
Received June 23, 2020, accepted July 11, 2020, date of publication July 24, 2020, date of current version August 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011667

Truly Scalable K-Truss and Max-Truss
Algorithms for Community
Detection in Graphs
ALESSIO CONTE 1, DANIELE DE SENSI 1, ROBERTO GROSSI1,
ANDREA MARINO2, AND LUCA VERSARI1,3
1Dipartimento di Informatica, University of Pisa, 56126 Pisa, Italy
2Dipartimento di Statistica, Informatica, Applicazioni, University of Florence, 50121 Florence, Italy
3Google Research, 8002 Zürich, Switzerland

Corresponding author: Alessio Conte (conte@di.unipi.it)

This work was supported in part by the Italian Ministry of University and Research (MIUR) under PRIN Project 20174LF3T8 AHeAD
(Efficient Algorithms for HArnessing Networked Data). Author Daniele De Sensi was supported by the EU H2020-ICT-2014-1 project
RePhrase (644235) during part of the work. A preliminary version of the algorithm presented here was a finalist in the MIT Graph
Challenge 2018 and part of the contents of this paper appeared in [11].

ABSTRACT The notion of k-truss has been introduced a decade ago in social network analysis and security
for community detection, as a form of cohesive subgraphs less stringent than a clique (set of pairwise
linked nodes), and more selective than a k-core (induced subgraph with minimum degree k). A k-truss is an
inclusion-maximal subgraph H in which each edge belongs to at least k − 2 triangles inside H . The truss
decomposition establishes, for each edge e, the maximum k for which e belongs to a k-truss. Analogously to
the largest clique and to the maximum k-core, the strongest community for k-truss is the max-truss, which
corresponds to the k-truss having the maximum k . Even though the computation of truss decomposition and
of the max-truss takes polynomial time, on a large scale, it suffers from handling a potentially cubic number
of wedges. In this paper, we provide a new algorithm FMT, which advances the state of the art on different
sides: lower execution time, lower memory usage, and no need for expensive hardware. We compare FMT
experimentally with the most recent state-of-the-art algorithms on a set of large real-world and synthetic
networks with over a billion edges. The massive improvement allows FMT to compute the max-truss of
networks of tens of billions of edges on a single standard server machine.

INDEX TERMS Community detection, graph algorithms, in-memory computation, k-trusses, social network
analysis, truss decomposition.

I. INTRODUCTION
One of the most fundamental tasks in the analysis of
real-world networks is that of community detection, which
corresponds to identifying cohesive portions of a network
according to some metrics. On one side suitable metrics
should find communities that are meaningful and free from
noise; on the other side, algorithms should be as fast as
possible, since network sizes for many practically relevant
problems are growing over the years. These two objectives
are often in contrast with each other: simple metrics tend
to be more efficient to compute but give lower quality
results (e.g. core decomposition [26]) while others (e.g. based
on cliques [12]) are rigorous but computationally heavy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh .

Finding a good trade-off between performance and qual-
ity is a crucial problem, and great effort has been devoted
to finding better metrics and/or better algorithms for those
metrics [4], [10], [20], [33].

In this scenario a popular choice is the k-truss, a triangle-
based cohesive subgraph introduced by Cohen [10] as one of
the interesting patterns in social and communication graphs,
such as those generated by phone calls, emails, and so on.
It is defined as follows.

Consider an undirected graph G = (V (G),E(G)) with n =
|V (G)| nodes and m = |E(G)| edges, where NG(v) represents
the neighborhood of node v in G, and δ(v) = |NG(v)| is v’s
degree.1 We define a triangle in G as a set of three nodes
u, v, z that are pairwise connected (i.e. they form a clique of

1We assume wlog that G does not contain isolated nodes, thus its size is
O(n+ m) = O(m).

139096 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0770-2235
https://orcid.org/0000-0002-7244-639X
https://orcid.org/0000-0003-4746-3179

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

FIGURE 1. Left: a 3-core (green), 3-truss (blue) and 4-clique (red), respectively,
of the graph G with trussness tG = 4; note that the 4-clique is also a 4-truss (i.e. the
max-truss here). Right: truss decomposition of the graph, where each edge is
annotated with its trussness value: a k-truss can be obtained by singling out the
edges with trustness value ≥ k .

size three). In that case, we say that edges {u, v}, {v, z}, {z, u}
belong to the triangle. For each edge e = {u, v} in G, its
support supG(e) = |NG(u)∩NG(v)| is defined as the number
of triangles to which e belongs.
Given an integer k ≥ 2, the k-truss of G is the inclusion-

maximal edge-induced subgraph H of G such that each edge
e of H belongs to at least k − 2 triangles of H . Specifically,
H = (V (H),E(H)) where E(H) ⊆ E(G), V (H) = {x ∈
V (G) | {x, y} ∈ E(H)}, and supH (e) ≥ k − 2 for every
e ∈ E(H).

Some examples of k-trusses are shown on the left of
Figure 1, comparing them with k-cores (all the nodes have
degree at least k in H) and k-cliques (all the nodes are
pairwise connected in H). As it can be observed, k-trusses
are more rigorous than k-cores but less stringent than cliques:
it can be proved that a k-truss is a subgraph of a (k − 1)-
core, and that a k-clique is also a k-truss.2 Furthermore,
k-trusses can be computed in polynomial time, and may also
be employed to quickly remove useless edges from a graph
when looking for k-cliques [10].

The truss decomposition of G corresponds to assigning
each edge its trussness value, i.e., the highest k for which
the edge belongs to a k-truss (see Figure 1 on the right,
where each edge is annotated with its trussness). Given the
truss decomposition, it becomes easy to extract the k-truss for
any k , and thus for the largest k , which is useful to identify
the most important cohesive subgraphs. Furthermore, the
k-truss of a graph is unique and can be obtained by perform-
ing peeling, i.e. recursively deleting edges that participate in
less than k − 2 triangles [10].

The trussness tG of the graph G is the maximum k such
that there exists a k-truss in G, and the corresponding k-truss

2Indeed a k-clique induces a k-truss: any two adjacent nodes in a clique
of size k may form a triangle with any of the remaining k − 2 nodes. Also,
as each edge of a k-truss forms at least k−2 triangles, its extremes must have
degree at least k−1 in the k-truss, meaning that a k-truss is also a k−1-core.
The implications in the other direction, however, are not true [10]. Moreover,
for k = 2, the k-truss is trivially G as every edge participates in at least 0
triangles, while for k = 3 this is the set of edges that participates in at least
one triangle.

is called max-truss. It can be clearly obtained from the truss
decomposition.

Over these years, the notion of k-trusses has spread in net-
work analytics and is gaining momentum for other purposes
other than security. For instance, the MIT/Amazon/IEEE
GraphChallenge [23] organizes a benchmarking contest for
triangle counting and k-truss discovery, with the best algo-
rithms presented at the IEEE High Performance Extreme
Computing Conference.

Several different algorithms have been proposed to com-
pute k-trusses and truss decomposition [8], [10], [18], [19],
[28], [30], [31]. In order to achieve good performance,
they either rely on GPU computation or use significant
amounts of memory, which is not always feasible or dra-
matically slow down their performance when dealing with
large graphs. They deal with the bottleneck of the peeling
process, after computing the triangles in G: when recur-
sively deleting edges, some triangles disappear and the sup-
port of the corresponding edges must be updated. In turn,
this either takes more time to recompute the supports from
scratch or uses more space to store indexing data structures
to find which edges have their support changed. We refer
the reader to Section II for a discussion of the state of
the art.

OUR CONTRIBUTION
We address the problem of finding the k-trusses in large
networks from a new angle by introducing algorithm
FMT (G,M, r), which takes in input a graph G, plus
two parameters that interplay with the performance of the
algorithm:

• M is the memory threshold for the computing platform
• r is an edge-pruning threshold to speed up the
computation

If M = ∞, FMT computes the truss decomposition of G
in guaranteed O(αG m) time using O(m) space - specifically,
approximately 32 bytes per edge (note that r is not employed
in this case). Here αG is the arboricity ofG, which is the min-
imum number of forests into which E(G) can be partitioned.

