an
intensive computational task that needs to be executed either
locally on the vehicle or remotely on one of the available VEC
servers or on the cloud server. As a consequence, the com-
putational time for local and remote execution are presented
within more detail in the following subsections.

1) LOCAL EXECUTION APPROACH
For local execution, we consider that different vehicles may
have different computational capabilities. In addition, all
vehicles execute the computational task locally.

Thus, the execution time and energy consumption for exe-
cuting all the computational tasks locally on each vehicle i
can be calculated as follows:

T li =
ci
f li

(9)

E li = ϑici (10)

where ϑi is a coefficient denoting the energy consumed per
CPU cycle and f li denotes the computational capability (CPU
cycles per second) of vehicle i.

VOLUME 8, 2020 137055

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

2) REMOTE EXECUTION APPROACH
For remote execution, the computational task of vehicle i
will be offloaded and executed at one of the connected VEC
servers via a wireless channel or be offloaded and executed
at the cloud server through one of the connected VEC servers
and the result will be returned. Thus, the execution time for
executing the computational task of vehicle i remotely at one
of the available VEC servers or at the cloud server can be
respectively expressed as follows:

T ei =
ci
f ei

(11)

T ci =
ci
f ci

(12)

where f ei and f ci denote the computational capability of the
VEC and cloud server assigned to vehicle i.

In this paper, we assume that the computational resources
of each VEC server are equally shared among all vehicles
that are connected. In addition, all VEC servers have equal
resources.

Consequently, based on Eqs.(9, 10, 11 and 12), the total
computational time and energy for executing all the compu-
tational tasks of vehicle i can be calculated as follows:

TCompi = T li xi,0 + T
e
i xi,M+1 +

M∑
j=1

T ei xi,j (13)

ECompi = E li xi,0 +
M+1∑
j=1

ηxi,j (14)

where η is a constant denoting the energy consumed by a
vehicle in an idle case (i.e., waiting for the results from the
remote server).

Regarding the previous subsections, where communication
and computational models are considered, the overall con-
sumption for processing the computational task of vehicle i
at server j can be calculated as follows:

Oi = wti (T
Comm
i + TCompi)+ wei (E

Comm
i + ECompi) (15)

where wei and w
t
i ∈ [0, 1] denote the weighting parameters

of execution time and energy consumption for vehicle i’s
decision making, respectively. For example, if wei = 0 and
wti = 1, the running application is time-sensitive. Conse-
quently, different values of wei and wti are set for different
objectives.

D. PROBLEM FORMULATION
In this section, we consider the issue of achieving efficient
computational offloading for multilevel vehicular edge-cloud
computing networks. Regarding the above communication
and computational models, the computational offloading
problem is formulated as the following constrained optimiza-
tion formulation problem:

min
x

N∑
i=1

Oi

M+1∑
j=0

xi,j = 1, C1

xi,j ∈ {0, 1} C2 (16)

The objective function of the optimization problem aims to
minimize the weighted sum of system consumption in terms
of time and energy through the deployment of task offloading.
Constraint C1 guarantees that each computational task of
vehicle imust be executed only one time. Constraint C2 guar-
antees that the computational offloading decision variable is
binary.
The solution for this problem can be obtained by finding

the best values of the task offloading decision x∗. However,
because x is a binary variable, the feasible set and objective
function of the problem is not convex which is difficult to
solve, especially for a large number of vehicles because of the
well-known curse-of-dimensionality problem, where the size
of the problem grows exponentially with the number of vehi-
cles [38]–[40]. Therefore, the deep reinforcement learning
method is used to find the optimal values efficiently instead
of using conventional optimization methods.

IV. PROBLEM SOLUTION USING DEEP REINFORCEMENT
LEARNING
In this section, an introduction of reinforcement learning is
presented where the main key parts are formulated. Then,
the deep reinforcement learning method is presented in detail
to craft a computational offloading decision for multilevel
vehicular edge-cloud computing networks.