VOLUME 8, 2020 139097

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

It is related to the trussness, as αG ≥
tG+1
2 ,3 and to m =

|E(G)|, as αG = O(
√
m) (see [9]).

On top of these theoretical guarantees, we carefully study
the operations required by the algorithm: We engineer solu-
tions that simultaneously use very few bits per edge and
allow the usage of low-level instructions, while maintain-
ing a structure that allows the algorithm to be easily par-
allelized. More details are given in Section IV (algorithm
engineering).

As a result, our execution time on real-world networks
compares favorably with the most recent state-of-the-
art approaches for truss decomposition, coming from the
GraphChallenge [23] and other papers on large real-world
and synthetic graphs, as detailed in Section VI, with only
one solution (KM17) having slightly less space require-
ment per edge. We show that our algorithm outperforms all
similar algorithms on large networks (i.e., with millions of
edges or more) by up to orders of magnitude. Moreover,
using the USD cost per hour of equivalent infrastructure
in Google Compute Engine (https://cloud.google.
com/compute/), our algorithm results in significant finan-
cial savings, such as processing the largest amount of edges
per USD cent, except for one dataset, relative to other
algorithms.

If M 6= ∞, FMT finds the max-truss in G. We believe
that this is a further important contribution of this paper for
the following reasons.
• The problem of finding the max-truss in G or its truss-
ness tG is quite natural. It has a similar flavor to that
of finding the largest clique and the maximum k-core,
or just their size, when computing all cliques or the
k-core decomposition: these structures give important
information for network analysis and as such their effi-
cient computation is widely studied [14], [15], [29], [32]
(in particular, the maximum k for a k-core exists is
also known as the degeneracy and is used as a sparsity
measure [15], [16]).

• We comment on real-world datasets in Section III, where
the max-truss provides often meaningful communities.
This has a good foundation in Section IV, where we
link for the first time the trussness tG to the densest
subgraphs of G in terms of the number of triangles per
edge (see Theorem 1, which is an extension of the Nash-
Williams’s theorem [1] to the trussness).

It makes sense to investigate the problem of quickly
finding the max-truss and the trussness of G, since all
existing approaches require to find a whole truss decompo-
sition to do so.4 When M 6= ∞ or in general the mem-
ory is limited with respect to the size of the graph, such

3Since the degree of each node u in a k-truss is δ(u) ≥ k+1, we have that a
max-truss has at least n′(tG+1)/2 edges, where n′ is the number of its nodes
and k = tG. As each forest covers at most n′ − 1 edges in the max-truss,
it yields αG ≥

tG+1
2 .

4Finding the max-truss is not to be confused with the simpler problem of
finding ‘‘the k-truss’’ for a given k (see, e.g., [21]), as the trussness of the
graph is not known a priori and—as we will see—is hard to compute.

a truss decomposition cannot be found. In this scenario,
FMT (G,M, r) avoids a whole truss decomposition and in
particular, its novelty relies on the following new ideas.

• We introduce the notion of approximated trussness, and
a suitable approximation algorithm (which depends on
M and r) as a core routine to focus on the most promis-
ing parts of G.

• We use the approximation algorithm to design an algo-
rithm to compute exactly the max-truss, using the
following two parts.

– The first part uses M and r to quickly com-
pute lower and upper bounds on the trussness tG
while shrinkingG by removing low trussness edges,
which are likely not in the max-truss. A small resid-
ual graph is obtained in this way.

– The second part decomposes the residual graph and
identifies its max-truss. Using a suitablemechanism
to check if the latter is not the max-truss of G,
the algorithm is restarted in that case using the
(possibly improved) lower bound found.

Interestingly, we also give a conditional lower bound that
the computing time for the approximated trussness cannot be
significantly smaller than that for the exact trussness tG in the
worst case.

The worst-case cost of FMT is still O(αG m) time using
O(m) space. However, space is reduced approximately from
32 bytes per edge to max(8m, 32min(M,m)) bytes per edge:
setting M = m/4, it gives 8 bytes per edge and allows
us to analyze very large networks. Moreover, in Section IV
we show that improving over O(αG m) time is hard, as we
give some conditional lower bounds for computing truss
decomposition and max-truss that match our upper bounds.
In particular, a faster worst-case time would improve Boolean
matrix multiplication and other well-known problems.

Experiments in Section VI exhibit the benefits of our
new approach. FMT sensibly reduces the time and space
required with respect to the truss decomposition, still com-
puting exactly the max-truss. In this way, we hope to shed
further light on this popular community measure, both in
its complexity and its relation to triangle density. At the
same time, based on this knowledge, we provide scalable
and efficient tools for computing the truss decomposition and
the max-truss, which outperform known approaches and can
process graphs with billions of edges in reasonable time and
space.We also show in Section VI-B that, existing algorithms
become less cost-effective when executed on graphs with
larger k-trusses. Indeed, compared to our algorithm, existing
algorithms perform some additional re-computation, which
limits the achievable performance. Moreover, they rely on the
use of GPUs, which increase the hardware cost compared to
our CPU-based solution.

A preliminary version of the algorithm presented here was
a finalist in theMITGraph Challenge (graphchallenge.
mit.edu/champions) and part of the contents of this
paper appeared in [11].

139098 VOLUME 8, 2020

https://cloud.google.com/compute/
https://cloud.google.com/compute/
graphchallenge.mit.edu/champions
graphchallenge.mit.edu/champions

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

II. RELATED WORK
Several notions of communities have been introduced in
literature trying to find the right granularity and the trade-
off between a huge number of highly clustered communities
and a smaller number of poorly connected communities. The
usefulness and the right trade-off depends on the context
of applications. Trying to limit the number of communities
found, i.e. bounded by a polynomial, k-cores and k-truss
are the most used approaches, even though other approaches
[20], [33] for community discovery have been proposed.

In this paper, we focus on the well-known truss decom-
position. The seminal paper about truss decomposition is
that by Cohen [10], who introduced the concept of k-truss,
motivating it as an effective community indicator, with appli-
cations to networks where community structure is relevant,
such as social networks. The paper also presents a simple
algorithm for the truss decomposition, whose structure is
surprisingly effective: most known algorithms, that either use
matrix multiplication or combinatorial approaches, are still
essentially based on this structure. One of the first papers
addressing the truss decomposition in massive networks [31]
engineered Cohen’s algorithm to improve performance on
large graphs. Smith et al. proposed a parallel algorithm for
truss decomposition in a shared-memory setting [28] (SL+17
in Section VI). The sequential algorithm is based on the algo-
rithm by Wang and Cheng [31] (i.e., the structure of Cohen’s
algorithm), and keeps track of the support of edges using
buckets, which are used to parallelize the algorithm. The
parallel version scales up to 28 threads with a good speedup.
SL+17 was one of the finalists of the 2017 GraphChal-
lenge [23]. Another shared memory parallel algorithm which
also improves upon Wang and Cheng [31] has been pro-
posed by Kabir and Madduri [19] (KM17 in Section VI).
However, since there is no direct comparison between KM17
and SL+17, we have considered both KM17 and SL+17 as
our direct competitor. Further algorithms have been recently
proposed byWu et al. [36] andDavis [13] (resp.WG+18 and
D18 in Section VI). The former is serial and it is designed to
work in Java with the WebGraph framework [7], the latter is
parallel and in C.

The distributed algorithm by Pearce and Sanders [25]
has been champion of the 2018 GraphChallenge for k-truss
decomposition (PS18 in Section VI). At the sameGraphChal-
lenge, the GPU algorithm by Mailthody et al. [22] (MD+18
in Section VI, has been finalist. Further work has been done
by Huang et al. [18] to consider the dynamic version of the
problem which is: given a graph subject to edge deletion,
efficiently answer the query ‘‘find the k-truss involving a
node v’’. A distributed algorithm for truss decomposition
has been proposed by Chen et al. [8]. Green et al. [17]
consider finding max-truss, using a dynamic graph formu-
lation on GPU. The times reported in the paper are much
higher than the ones we have presented in Section VI, for
instance for as-Skitter, even if our machine is sensibly
slower.

We remark that truss decomposition and k-truss compu-
tation often benefits of the advances coming from triangle
counting. To this aim, Wolf et al. [35] propose a high-
performance parallel algorithm that uses linear algebraic
matrix operations implemented with KokkosKernels, show-
ing both a CPU and GPU implementation. Parallelization is
achieved in another work by Pearce [24] through delegate
nodes, which are used to partition the input graph. Bridg-
ing triangle counting and k-trusses, Bisson and Fatica [5]
use parallel matrix multiplication, implemented on GPU, for
counting triangles and computing the k-truss for a given k .
Eventually, Voegele et al. [30] also consider computing the
k-truss for a given k , using edge list intersection rather
than matrix multiplication. The algorithm is based on the
Cohen [10] algorithm, and gains efficiency by focusing
first on edges incident to lower degree nodes and truncat-
ing list intersection whenever enough elements are in the
intersection. It also uses the property that a k-truss is nec-
essarily a k − 1-core.

III. DATA ANALYSIS
In the literature k-trusses are considered one of the powerful
tools for community analysis in networks, because they per-
mit to focus on interesting portions of the graph at hand. For
instance, the truss decomposition of a network G has been
employed in [18] to query the communities for any given
node vq of G and a positive integer k . It consists in finding
the largest connected subgraph of G having trussness k and
containing vq: the idea is to suitably modify a graph traversal
beginning from vq, and using a queue to store and explore
the edges that have trussness ≥ k . In the truss decomposition
shown on the right in Figure 1, if vq = 5 and k = 3, the cor-
responding community is the subgraph induced by nodes
1, 2, 3, 4, 5, 6, 7. We refer the reader to Algorithm 2 in [18]
for further details. In this scenario, considering the max-
trusses specializes the query for the more cohesive subgraphs
(i.e. for the largest feasible k), when memory is limited.

Depending on the network’s topology, the communities
found, as mentioned above, can be further analyzed and
refined by inspection. In order to illustrate this task, we con-
sider four datasets taken from LAW (http://law.di.
unimi.it/). Their size and statistics are shown in Table 1
(we refer the reader to Section VI for performance analysis
of our approach).

WEB SNAPSHOT: gsh-2015-host
This is the host graph of the graph gsh-2015, which
is a large snapshot of the web (988M nodes and 33G
edges) taken in 2015 by BUbiNG [6] starting from the site
http://europa.eu/ without any domain restriction.
In the host graph, pages with the same domain name (host)
are collapsed; the maximum number of pages per host was
set to 100, to find a large number of hosts, and the resulting
host graph is composed of 68M nodes and 1.5G edges.

VOLUME 8, 2020 139099

http://law.di.unimi.it/
http://law.di.unimi.it/

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

In this graph, the max-truss is composed of a unique
connected component of 9960 nodes. Interestingly, the great
majority of the nodes are of the formwww.XYZ.de, for some
word XYZ of 4 letters, like for example www.aafd.de or
www.sfnc.de. The content of the pages inside the compo-
nent is almost duplicate, in the sense that they differ just by
replacing XYZ in the text. The links to other domains of the
group are hidden in the pages’ source. All these domains are
related to the website www.verleihcenter.eu and we
have found, by private communication, that they have been
registered on purpose by the owner, who seems to be a domain
collector. We observe that this k-truss helped to identify a
large set of near-duplicates, which is a desideratum when
crawling the web. Interestingly, all these domains do not clus-
ter into just one maximal clique, but rather in many maximal
cliques (more than 350000 cliques with 100 nodes or more),
meaning that the strict notion of clique may not always allow
easy identification of densely interconnected substructures,
while the looser notion of k-truss may in some cases be more
meaningful despite being faster to compute. Decreasing k , for
instance setting k = 4000, we find a component whose nodes
are subdomains of the website iloan24.com, having as
URLspaydayloansXYZ.iloan24.com for some string
XYZ. We conjecture these have been created to increase the
visibility of iloan24.com.

MOVIE ACTORS: hollywood-2011
In this graph extracted from the Internet Movie Database
(IMDb) vertices are actors, and two actors are joined by an
edge whenever they appeared in a movie together. The max-
truss corresponds to a community of 1298 nodes, which is a
clique of the actors starring in the movie ‘‘Around the World
in Eighty Days (1956)’’. The movie, based on the homonym
novel by Jules Verne, follows Victorian Englishman Phileas
Fogg (David Niven) in several locations around the globe,
and thus stars a significant amount of background actors.
Notably, it seems that many of these were registered in the
IMDb database, resulting in this large clique. Decreasing k to
k = 1000 we obtain a connected k-truss of size 3529, com-
posed by 3 cliques of similar size: the above clique, one clique
of actors active in the 80s (mostly Spanish), and one con-
taining Hollywood superstars (e.g. Quentin Tarantino, Uma
Thurman, and Jessica Alba). Frank Sinatra, ShirleyMacLaine
connect the first two cliques, while Martin Scorsese is in
the second and the third one.

WIKIPEDIA SNAPSHOT: enwiki-2013
This graph represents a snapshot of the English-language
Wikipedia as of February 2013. The max-truss corresponds
to a unique connected component with 335 nodes. This is
mostly composed of pages referring to years and dates, which
occur often in common pages. By decreasing k , setting for
instance k = 40, we obtain four connected components of
size respectively 226, 308, 267, and 570. The last component
is still related to dates and years frequently co-occurring, but,
notably, the other components containWikipedia pages about

different sports: the first is about NHL (National Hockey
League), the second relates to tennis (SerenaWilliams, Rafael
Nadal, and Roger Federer are nodes of this community),
the third relates to English football (teams, coaches, stadiums,
history of English football). Once again, it is worth observing
the presence, in each component, of many maximal cliques
which are difficult to aggregate into a single community,
while connected k-trusses seems to isolate and aggregate the
data quite accurately.

BIBLIOGRAPHIC DATABASE: dblp-2011
The graph is a 2011 snapshot of the scientific bibliography
service DBLP, from which an undirected collaboration net-
work can be extracted: each vertex represents a scientist and
two vertices are connected if they co-authored an article.
The max-truss is composed of the 119 authors of the paper
Length Sensing and Control in the Virgo Gravitational Wave
Interferometer. IEEE Trans. Instrumentation and Measure-
ment 55(6): 1985-1995 (2006). As this is a clique and it is
the max-truss, it means that this is the maximum clique in
the graph, otherwise, a larger clique would have implied the
presence of a larger k-truss. This suggests that k-trusses can
be an effective way to spot large (and sometimes maximum)
cliques.

IV. OUR ALGORITHM
As described in Section I, FMT (G,M, r) consists of two
parts, and its pseudocode is shown in Algorithm 1.

PART I: APPROXIMATION
The goal of this part is to pruneG as quickly as possible to less
than M edges so that it fits in main memory, trying to only
remove edges with low trussness, and in particular without
removing any from the max-truss.5

A usual peeling algorithm requires random access to the
graph and supporting data structures for quick updates. What
we do instead is computing all supports at once by listing
the triangles of G, an operation which is heavy but can be
done efficiently with a much more compact representation of
the graph (around 8 bytes per edge, as detailed later). Then,
we remove edges with ‘‘low support’’ and repeat. To achieve
a performance benefit, we want to perform this step as few
times as possible, and so remove each time a large number of
edges.

Let TG be the number of triangles in G. From Section V,
we exploit the inequality that tG ≥ TG/|E(G)| + 2 (implied
by Theorem 1 there): we can remove all edges with sup-
port lower than TG/|E(G)| without impacting the max-truss.
At the same time, `← TG/|E(G)| gives us a lower bound on
the trussness tG (as well as theminimum support in the current
graph). As soon as we remove enough edges (|E(G)| ≤M),
we start Part II on the residual graph. To obtain a greater
speedup, we further increase the support threshold to u ←
r TG/|E(G)|; the larger r is, the more edges we remove at

5We reasonably assume thatM is large enough to include the max-truss.