A. REINFORCEMENT LEARNING
Reinforcement learning is a computational approach in which
an agent interacts with an unknown dynamic environment
and takes different actions to maximize the total amount of
rewards, as shown in Fig. 2. More specifically, at each time
t , the agent observes a state st from the state space S, and
accordingly chooses an action at from the action space A that
maps the agent from current state st to a new state st+1 based
on the policy π (at |st). This policy can be determined using a
Q-function in the Q-learning method or can be approximated
in the deep learning method. Afterward, the environment
transits to a new state st+1 based on state transition proba-
bility P(st+1|st ,at) and the agent obtains a reward rt based on
the reward function R(s, a). Finally, this process is repeated
until the agent reaches the terminal state in which the main
goal is to maximize the expected cumulative rewards,

Rt =
[∞∑
k=0

γ krt+k
]

(17)

where γ ∈ [0, 1] is the discount factor.
Regarding the main key parts of reinforcement learn-

ing, we consider a vehicular edge-cloud computing network
in which the computational task’ requirements are used
to represent the state space S, which is defined as st =
{(ai, bi, ci)t }|i ∈ N . In addition, the binary computational

137056 VOLUME 8, 2020

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

FIGURE 2. Reinforcement learning for vehicular edge-cloud computing networks.

offloading xi,j is used to represent the action space A which
is defined as at = {(xi,j)t }|i ∈ N , j ∈ K . Furthermore, at each
time step t , the agent obtains a reward rt based on a certain
state st and after choosing an offloading action at following
a policy π (at |st). This process continues with the increase
in the time index t = 0, 1, 2, . . . ,T . Moreover, the reward
function should be related to the objective function of our
optimization problem. Therefore, we aim to design a policy π
that can efficiently generate an offloading action at for each
system state st to minimize the expectation of the reward rt ,
as:

lim
T→∞

1
T

T∑
t=0

rt (18)

where rt denotes Oi in Eq. 15 which can be calculated using
st and at .

B. DISTRIBUTED DEEP-Q-LEARNING
Deep Q learning is an effective reinforcement learning algo-
rithm that combines reinforcement learning with deep neural
networks [41]. Specifically, deep Q learning replaces the
Q-table by a deep neural network (DNN) with parameter
θ which tries to approximate the Q-values where θ is used
to represent the trainable weights of the neural network.
In addition, the system state is given as the input and the
Q-value of all possible actions is generated as the output.
Distributed deep Q learning has n DNNs that can work in
parallel to find the optimal decision [42], [43], as shown
in Fig. 3.

In this study, we propose a distributed deep Q learning
algorithm to approximately minimize the expectation of the
total reward, which is presented in Eq.(18), in which D par-
allel DNNs are used to generate the binary computational
offloading decision. More specifically, at each time slot t ,
the algorithm takes the system state st as input and each DNN
generates an offloading action adt based on fθdt : st → adt ,
in which fθdt is a parameterized function representing the
d th DNN with parameters θdt and d ∈ D = {1, 2, . . . ,D}
is the index of the DNN. Then, the offloading action with
the lowest reward is selected as the output action using

Algorithm 1 Distributed Deep Q Learning Algorithm
1: Input: Requirements for computation task of vehicles st

2: Output:Computation offloading decision a∗t
3: Initialize all the DNNs with random weights θdt , d ∈ D.
4: Initialize replay memory Y with Size P
5: for t = 1, 2, . . . ,G do
6: Input the same state st to each DNN.
7: Generate an offloading action from the DNNs {adt } =

fθdt (st).
8: Select the offloading action with the lowest reward

a∗t = argmin
d∈D

Q(st , adt).

9: Save transition (st , a∗t) into the memory Y
10: Extract a sample random mini-batch of transitions

from the memory Y .
11: Train the DNNs.
12: end for

a∗t = argmin
d∈D

Q(st , adt). Algorithm 1 presents the process of

the distributed deep Q learning algorithm for the computa-
tional offloading of multilevel vehicular edge-cloud comput-
ing networks.