139100 VOLUME 8, 2020

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

Algorithm 1 Our Algorithm FMT
Input : graph G = (V (G),E(G)), memory threshold

M > 0, approximation factor r ≥ 1
Output: trussness tG and max-truss in G.

1 u← 0, `← 0
2 while |E(G)| >M do // Part I
3 TG← 1

3

∑
e∈E(G) supG[e]

4 `← max(`,minsup(G), TG
|E(G)|)

5 u← max(u,minsup(G), r TG
|E(G)|)

6 Q← {e ∈ E(G) : supG[e] ≤ u} // edges to
delete

7 G← G \ Q // remove Q’s edges from
E(G)

8 t ← u
9 while E(G) 6= ∅ do // Part II
10 Q← {e ∈ E(G) : supG[e] ≤ t} // edges to

delete
11 G← G \ Q // remove Q’s edges from

E(G), update TG
12 if t > u then foreach e ∈ Q do truss[e]← t + 2
13 t ← max(t,minsup(G))

14 if t > u then // values > u+ 2 in truss[] are
exact

15 return truss[], tG = t + 2

16 else // `+ 2 ≤ tG ≤ r(`+ 2)
17 r ← 1, u← `, G← input graph // reset

parameters
18 goto step 2

each step. The drawback is that umight exceed tG− 2 before
the end of the part, and cause the removal of edges in the
max-truss: if so, this will cause more operations in Part II.
In practice, suitable choices of M and r (see discussion in
Section VI-C) can avoid this, and prevent these additional
operations.

PART II: max-truss REFINEMENT
For the sake of discussion, let G′ denote the residual graph
G obtained from Part I (so as to distinguish it from the input
graph G). We perform an optimized peeling (using around
32 bytes per edge) to compute the truss decomposition of
G′, albeit ignoring the supports ≤ u + 2 (if in Line 12).
This further optimizes the algorithm as we can immediately
peel off all edges with support u or lower. Since all edges
in a (u + 3)-truss have support at least u + 1, edges with
trussness u+3 or higher inG are still inG′ and have the same
trussness, thus the decomposition will be correct for all values
of trussness larger than u + 2, which gives us a partial truss
decomposition and the max-truss. If no such value is found,
it means Part I deleted edges from the max-truss. We thus
restart the algorithm, but we can ignore all supports smaller

than `, which is a lower bound and a r-approximation of the
trussness, meaning that the procedure will still be faster than
a full decomposition. In this case, we also set r to 1, which
makes sure no edge of the max-truss will be accidentally
removed (by Theorem 1).

As a special case, setting M = ∞ (and any value of r),
it gives an algorithm for computing the truss decomposition,
as, it essentially skips Part I and starts Part II withG′ = G and
u = 0. We denote this as FMT − dec = FMT (∞, ·). As we
show in Section VI, it compares favorably with existing
algorithms for truss decomposition, thanks to the optimized
and parallel friendly structure of Part II.

ALGORITHM ENGINEERING
We briefly detail the key operations of FMT that contribute
to its performance.

In both Part I and Part II, we employ a careful implemen-
tation of list intersection, that makes use of SIMD instruc-
tions (specifically, SSE4.1 instructions) when the two lists to
intersect have similar length. When one list is significantly
longer (we set this to be by a factor 2 or more, which gave the
most consistent benefits), we employ a binary-search based
approach where the next common element between the lists
is found by at most 2 binary searches.

In Part I, the algorithm writes a first file containing for
each node, its degree followed by the list of its neighbors
with larger id (assume the nodes labeled as integers 1, . . . , n),
a second file containing pointers to the start of each adjacency
list in the previous file, and a third one containing the support
computed for each edge, associated with said edge at no extra
cost by storing them in the same order as in the first file. This
compact representation takes roughly 8 bytes per edge,6 but
is enough for listing G’s triangles.7

The files are dynamically mapped to memory using the
mmap() function so that paging is left to the OS low-level
routines. After a set Q of edges is removed, the files are
suitably updated before the next step of support computation.
Note that the files are fully loaded in memory whenever few
enough edges are left, however, this does not immediately
trigger the next part, as Part II involves a larger number of
bytes per edge.

Once Part II starts, the residual graph is loaded in mem-
ory as follows. We store the concatenated adjacency lists
as above, including all neighbors (not just the ones with
larger id). We store a pointer to the start of each node’s
adjacency list, and for each edge, a pointer to the lists of its
endpoints. We sort the edges e ∈ E(G) in increasing order of
supG(e), storing the edges in buckets corresponding to their
support. These structures can be built in O(m) time, and take
around 32 bytes per edge, but allow identifying an edge of

6Assuming we can represent nodes with unsigned 4-bytes integers, which
is the case for graphs with up to 4 billion nodes; otherwise, memory is
doubled. 12 bytes per node are also used, however, this is usually not
significant as n is smaller than m by at least a factor 10.

7Indeed, any triangle i, j, k (with i < j < k) is found by intersecting the
larger neighbors of i with those of j, as both contain k .

VOLUME 8, 2020 139101

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

minimum support, its endpoints, and changing the bucket of
an edge (when its support is updated), in O(1) time.

As long as the buckets are nonempty, we remove an edge
e = {u, v} of minimum support from its bucket, and decrease
by 1 the support of the edges forming a triangle with e,
i.e., those in {{u, z}, {v, z} | z ∈ NG(u)∩NG(v)}. As previously
observed, this can be done by looking at the endpoint of
e with the smallest degree, in O(min{δ(u), δ(v)}) time. This
structure allows easy and scalable parallelization, as we can
remove multiple edges from the lowest support bucket at
once (as they all need to be removed by the algorithm) and
intersect the neighborhoods of their endpoints, the heaviest
task, in parallel.

ANALYSIS
Since each edge is removed once, the total cost of Part II
is O(m +

∑
{u,v}∈E(G)min{δ(u), δ(v)}) = O(mαG) time and

O(m) space, since
∑
{u,v}∈E(G)min{δ(u), δ(v)} ≤ 2 mαG, see

[9]. By the same logic, the cost of Part I is alsoO(mαG) times
the number of support computation steps.

As previously noted, we may set M = ∞ and obtain
an algorithm for complete truss decomposition by executing
only Part II (called FMT − dec), we get the following result.
Lemma 1: Given a graph G with m edges and arboricity

αG, FMT-dec computes its trussness in O(mαG) time and
O(m) space.

We remark that FMT-dec can count and list all the triangles
within the same complexity as above.

As for the total memory usage, we can bound it to approx-
imately max(8m, 32min(M,m)) bytes (triggering external
memory usage if 8m exceeds available RAM), and simply
32m bytes for FMT-dec. This is confirmed in practice by
our experiments, where this bound is never exceeded by more
than 10%.

V. THEORETICAL BASIS
If TG is the number of triangles in G, we can see that
tG ≥ TG/m + 2 as an instance of the following extension
of Nash-Williams’ result [1] to trussness.
Theorem 1: Given an undirected graph G with trussness

tG, let TS be the number of triangles and mS be the number of
edges in any subgraph S of G. Then maxS⊆G

TS
mS
≤ tG − 2 ≤

3maxS⊆G
TS
mS

Proof: We first prove that there exists a subgraph S of
G such that 3 TS

mS
≥ tG − 2, thus proving the upper bound on

the trussness. Indeed, let S be a tG-truss of G. Since 3TS =∑
e∈E(S) supS (e), and since each edge has a support in S of at

least tG−2, it follows that 3TS ≥ mS (tG−2), i.e. 3 TS
mS
≥ tG−2.

For the lower bound, we observe that tS ≤ tG for any
subgraph S of G. It follows that it suffices to prove the
inequality for S = G, namely, TG ≤ m (tG − 2), as it also
implies TS ≤ mS (tS − 2) ≤ mS (tG − 2) when applied to S.
We will prove this by induction on the number of edges m.

The base case is trivial, as a graph with no edges has no
triangles. For the inductive step, notice that the graph must

have an edge e with support at most tG − 2, as otherwise
G would have a (tG + 1)-truss, contradicting the definition
of trussness. Thus, if we consider the graph G′ obtained by
removing e from G, we have TG ≤ TG′ + tG− 2 ≤ mG′ (tG′ −
2)+tG−2 ≤ (m−1)(tG−2)+tG−2 = m (tG−2), concluding
our proof. �
We provide computational lower bounds for computing the

trussness of a graph. As the trussness can be obtained by
computing the truss decomposition, these bounds hold also
for the computation of the truss decomposition, as stated next.
Theorem 2: Given any undirected graph G with m edges,

arboricity αG and trussness tG, triangle counting/listing and
graph trussness cannot be computed by combinatorial algo-
rithms in either o(mαG logO(1) m) time or O(mtG) time in
the worst case, unless Boolean matrix multiplication is truly
subcubic [34].

The proof of Theorem 2 follows from the fact that trussness
(and computing the max-truss and the truss decomposition) is
intimately related to triangle-free graphs.
Fact 1: G is triangle-free if and only if its trussness tG is 2.
Note that triangle counting has better time complexity than

triangle listing when matrix multiplication is employed [3].
When we refer to a ‘‘combinatorial’’ approach, we mean that
it does not use matrix multiplication. We can use in this way
a well known conditional hardness result.
Theorem 3: (Theorem 1.3 from [34]) The following all

have truly subcubic ‘‘combinatorial’’ algorithms, or none of
them do:

• Boolean matrix multiplication (BMM).
• Detecting if a graph has a triangle.
• Listing up to n3−δ triangles in a graph for constant δ > 0.
• Verifying the correctness of a matrix product over the
Boolean semiring.

Improving the worst-case cost of computing the trussness
to significantly less than O(mαG) time using combinatorial
algorithms is quite hard because of Theorem 3 and mαG =
2(n3) in the worst case. Since trussness tG is also a parameter
for complexity analysis, one could hope to get O(m(tG + 1))
time instead of O(mαG) time. Not even this is possible
because of Fact 1, since triangle free graphs have tG = 2 =
O(1), meaning we could recognize if G is triangle-free in
linear time. In summary, we obtain the result in Theorem 2.

VI. EXPERIMENTS
This section is devoted to showing the performance of FMT,
compared to the fastest known algorithms.

STATE-OF-THE-ART ALGORITHMS
Wewill compare our algorithm FMT-dec for finding the truss
decomposition with the following ones, which are the most
recent state of the art algorithms for k-truss computation.

1) SL+17: a parallel shared-memory algorithm proposed
in [28], finalist in the 2017 GraphChallenge [23]. The
code has been downloaded fromhttps://github.
com/KarypisLab/K-Truss.

139102 VOLUME 8, 2020

https://github.com/KarypisLab/K-Truss
https://github.com/KarypisLab/K-Truss

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

2) KM17: proposed in [19] and won a student inno-
vation award in the same challenge. The code has
been downloaded from https://github.com/
humayunk1/PKT.

3) WG+18: serial algorithm in [36], designed to process
large graphs on consumer-grade hardware using the
WebGraph framework [7]. Code kindly provided by the
authors.8

4) D18: the best performing algorithm proposed in [13],
that is the ‘‘highly optimized’’, parallel implementation
in C of the all k-truss algorithm. Code kindly provided
by the author.

5) PS18 is the champion of the 2018 GraphChallenge
for k-truss decomposition, running on distributed
settings [25].

6) MD+18 is a finalist of the 2018 GraphChallenge for
k-truss decomposition, specifically designed for GPU
platforms [22].

7) AA+19 is a winner of the Student Innovation Awards
in the 2019 GraphChallenge [2]

To the best of our knowledge, all other known methods
for k-truss decomposition in literature are directly improved
or outperformed by at least one of these (see Section II for
discussion).

Moreover, we will consider our algorithms for finding the
max-truss. In particular, we will use FMT setting r = 4 and
M = m/10, where m is the number of edges in the input
graph G. In the following, we will refer to this method as
FMT-max. We compare these with AA+19 [2], which also
proposes an algorithm for max-truss computation.

For more details about the reason behind this choice,
we refer to Section VI-C, where we have shown the behaviour
of FMT when varying its input parameters.

DIRECT COMPARISON
As other algorithms, namely SL+17, KM17, WG+18, and
D18, are designed for platforms similar to ours, we will
compare the memory usage and the execution time of our
algorithms with respect to them, running all these algorithms
on our platform. The performance measures we considered
are the ones used also in the GraphChallenge 2017 and 2018.

INDIRECT COMPARISON
The latter algorithms are either GPU-based (MD+18 and
AA+19), or designed for a cluster of multicores (PS18).
This makes a direct comparison challenging (furthermore,
the software is not available). To obtain a meaningful com-
parison, we devised a cost-based approach that is detailed
in Section VI-B, which takes into account the cost of the
machines used and the time needed by that machines to
conclude an experiment, using the results and dataset reported
in the corresponding papers [2], [22], [25].

8The paper proposes a parallel algorithm too, but (as confirmed by the
authors) the serial one is consistently faster even in parallel environments.

REPLICABILITY: SOURCE CODE AND
COMPUTING PLATFORM
The computing platform is a machine provided by the Uni-
versity of Pisa with Intel(R) Xeon(R) CPU E5-2620 v3 at
2.40GHz, 24 virtual cores, 128 Gb RAM, running Ubuntu
Linux version 4.4.0-22-generic. The program is written
in C++11, compiled with gcc-8.1.0, using the -O3
optimization flag.9 OpenMP has been used to implement
the parallel version of our code, and we used AVX2 for
instruction-level data parallelism.

TABLE 1. Graphs considered in our experiments.

DATASET
Our dataset, shown in Table 1, includes networks for which
community detection is relevant, including collaboration,
autonomous systems, social, and web networks, taken from
LAW (law.di.unimi.it/), Graph500 (graph500.
org), and SNAP (snap.stanford.edu/). We report in
the table, for each network, its abbreviation, type, number of
nodes and edges, and the trussness.

STRUCTURE OF THE EXPERIMENTS
The experiments are organized as follows. In Section VI-A,
we firstly compare FMT with its direct competitors using
single cores and small networks. We then compare these
methods in a parallel setting when dealing with large net-
works and we analyze their scalability when varying the
number of cores. In Section VI-B, we perform our indirect
comparison.

A. DIRECT COMPARISON
In this section, we analyze the performance of our algo-
rithms with respect to SL+17, KM17, WG+18, and D18.
For a fair comparison, as all the competitors are designed
to perform truss decomposition, we will compare them with
our FMT-dec, which also returns the truss decomposition.
Moreover, we will show the performance of FMT-max in

9The source code of our algorithm can be found at github.com/
google-research/google-research/tree/master/truss_
decomposition

VOLUME 8, 2020 139103

https://github.com/humayunk1/PKT
https://github.com/humayunk1/PKT
law.di.unimi.it/
graph500.org
graph500.org
snap.stanford.edu/
github.com/google-research/google-research/tree/master/truss_decomposition
github.com/google-research/google-research/tree/master/truss_decomposition
github.com/google-research/google-research/tree/master/truss_decomposition

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

TABLE 2. Execution time comparison (sec.) in the sequential setting for smaller graphs. oot: required more than 30 000 seconds.

TABLE 3. Execution time comparison (sec.) using 24 cores. oot: required more than 30 000 seconds. †: obtained setting M = 3 · 109 and r = 3.

order to find just the max-truss. We first evaluate their
performance using a single core and then exploiting their
parallelism.