V. SIMULATION RESULTS AND DISCUSSION
In this section, the experimental setup for our simulation is
introduced. Afterwards, a discussion on the extensive simu-
lation results is provided to evaluate the performance of our
proposed model.

A. EXPERIMENTAL SETUP
In our simulation, we consider a 100 m one-way road where
there are five RSUs randomly distributed. Each RSU is con-
nected with a VEC server that can provide computational
capabilities. In addition, there are 10 arriving vehicles on
the road in which each vehicle has a computational task
that needs to be accomplished. Furthermore, there is a single
cloud server that is connected with the VEC servers through
a backbone router. The CPU frequencies of the cloud server,
VEC servers and vehicles are set to 1×1012 cycles/s, 10×109

VOLUME 8, 2020 137057

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

FIGURE 3. Distributed Deep-Q-Learning Architecture.

TABLE 1. Simulation parameters.

cycles/s and 0.6×109 cycles/s, respectively. The transmission
and reception power of all the vehicles is 24 dBm. The
system bandwidth of each RSU is 10 MHz. For each com-
putational task, the input data size is uniformly distributed
within the range (10, 20) MB, the output data size is set to
0.2 of the input data size, and the required number of CPU
cycles is set to 1900 cycles/byte. For the distributed deep
learning algorithm, the episode, memory and mini-batch size
are set to 20000, 1024 and 32, respectively. The learning
rate and discount factor are set to 0.01 and 0.99, respec-
tively. A Python-based simulator is used in our simulation,
in which the computer is equipped with an Intel R© Core(TM)
i7-4770 CPU with a 3.4 GHz frequency and 16 GB RAM
capacity running a Windows 10 Professional 64-bit platform.
Additionally, TensorFlow and NumPy libraries are used to
handle our algorithm in which two-hidden-layer DNNs are
used with 120 and 80 neurons, respectively [44]. In addition,

GEKKO Python-based package is used to solve our model
using the conventional-based method [45].The other simu-
lation parameters for communication and computation are
summarized in Table 1.

B. EXPERIMENTAL RESULTS
1) CONVERGENCE PERFORMANCE
In this subsection, we study the convergence performance
of our algorithm, in which different parameter values are
applied and the appropriate parameter is selected for the next
simulation. For better comparison, the reward ratio between
the result of our algorithm and the result of the optimal
approach2 is used.
In Fig. 4, we show the effects of different numbers of DNNs

on the convergence performance. It is observed from the fig-
ure that the convergence process of our algorithm accelerates
as the number of DNNs increases. In addition, the reward
ratio of only 3 DNNs can reach 0.96 after 2000 learning steps.
However, with a small number of DNNs (e.g., DNNs=1),
our algorithm falls into a local optimum and cannot converge
well. Therefore, the number of DNNs is set to 3 in the
following simulations.

In Fig. 5, we show the effects of different batch size values
on the convergence performance, where the batch size is
used to denote the number of experience samples that are
trained at each interval. From the figure, the convergence
rate for mini-batch size 32 is faster than 64, 128 and 512.
This is because that the gradient descent direction becomes
steeper as the mini-batch is smaller; therefore, the neural
network weight will be updated faster. Thus, in the following

2All the binary offloading decision combinations (2N (M+2)) are applied
and then the optimal solution is obtained

137058 VOLUME 8, 2020

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

FIGURE 4. Convergence performance under different number of DNNs.

FIGURE 5. Convergence performance under different values of batch size.

simulations we set the batch size to 32 which is the most
acceptable value.

In Fig. 6, we show the effects of different learning rate
values on the convergence performance, where the learning
rate can be used to adjust the weight update speed θ . From the
figure, the convergence process for the learning rate 0.01 is
shown to be faster than 0.001 and the convergence speed
increases as the learning rate value increases. Nevertheless,
the convergence process falls into a local optimum and cannot
converge well as the learning rate (e.g., Learning Rate=0.1)
becomes large. Thus, in the following simulations the learn-
ing rate value is set to 0.01 which is the most acceptable
value.