1) PERFORMANCE EVALUATION ON A SINGLE CORE
In this section, we compare the time needed by FMT-dec
with respect to the one used by SL+17, KM17, WG+18, and
D18, using just one core in order to test the effectiveness of
the underlying algorithms independently from their parallel
aspects. For this reason, we ran the competitors on a restricted
number of networks, which are the smaller networks in our
dataset. We report in the right part of Table 2 (decomposition)
our results. This table shows that KM17 is faster in 3 small
graphs, all of them having less than 17 millions of edges.
On the other hand, SL+17, D18 and WG+18 are never
faster than the others. SL+17 clearly outperforms KM17
on enwiki-2013, but it runs out of memory when deal-
ing with bigger ones, like arabic-2005. In this scenario,
FMT-dec outperforms the competitors on the four biggest
graphs, being the fastest for all the graphs having more
than 20 million edges. For these graphs, the time saved by
FMT-dec goes from the order of minutes to the order of
hours (when the competitors can end their experiments).

The improvement is more visible on the largest graph in the
table, arabic-2005: FMT-dec spent less than 22 minutes
to process it, while the only competitor able to conclude the
experiment was KM17, which used more than 4 hours.

In the left part of Table 2 (max-truss), we report the
time needed by FMT-max to compute the max-truss.
It is worth observing that on the smaller graphs, such
as flickrEdges, the difference between FMT-dec and
FMT-max is negligible as the time is not dominated by the
algorithm but its side aspects, e.g. input and output. On the
other hand, the effectiveness of FMT-max is more evident on
bigger graphs, as it allows us to save a conspicuous amount
of time, namely half of the total time, without requiring to
compute the whole truss decomposition. Its effectiveness will
be even more evident on the bigger graphs we will consider
in the remaining part of this section.

2) DEALING WITH LARGE SCALE NETWORKS USING
MULTIPLE CORES
In the right part of Table 3 (having headline decomposi-
tion), we report the experimental results to compute the
truss decomposition for all the networks in our dataset using
24 parallel threads. Looking at the results, we can see that

139104 VOLUME 8, 2020

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

FIGURE 2. Execution time (sec.) when increasing the numbers of cores.

TABLE 4. Memory usage (GiB) comparison using 24 cores. oom: out of
memory. oot: required more than 30 000 seconds. †: obtained setting
M = 3 · 109 and r = 3.

FMT-dec is always faster than the competitors on bigger
graphs. In the case of gsh-2015-host for instance, FMT
is more than eight times faster than KM17, which was the
only competitor able to conclude the computation on this
graph. Concerning the other methods, it is worth mentioning
that WG+18 is not parallel and, hence, it uses just one
core. Nonetheless, we also tried to run WG+18 on bigger
graphs, but, due to the lack of parallelism, it ran out of the
allotted 30 000 seconds. Also, D18 ran out of time for bigger
graphs. On the other hand, SL+17 appears to be fast on
some medium-sized graphs, like on g500-sc23-ef16 and
g500-sc25-ef16, but its higher memory usage prohibits
its application on larger networks on our workstation. Indeed,
it should be noted that the original paper [28] was able to
run SL+17 on large networks due to the larger main mem-
ory available (384GB against the 128GB of our machine).
Among the competitors of FMT-dec, KM17 seems to be
faster than the others on the majority of the graphs, even
though there seems to be variability in the results, as for some
graphs it is heavily outperformed by SL+17. Indeed, KM17
is the only competitor of FMT-dec able to process some of
the largest graphs in our dataset. This is due to its optimized
usage of the main memory, which is shown for the sake of
completeness in Table 4 for the biggest graphs. Note that in
this table, WG+18 and D18 do not appear as they ran out of
time (see Table 3). Looking at the table, we note that KM17
is indeed the one using less memory, namely much less than
SL+17, and slightly less than our approach.

Finally, we discuss the execution time of FMT-max to
compute just the max-truss instead of the whole truss decom-
position. The second column of Table 3 shows that FMT-max
allows us to further reduce the time usage with respect to the
competitors which have to perform the whole truss decom-
position to discover the max-truss. In particular, FMT-max is
at least one order of magnitude faster than KM17, as also of
the other methods. The reason for this success is partly due to
one of its main features, which is its small memory usage as
shown in Table 4. As shown in this table, thememory usage of
FMT-max is very often less than a quarter of the one required
by KM17. This allows to FMT to compute the max-truss of
much bigger graphs as discussed next.

MASSIVE GRAPH EXPERIMENTS
Using FMT, we have computed the max-truss of gsh-2015
and eu-2015, setting M = 3 · 109 and r = 3. Since
the memory available on our computing platform, namely
128G, is not sufficient for all the methods based on truss
decomposition, they run oom. In the last rows of Table 3 and
of Table 4 we report respectively the time and space required
by FMT to conclude the experiment.

SCALABILITY
In the following, we discuss the execution time of all the
algorithms varying the number of cores. We set the number of
cores as 1, 3, 6, 12, and 24. We report the results in Figure 2
for as-skitter, enwiki-2003, and arabic-2005
(both axis are in log scale). Not all the methods are appearing
in all the plots since some of them ran oot or oom.

In the case of Figure 2(a), due to the size of the graph,
the differences between the methods are smaller, as also
their scaling factors. When increasing the size of the graph,
as in the case of (b), the differences become more visi-
ble: FMT-dec always outperforms the competitors, namely
SL+17 and KM17, which are the only ones able to deal with
enwiki-2013. The improvement of FMT-max to compute
the max-truss is more than one order of magnitude with
respect to computing the truss decomposition using SL+17
and KM17, and it is consistently increasing with the number
of cores. This trend is replicated at a higher scale in (c), where
SL+17 is not present as it goes oom and KM17 spends more

VOLUME 8, 2020 139105

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

FIGURE 3. Execution time (sec.) of FMT as a function of r , setting M = m/h for different values of h.

TABLE 5. Parameters for the GCE pricing calculator, single instance with ‘‘regular VM class, custom machine type’’ (updated: Feb 02, 2020). The cost is the
hourly rate in US dollars for a single instance of the virtual machine. The numbers (1) and (4) in brackets refer to the number of GPUs used on the
instance. Letters M. and N. for MD+18 refer to the architecture used in the experiments (M.: Minksky, N.: Newell). †: PS18 uses either 128 or 256 instances
simultaneously in [25].

than ten times the time required by FMT-dec and FMT-max,
confirming the results of Table 3.

B. INDIRECT COMPARISON
Two relevant results on truss decomposition are from the
IEEE MIT HPEC GraphChallenge 2018 [27]: the cham-
pion [25] is based on a high-performance distributed algo-
rithm (hereafter called PS18) and one of the finalists [22]
is based on a high-performance collaborative (GPU+CPU)
algorithm (hereafter called MD+18). Another relevant result
is a winner of the Student Innovation Awards in the
GraphChallenge of the following year [2], which also
presents a GPU-based approach for truss decomposition and
computing the max truss (hereafter called AA+19).

The comparison of PS18, MD+18 and AA+19 with our
FMT cannot be directly performed as the computing plat-
forms are pairwise different (furthermore, the software is not
available). Indeed, PS18 runs on a cluster of 256 machines,
and MD+18 and AA+19 use one or four Nvidia GPUs.

To overcome these differences and to make a uniform
comparison, we simulated the economical cost of running
all the algorithms on the Google Compute Engine (GCE),
by analyzing the number of processed edges (in millions)
that a US dollar cent can buy, using the platforms in GCE.
To compute this cost we relied on the running times specified
in the corresponding papers [2], [22], [25], and on the cost

reported by the GCE pricing calculator10 for each computing
platform. We considered the cost of the closest more pow-
erful infrastructure for our results, and that of the closest
less powerful infrastructures for PS18, MD+18 and AA+19,
to do not give an advantage to our algorithm. Regarding
the datasets, we selected the graphs which were used by at
least two algorithms among PS18, MD+18 and AA+19. We
illustrate the hourly costs in Table 5, and the millions of edges
processed per USD cent in Table 6.
As it can be observed, the performance of FMT is

orders of magnitude higher than the other considered algo-
rithms, except for Amazon0505 and cit-Patents,
where AA+19 excels. We observe that the latter cases
correspond to graphs with the lowest trussness values:
Amazon0505 has trussness 11 and cit-Patents 36,
while all the other networks have trussness values over 500.
For the sake of completeness, we plotted in Figure 4 the
performance per USD against the value of tG in the consid-
ered datasets: we can see that the performance per cost of
FMT-dec and FMT-max remains consistent on all considered
datasets, while the performance per cost of AA+19 gets
significantly worse as tG increases. The rationale behind this
behaviour is that approaches based on matrix multiplication
(such a GPU-based ones) re-compute the support of all edges

10https://cloud.google.com/compute/docs/cpu-platforms

139106 VOLUME 8, 2020

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

TABLE 6. Performance (millions of edges processed per USD cent, higher is better) of FMT-max and AA+19 (for max-truss computation) and FMT-dec,
PS18, MD+18, AA+19 (for truss decomposition). The numbers (1) (4) refer to the number of GPUs used on the instance. †: 128 machines employed.
To compute this cost we relied on the running times specified in the corresponding papers, and on the cost reported in Table 5.

FIGURE 4. Millions of edges processed per USD cent by FMT and
AA+19 (1), as a function of tG on the graphs considered in Table 5.

in the graph simultaneously, exploiting the mass-parallelism
given by the GPUs, while our combinatorial approach only
processes information relative to the edges that are iteratively
removed.Moreover, our CPU-based algorithm relies on hard-
ware that is up to one order of magnitude cheaper than the
hardware required by other existing algorithms (Table 5),
leading to a more cost-effective computation. It follows that
approaches such as AA+19 obtain good performance per cost
on graphs with only small k-trusses (as fewer multiplications
are performed), their performance degrades when denser k-
trusses start to appear; on the other hand, the performance of
FMT-dec and FMT-max remains consistent on all considered
datasets, outperforming all the other considered algorithms
by orders of magnitude as tG increases.
It is worth remarking that PS18 notably concluded an

experiment for a further graph called wdc2012, having
3.5 × 109 nodes and 128 × 109 edges. The performance of
PS18 on this graph is 0.09 million edges per USD cent using
256 machines like the ones described in Table 5 (row PS18).
Unfortunately, we were not able to conclude an experiment
on this graph on our single machine, as it would require
8 × 375 GB SSD (instead of our 3 × 375 GB). However,
estimating our performance for wdc2012, FMT processes
several orders of magnitude more edges per USD cent. This
estimation is obtained using the results shown in Table 3,
as we concluded an experiment on a slightly smaller graph
(smaller enough to use our resources), which is eu-2015,
using FMT-max. In this case, the performance was 3.57 mil-
lion edges per USD cent. Scaling the running time (in Table 3)
for the size ofwdc2012 and considering the cost of a suitable
machine above (1.69 USD/h instead of 1.49 USD/h for bring-
ing disk space from 3 × 375 GB SSD to 8 × 375 GB SSD),

we can roughly estimate our performance for wdc2012 as
3.13 million edges per USD cent.

C. CHOOSING THE PARAMETERS
In the main part of the paper, we have defined FMT-max
as FMT setting M = m/10 and r = 4. In this section,
we show the execution time of FMT varyingM and r . In par-
ticular, we set M = m/h varying h ∈ {5, 10, 50, 100} and
r in {1, 2, 3, 4, 5, 6, 7, 8}. We show the results in Figure 3,
where for each h we report the time of FMT as a func-
tion of r for the graphs dblp-2011, eniwiki-2013,
hollywood-2009. It is worth observing that the time
series is quite stable for 2 ≤ r ≤ 5 for all the values of h. For
r ≥ 5, the time can increase as shown in (c), as the first phase
of pruning, whose aim is to select the most promising part of
the network to find the max-truss, tends to prune too much
and induces the algorithm in performing more iterations, i.e.
restarts. Among all the possible choices, we have chosen
M = m/10 and r = 4, but we note that also many other
combinations can get very similar results, meaning that FMT
is also quite robust.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we have presented a new algorithm for com-
puting k-trusses. We have verified that k-trusses are a useful
tool for community detection purposes depending on the
application: they can give useful insights about communities
when combined with tools of clique detection (like in the
case of collaboration networks as hollywood-2011 and
dblp-2011), as for instance, it allows to quickly compute
maximum cliques, and sometimes yields useful informa-
tion even when used alone (like for gsh-2015-host and
enwiki-2013). We experimentally showed that our algo-
rithm outperforms the most recent state of the art algorithms
on different large networks by up to order of magnitudes. For
future work, we plan on further exploring the well-known link
between the presence of (quasi)cliques and k-trusses, in order
to speed up computationally hard problems such as clique and
quasi clique detection.

ACKNOWLEDGMENT
A preliminary version of the algorithm presented here was
a finalist in the MIT Graph Challenge 2018, and this article

VOLUME 8, 2020 139107

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

was in part at the 2018 IEEE High Performance Extreme
Computing Conference (HPEC 2018).

REFERENCES
[1] C. S. J. A. Nash-Williams, ‘‘Edge-disjoint spanning trees of finite graphs,’’

J. London Math. Soc., vols. s1–36, no. 1, pp. 445–450, 1961.
[2] M. Almasri, O. Anjum, C. Pearson, Z. Qureshi, V. S. Mailthody, R. Nagi,

J. Xiong, and W.-M. Hwu, ‘‘Update on k-truss decomposition on GPU,’’
in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2019,
pp. 1–7.

[3] N. Alon, R. Yuster, and U. Zwick, ‘‘Finding and counting given length
cycles,’’ Algorithmica, vol. 17, no. 3, pp. 209–223, Mar. 1997.

[4] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, ‘‘Large
scale networks fingerprinting and visualization using the k-core decompo-
sition,’’ in Proc. Adv. Neural Inf. Process. Syst., 2006, pp. 41–50.

[5] M. Bisson and M. Fatica, ‘‘Static graph challenge on GPU,’’ in Proc. IEEE
High Perform. Extreme Comput. Conf. (HPEC), Sep. 2017, pp. 1–8.

[6] P. Boldi, A. Marino, M. Santini, and S. Vigna, ‘‘BUbiNG: Massive crawl-
ing for the masses,’’ ACM Trans. Web, vol. 12, no. 2, pp. 12:1–12:26, 2018.

[7] P. Boldi and S. Vigna, ‘‘The Webgraph framework I: Compression tech-
niques,’’ in Proc. 13th Conf. World Wide Web (WWW), 2004, pp. 595–602.

[8] P.-L. Chen, C.-K. Chou, and M.-S. Chen, ‘‘Distributed algorithms for
k-truss decomposition,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Oct. 2014, pp. 471–480.

[9] N. Chiba and T. Nishizeki, ‘‘Arboricity and subgraph listing algorithms,’’
SIAM J. Comput., vol. 14, no. 1, pp. 210–223, Feb. 1985.

[10] J. Cohen, ‘‘Trusses: Cohesive subgraphs for social network analysis,’’ Nat.
Secur. Agency Tech. Rep., vol. 16, pp. 3–29, 2008.

[11] A. Conte, D. De Sensi, R. Grossi, A. Marino, and L. Versari, ‘‘Discovering
k-trusses in large-scale networks,’’ in Proc. IEEE High Perform. Extreme
Comput. Conf. (HPEC), Waltham, MA, USA, Sep. 2018, pp. 1–6.

[12] A. Conte, R. D. Virgilio, A. Maccioni, M. Patrignani, and R. Torlone,
‘‘Finding all maximal cliques in very large social networks,’’ in Proc. 9th
Int. Conf. Extending Database Technol. (EDBT), 2016, pp. 173–184.

[13] T. A. Davis, ‘‘Graph algorithms via SuiteSparse: GraphBLAS: Triangle
counting and K-truss,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2018, pp. 1–6.