2) SYSTEM PERFORMANCE
In this subsection, we evaluate the performance of our pro-
posed model for multilevel vehicular edge-cloud computing
networks with three different policies:

FIGURE 6. Convergence performance under different values of learning
rate.

FIGURE 7. Total cost versus different number of vehicles.

• Local Execution: There is no offloading. The compu-
tational tasks of all the vehicles will be executed locally
on their resources, i.e., xi,0 = 1

• EdgeExecution:All the vehicles offload their computa-
tional tasks to the connected RSUs for remote execution,
i.e.,

∑M
j=1 xi,j = 1

• Cloud Execution:All the vehicles offload their compu-
tational tasks to the cloud server for remote execution,
xi,M+1 = 1

• Relaxation-Based Approach: The computational tasks
of all the vehicles will be executed either locally
or remotely at one of the connected RSUs or cloud
servers based on solving our optimization model using
a relaxation-based method.

The total cost of executing the computational tasks versus
a different number of arriving vehicles is shown in Fig. 7.
The five curves in the figure represent the total cost for our
proposed model with the addition of the other four policies
mentioned above. It is observed from the figure that the total

VOLUME 8, 2020 137059

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

FIGURE 8. Total cost versus different number of RSUs.

cost for our model outperforms the other policies. In addition,
we see that as the number of arriving vehicles increases(i.e.,
16), the total cost for the edge execution policy exceeds the
local execution policy. This is because the shared commu-
nication channels are overloaded, and the communication
time increases. Moreover, the computational capability of the
edge servers is not sufficient to serve too many vehicles,
so selecting the offloaded tasks is an important issue under
this scenario.

Finally, Fig. 8 presents the total cost for executing the
computational tasks versus a different number of RSUs. From
the figure, we can see that the local execution policy is
not affected by the number of RSUs, whereas the sum cost
for the other policies gradually decreases with increase in
RSUs. In addition, the proposed model can maintain a lower
cost in comparison with edge execution and relaxation-based
execution. This is because the execution time decreases as
the vehicles are allocated more resources, whereas the local
execution does not use the RSU resources.

VI. CONCLUSION
In this paper, we jointly considered the computational
offloading and resource allocation for a multilevel vehicu-
lar edge-cloud computing network in which an optimization
problem is formulated whose objective is to minimize the
vehicle’s consumption in terms of time and energy. In addi-
tion, to practically derive the optimal solution to the for-
mulated optimization problem, an equivalent reinforcement
learning form is generated. Furthermore, we proposed a dis-
tributed deep learning algorithm to find the near-optimal
computational offloading decisions in which a set of deep
neural networks are used in parallel. Simulation results show
that our algorithm can exhibit fast convergence and achieve
better performance than the other benchmark solutions.

ACKNOWLEDGMENT
The authors, therefore, acknowledge the University of Jeddah
for the technical support with thanks.

REFERENCES
[1] J. Wu, C. Yuen, M. Wang, and J. Chen, ‘‘Content-aware concurrent

multipath transfer for high-definition video streaming over heterogeneous
wireless networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3,
pp. 710–723, Mar. 2016.

[2] M. Khayyat, A. Alshahrani, S. Alharbi, I. Elgendy, A. Paramonov,
and A. Koucheryavy, ‘‘Multilevel service-provisioning-based autonomous
vehicle applications,’’ Sustainability, vol. 12, no. 6, p. 2497, Mar. 2020.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[4] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and J. Crowcroft, ‘‘A survey
of opportunistic offloading,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2198–2236, 3rd Quart., 2018.

[5] H. Zhou, H.Wang, X. Chen, X. Li, and S. Xu, ‘‘Data offloading techniques
through vehicular ad hoc networks: A survey,’’ IEEE Access, vol. 6,
pp. 65250–65259, 2018.

[6] I. A. Elgendy, M. Elkawkagy, and A. Keshk, ‘‘An efficient framework to
improve the performance of mobile applications,’’ Int. J. Digit. Content
Technol. Appl., vol. 9, no. 5, pp. 43–54, 2015.

[7] D. Elminaam, F. Elanezi, and K. Hosny, ‘‘An efficient framework for
mobile cloud computing,’’ in Proc. 32th Int. Bus. Inf. Manage. Assoc.
(IBIMA), 2018, pp. 5783–5796.

[8] I. A. Elgendy, M. El-kawkagy, and A. Keshk, ‘‘Improving the performance
of mobile applications using cloud computing,’’ in Proc. 9th Int. Conf.
Informat. Syst., Dec. 2014, p. PDC-109.

[9] A. Boukerche and R. E. De Grande, ‘‘Vehicular cloud computing:
Architectures, applications, and mobility,’’ Comput. Netw., vol. 135,
pp. 171–189, Apr. 2018.

[10] I. Elgendy, W. Zhang, C. Liu, and C. Hsu, ‘‘An efficient and secured
framework for mobile cloud computing,’’ IEEE Trans. Cloud Comput.,
early access, Jun. 18, 2018, doi: 10.1109/TCC.2018.2847347.

[11] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, ‘‘Mobile-edge computing
for vehicular networks: A promising network paradigmwith predictive off-
loading,’’ IEEE Veh. Technol. Mag., vol. 12, no. 2, pp. 36–44, Jun. 2017.

[12] J. Zhang, H. Guo, J. Liu, and Y. Zhang, ‘‘Task offloading in vehicular
edge computing networks: A load-balancing solution,’’ IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020.

[13] R. A. Dziyauddin, D. Niyato, N. C. Luong, M. A. M. Izhar, M. Hadhari,
and S. Daud, ‘‘Computation offloading and content caching delivery in
vehicular edge computing: A survey,’’ 2019, arXiv:1912.07803. [Online].
Available: http://arxiv.org/abs/1912.07803

[14] Y. Cao, T. Jiang, O. Kaiwartya, H. Sun, H. Zhou, and R. Wang, ‘‘Toward
pre-empted EV charging recommendation through V2V-based reserva-
tion system,’’ IEEE Trans. Syst., Man, Cybern., Syst., early access,
Jun. 11, 2019, doi: 10.1109/TSMC.2019.2917149.

[15] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, ‘‘Joint load balancing and
offloading in vehicular edge computing and networks,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 4377–4387, Jun. 2019.

[16] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, ‘‘Vehicular edge
computing and networking: A survey,’’ 2019, arXiv:1908.06849. [Online].
Available: http://arxiv.org/abs/1908.06849

[17] M. Liwang, S. Dai, Z. Gao, Y. Tang, and H. Dai, ‘‘A truthful reverse-
auction mechanism for computation offloading in cloud-enabled vehicular
network,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4214–4227, Jun. 2019.

[18] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, ‘‘A survey on vehicular
edge computing: Architecture, applications, technical issues, and future
directions,’’ Wireless Commun. Mobile Comput., vol. 2019, pp. 1–19,
Feb. 2019.

[19] J. Zhang, H. Guo, and J. Liu, ‘‘A reinforcement learning based task
offloading scheme for vehicular edge computing network,’’ in Proc. Int.
Conf. Artif. Intell. Commun. Netw. Cham, Switzerland: Springer, 2019,
pp. 438–449.

[20] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, ‘‘Deep reinforce-
ment learning for cooperative content caching in vehicular edge comput-
ing and networks,’’ IEEE Internet Things J., vol. 7, no. 1, pp. 247–257,
Jan. 2020.

[21] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
‘‘A game-based computation offloading method in vehicular multiac-
cess edge computing networks,’’ IEEE Internet Things J., vol. 7, no. 6,
pp. 4987–4996, Jun. 2020.