[14] Y. Fang, R. Cheng, S. Luo, and J. Hu, ‘‘Effective community search
for large attributed graphs,’’ Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1233–1244, Aug. 2016.

[15] M. Farach-Colton and M. Tsai, ‘‘Computing the degeneracy of large
graphs,’’ in Proc. Theor. Inform.-11th Latin Amer. Symp. (LATIN),
Montevideo, Uruguay, Mar./Apr. 2014, pp. 250–260.

[16] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis,
‘‘Corecluster: A degeneracy based graph clustering framework,’’ in Proc.
AAAI, vol. 14, 2014, pp. 44–50.

[17] O. Green, J. Fox, E. Kim, F. Busato, N. Bombieri, K. Lakhotia, S. Zhou,
S. Singapura, H. Zeng, R. Kannan, V. Prasanna, and D. Bader, ‘‘Quickly
finding a truss in a haystack,’’ in Proc. IEEE High Perform. Extreme
Comput. Conf. (HPEC), Sep. 2017, pp. 1–7.

[18] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, ‘‘Querying k-truss
community in large and dynamic graphs,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD). New York, NY, USA: ACM, 2014,
pp. 1311–1322.

[19] H. Kabir and K. Madduri, ‘‘Parallel k-truss decomposition on multicore
systems,’’ in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC),
Sep. 2017, pp. 1–7.

[20] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, ‘‘Influential community search
in large networks,’’ Proc. VLDB Endowment, vol. 8, no. 5, pp. 509–520,
Jan. 2015.

[21] T. M. Low, D. G. Spampinato, A. Kutuluru, U. Sridhar, D. T. Popovici,
F. Franchetti, and S. Mcmillan, ‘‘Linear algebraic formulation of edge-
centric K-truss algorithms with adjacency matrices,’’ in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), Sep. 2018, pp. 1–7.

[22] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong,
and W.-M. Hwu, ‘‘Collaborative (CPU + GPU) algorithms for triangle
counting and truss decomposition,’’ in Proc. IEEE High Perform. extreme
Comput. Conf. (HPEC), Sep. 2018, pp. 1–7.

[23] MIT/Amazon/IEEE. (2017). GraphChallenge.Org: Raising the Bar on
Graph Analytic Performance. Accessed: May 22, 2018. [Online]. Avail-
able: https://graphchallenge.mit.edu/

[24] R. Pearce, ‘‘Triangle counting for scale-free graphs at scale in distributed
memory,’’ in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC),
Sep. 2017, pp. 1–4.

[25] R. Pearce and G. Sanders, ‘‘K-truss decomposition for scale-free graphs
at scale in distributed memory,’’ in Proc. IEEE High Perform. Extreme
Comput. Conf. (HPEC), Sep. 2018, pp. 1–6.

[26] M.-E.-G. Rossi, F. D. Malliaros, and M. Vazirgiannis, ‘‘Spread it good,
spread it fast: Identification of influential nodes in social networks,’’ in
Proc. 24th Int. Conf. World Wide Web-WWW Companion. New York, NY,
USA: ACM, 2015, pp. 101–102.

[27] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
‘‘GraphChallenge.Org: Raising the bar on graph analytic performance,’’
in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2018,
pp. 1–7.

[28] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis,
‘‘Truss decomposition on shared-memory parallel systems,’’ in Proc. IEEE
High Perform. Extreme Comput. Conf. (HPEC), Sep. 2017, pp. 1–6.

[29] E. Tomita and T. Kameda, ‘‘An efficient Branch-and-bound algorithm for
finding a maximum clique with computational experiments,’’ J. Global
Optim., vol. 37, no. 1, pp. 95–111, Dec. 2006.

[30] C. Voegele, Y.-S. Lu, S. Pai, and K. Pingali, ‘‘Parallel triangle counting and
k-truss identification using graph-centric methods,’’ in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), Sep. 2017, pp. 1–7.

[31] J. Wang and J. Cheng, ‘‘Truss decomposition in massive networks,’’ Proc.
VLDB Endowment, vol. 5, no. 9, pp. 812–823, May 2012.

[32] Y. Wang, S. Cai, and M. Yin, ‘‘Two efficient local search algorithms for
maximum weight clique problem,’’ in Proc. AAAI, 2016, pp. 805–811.

[33] D. Wen, L. Qin, X. Lin, Y. Zhang, and L. Chang, ‘‘Enumerating
k-vertex connected components in large graphs,’’ 2017, arXiv:1703.08668.
[Online]. Available: http://arxiv.org/abs/1703.08668

[34] V. V. Williams and R. Williams, ‘‘Subcubic equivalences between path,
matrix and triangle problems,’’ in Proc. IEEE 51st Annu. Symp. Found.
Comput. Sci., Oct. 2010, pp. 645–654.

[35] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and
S. Rajamanickam, ‘‘Fast linear algebra-based triangle counting with
KokkosKernels,’’ in Proc. IEEE High Perform. Extreme Comput. Conf.
(HPEC), Sep. 2017, pp. 1–7.

[36] J. Wu, A. Goshulak, V. Srinivasan, and A. Thomo, ‘‘K-truss decom-
position of large networks on a single consumer-grade machine,’’ in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Aug. 2018, pp. 873–880.

ALESSIO CONTE received the Ph.D. degree from
the University of Pisa.

He held a postdoctoral position at the National
Institute of Informatics, Japan. He is currently an
Assistant Professor at the University of Pisa. His
research interests include algorithmic techniques
for enumerating combinatorial substructures in
graphs, typically useful in fields, such as commu-
nity search, network design, and bioinformatics.
He is particularly interested in algorithms with

output-sensitive guarantees and algorithms that exploit the common structure
of real-world graphs to be practically efficient.

DANIELE DE SENSI is currently a Postdoctoral
Researcher with the Computer Science Depart-
ment, University of Pisa, Italy. His doctoral work
is focused on autonomic and power-aware runtime
solutions for parallel applications. He has designed
algorithms to enforce power consumption and per-
formance requirements on parallel applications
through dynamic reconfigurations, by exploiting
online learning techniques. His research interests
include parallel programming models, network

processing applications, and HPC interconnection networks.

139108 VOLUME 8, 2020

A. Conte et al.: Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in Graphs

ROBERTO GROSSI is currently a Professor of
computer science at theUniversity of Pisa. He pub-
lished more than 160 articles in the area of design
and analysis of algorithms and data structures.
Most of his research work has been done in
collaboration over 100 coauthors, while visiting
Columbia University, AT&T Bell Laboratories,
the International Institute of Computer Science
at Berkeley, Aarhus University, the Université de
Marne-la-Vallee, Tohoku University, King’s Col-

lege London, the Institute of Mathematical Sciences at Chennai, Haifa Uni-
versity, Tokyo University, INRIA Lyon-Grenoble, the Technical University
of Denmark, and the National Institute of Informatics, Tokyo.

ANDREA MARINO received the Ph.D. degree in
computer science from the University of Florence,
advised by P. Crescenzi. He is currently an Assis-
tant Professor at the University of Florence. He has
also been an Assistant Professor at the University
of Pisa, working with the group of R. Grossi, and a
past member, as a Postdoctoral Researcher, of the
Laboratory for Web Algorithmics, University of
Milan. He is interested in algorithms and com-
plexity, algorithms for the analysis of real-world

networks, bioinformatics, and enumeration algorithms.

LUCA VERSARI is currently pursuing the Ph.D.
degree with the University of Pisa. He is also a
Software Engineer at Google AI. He works as
a Core Member of the JPEG XL Development
Team. He is responsible for the algorithms and
technical architecture of the image quality related
aspects of JPEGXL, including integral transforms,
color spaces, intra/inter-frame copying, progres-
sive decoding, animation, context modeling, tiling,
entropy coding, codec optimization, and integra-

tion of psychovisual modeling. Before his Google employment Luca studied
algorithms for pattern matching, graphs, hashing, and data compression in
the University of Pisa, Italy.

VOLUME 8, 2020 139109