[22] J. Wang, D. Feng, S. Zhang, J. Tang, and T. Q. S. Quek, ‘‘Computation
offloading for mobile edge computing enabled vehicular networks,’’ IEEE
Access, vol. 7, pp. 62624–62632, 2019.

137060 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCC.2018.2847347
http://dx.doi.org/10.1109/TSMC.2019.2917149

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

[23] J. Zhao, Q. Li, Y. Gong, and K. Zhang, ‘‘Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

[24] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, ‘‘An edge
computing-enabled computation offloading method with privacy preser-
vation for Internet of connected vehicles,’’ Future Gener. Comput. Syst.,
vol. 96, pp. 89–100, Jul. 2019.

[25] H. Zhou, X. Chen, S. He, J. Chen, and J. Wu, ‘‘DRAIM: A novel
delay-constraint and reverse auction-based incentive mechanism for WiFi
offloading,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 4, pp. 711–722,
Apr. 2020.

[26] J. Sun, Q. Gu, T. Zheng, P. Dong, A. Valera, andY. Qin, ‘‘Joint optimization
of computation offloading and task scheduling in vehicular edge comput-
ing networks,’’ IEEE Access, vol. 8, pp. 10466–10477, 2020.

[27] J. Chen andX. Ran, ‘‘Deep learningwith edge computing: A review,’’Proc.
IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[28] H. Ye, G. Y. Li, and B.-H.-F. Juang, ‘‘Deep reinforcement learning based
resource allocation for V2V communications,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

[29] H. Peng and X. S. Shen, ‘‘Deep reinforcement learning based
resource management for multi-access edge computing in vehicular
networks,’’ IEEE Trans. Netw. Sci. Eng., early access, Mar. 6, 2020,
doi: 10.1109/TNSE.2020.2978856.

[30] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu,
‘‘Deep-reinforcement-learning-based offloading scheduling for vehicular
edge computing,’’ IEEE Internet Things J., vol. 7, no. 6, pp. 5449–5465,
Jun. 2020.

[31] Q. Luo, C. Li, T. H. Luan, and W. Shi, ‘‘Collaborative data scheduling for
vehicular edge computing via deep reinforcement learning,’’ IEEE Internet
Things J., early access, Mar. 26, 2020, doi: 10.1109/JIOT.2020.2983660.

[32] Z. Zhao, L. Guardalben, M. Karimzadeh, J. Silva, T. Braun, and
S. Sargento, ‘‘Mobility prediction-assisted Over-the-Top edge prefetching
for hierarchical VANETs,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 8,
pp. 1786–1801, Aug. 2018.

[33] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, ‘‘A cooperative caching
scheme based on mobility prediction in vehicular content centric net-
works,’’ IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5435–5444,
Jun. 2018.

[34] X. Lyu and H. Tian, ‘‘Adaptive receding horizon offloading strategy under
dynamic environment,’’ IEEE Commun. Lett., vol. 20, no. 5, pp. 878–881,
May 2016.

[35] F. Liu, Z. Huang, and L. Wang, ‘‘Energy-efficient collaborative task com-
putation offloading in cloud-assisted edge computing for IoT sensors,’’
Sensors, vol. 19, no. 5, p. 1105, Mar. 2019.

[36] S. Deb and P. Monogioudis, ‘‘Learning-based uplink interference manage-
ment in 4G LTE cellular systems,’’ IEEE/ACM Trans. Netw., vol. 23, no. 2,
pp. 398–411, Apr. 2015.

[37] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, ‘‘Resource allocation and
computation offloading with data security for mobile edge computing,’’
Future Gener. Comput. Syst., vol. 100, pp. 531–541, Nov. 2019.

[38] D. Fooladivanda and C. Rosenberg, ‘‘Joint resource allocation and user
association for heterogeneous wireless cellular networks,’’ IEEE Trans.
Wireless Commun., vol. 12, no. 1, pp. 248–257, Jan. 2013.

[39] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, ‘‘Deep reinforce-
ment learning-based joint task offloading and bandwidth allocation for
multi-user mobile edge computing,’’ Digit. Commun. Netw., vol. 5, no. 1,
pp. 10–17, Feb. 2019.

[40] L. Huang, X. Feng, L. Zhang, L. Qian, and Y.Wu, ‘‘Multi-server multi-user
multi-task computation offloading for mobile edge computing networks,’’
Sensors, vol. 19, no. 6, p. 1446, Mar. 2019.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT Press, 2018.

[42] H. Yi Ong, K. Chavez, and A. Hong, ‘‘Distributed deep Q-Learning,’’
2015, arXiv:1508.04186. [Online]. Available: http://arxiv.org/abs/1508.
04186

[43] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, ‘‘Distributed deep
learning-based offloading for mobile edge computing networks,’’ Mobile
Netw. Appl., vol. 23, pp. 1–8, Nov. 2018.

[44] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2016, arXiv:1603.04467. [Online]. Available:
http://arxiv.org/abs/1603.04467

[45] L. Beal, D. Hill, R. Martin, and J. Hedengren, ‘‘GEKKO optimization
suite,’’ Processes, vol. 6, no. 8, p. 106, Jul. 2018.

MASHAEL KHAYYAT received the bachelor’s
degree (Hons.) in computer science degree from
King Abdul-Aziz University, in 2004, the mas-
ter’s degree in applied information systems (AIS)
from the Arab Academy for Science and Technol-
ogy and Maritime Transport, Alexandria, Egypt,
the second master’s degree in technology manage-
ment (MTM) from the University of New South
Wales (UNSW), Sydney, Australia, and the Ph.D.
degree in computer science and statistics from

Trinity College Dublin (TCD), Dublin, Ireland, in 2017. She has been a
Supervisor at the Department of Computer and Network Engineering and an
Assistant Professor at the Information Systems and Technology Department,
College of Computer Science and Engineering, University of Jeddah, since
2017. Prior to that, she worked at the Information Systems Department, King
Abdul-Aziz University, as an Assistant Professor. She received international
and distinguished research grants from the University of Jeddah.

IBRAHIM A. ELGENDY received the M.Sc.
degree from the Computer Science Department,
Faculty of Computers and Information, Menoufia
University, Egypt, in 2016. He is currently pur-
suing the Ph.D. degree with the School of Com-
puter Science and Technology, Harbin Institute
of Technology, Harbin, China. He has been an
Assistant Lecturer at the Faculty of Computers and
Information, Menoufia University, Egypt, since
December 2011. His research interests include

cloud computing, mobile edge computing, and distributed computing.

AMMAR MUTHANNA (Member, IEEE)
received the B.Sc., M.Sc., and Ph.D. degrees from
the St. Petersburg State University of Telecom-
munications, Russia, in 2009, 2011, and 2016,
respectively. From 2012 to 2013, he took part in
the Erasmus Student Program at the Faculty of
Electrical Engineering, University of Ljubljana.
He is currently an Associate Professor with the
Department of Telecommunication Networks, and
also the Head of the SDN Laboratory, St. Peters-

burg State University of Telecommunications. He has published more than
60 scientific articles. He acted as a reviewer for many international and high
ranked journals. He is an editor in the editorial boards of several international
scientific journals. His main areas of research include the IoT, SDN, and
MEC.

ABDULLAH S. ALSHAHRANI graduated in
computer science from King Khalid University,
in 2008. He received the M.Sc. degree in com-
puter Science from La Trobe University, Mel-
bourne, Australia, in 2010, and the Ph.D. degree
from The Catholic University of America, USA,
in 2018. He is currently an Assistant Professor at
the Department of Computer Science and Artifi-
cial Intelligence, College of Computer Science and
Engineering, University of Jeddah, Saudi Arabia.

His research interests include wireless sensor networks, network security,
parallel computing, smart homes systems, the IoTs, and data science.

VOLUME 8, 2020 137061

http://dx.doi.org/10.1109/TNSE.2020.2978856
http://dx.doi.org/10.1109/JIOT.2020.2983660

M. Khayyat et al.: Advanced Deep Learning-Based Computational Offloading

SOLTAN ALHARBI received the B.S. and M.S.
degrees in computer engineering from the Florida
Institute of Technology, Melbourne, USA, and the
Ph.D. degree in electrical and computer engineer-
ing from University of Victoria, Victoria, Canada.

He is currently an Assistant Professor and the
Chairman of theDepartment of Computer andNet-
work Engineering, College of Computer Sciences
and Engineering, University of Jeddah, Jeddah,
Saudi Arabia. His research interests include dig-

ital forensics investigation (both reactive and proactive), computer vision,
network security, and information security. He is currently working on
implementing a proactive system that would complement the current practice
of reactive investigation. He is a member of the IEEE Computer Society and
High Technology Crime Investigation Association (HTCIA).

ANDREY KOUCHERYAVY graduated from the
Leningrad University of Telecommunications,
in 1974.

He joined the Telecommunication Research
Institute LONIIS, where he worked till Octo-
ber 2003 (from 1986 to 2003 as the First Deputy
Director). Since 1998, he has been a Professor
at the Bonch-Bruevich St. Petersburg State Uni-
versity of Telecommunications (SUT), where he
became a Chair Professor of the ‘‘Telecommuni-

cation Networks and Data Transmission’’ department, in 2011. He was
an Advisor of the Central Science Research Telecommunication Institute
(ZNIIS), from 2003 to 2010. He was a Co-Founder of the International
Teletraffic Seminar in 1993, 1995, 1998, and 2002, a Founder of the model
network for digital networks at LONIIS, in 1997, a Co-Founder of the
model network for packet networks at ZNIIS, in 2004, a Co-Founder of the
Internet of Things Laboratory, in 2012, and aQuality of Experience and IPTV
Laboratory, SUT, in 2014. He is a Chair of the Scientific School on Teletraffic
Theory in LONIIS, from 1990 to 2003, has been the Founder and Scientific
School Chair of the ‘‘Internet of Things and self-organizing networks’’ in
SUT, since 2010.

Dr. Koucheryavy was a Host and Technical Program Committees Member
of the ‘‘Kaleidoscope 2014’’ at SUT. He was also an Honorary Member
of Popov’s Society, in 2002. He was a Steering Committee Member of the
IEEE technically co-sponsored series of conferences ICACT and NEW2AN.
He was the Vice-Chairman of SG11 ITU-T, from 2005 to 2008 and 2009 to
2012. He was also the Chairman of WP3/WP4 SG11, from 2006 to 2012,
the Vice-Chairman of WP4 SG11, from 2015 to 2016, the Chairman of
SG11 in Study period 2017–2020. He was a Co-founder of the International
Testing Center for new telecommunications technologies at ZNIIS, under
ITU-D competence.

137062 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	CONVENTIONAL-BASED METHODS
	DEEP LEARNING-BASED METHODS

	SYSTEM MODEL
	NETWORK MODEL
	COMMUNICATION MODEL
	COMPUTATIONAL MODEL
	LOCAL EXECUTION APPROACH
	REMOTE EXECUTION APPROACH

	PROBLEM FORMULATION

	PROBLEM SOLUTION USING DEEP REINFORCEMENT LEARNING
	REINFORCEMENT LEARNING
	DISTRIBUTED DEEP-Q-LEARNING

	SIMULATION RESULTS AND DISCUSSION
	EXPERIMENTAL SETUP
	EXPERIMENTAL RESULTS
	CONVERGENCE PERFORMANCE
	SYSTEM PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	MASHAEL KHAYYAT
	IBRAHIM A. ELGENDY
	AMMAR MUTHANNA
	ABDULLAH S. ALSHAHRANI
	SOLTAN ALHARBI
	ANDREY KOUCHERYAVY

