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ABSTRACT As the U.S. and Europe launched the very low frequency (VLF: 3–30 kHz) space-borne
transmitting and propagation experiments during the past thirty years, space-borne antennas have been
playing a more and more important role in contemporary VLF communication systems, which are very
likely to become an indispensable approach for overwater/underwater communication and navigation in the
future. In this paper, we propose a semianalytical method for evaluating the current distribution and input
impedance of a VLF space-borne tubular antenna. By considering the effects of both the ordinary wave
(O-wave) and the extraordinary wave (E-wave) in an anisotropic ionosphere, the analytical expression for
the current distribution has a more complicated form and is derived via the method of moments (MoM)
and the Gauss-Legendre quadrature (GLQ) algorithm. Computations show that the current distribution and
input impedance under anisotropic conditions are very sensitive to parameter changes, but the overall trend
for the input impedance will increase with the radius or electrical length of the antenna. Comparisons with
linear models and numerical results obtained in FEKO verify the accuracy of this method. From simulations
about the effect of the geomagnetic inclination angle to the input impedance, we advise that the parallel case
can be preferred as an alternative for the best angle. Once all antenna parameters are determined, there is
a possibility to find multiple optimal inclination angles. In addition, qualitative analyses of the impact of
environmental changes to the antenna characteristics are also discussed.

INDEX TERMS Anisotropic plasma, current distribution, tubular antenna.

I. INTRODUCTION
It is known that the very low frequency (VLF: 3–30 kHz)
electromagnetic waves are widely used in overwa-
ter/underwater communication and navigation. However,
most of the existing VLF communication systems required
huge ground-based transmitting stations, which often covered
more than several square kilometers and were very difficult
to repair in time once damaged. With the progresses in
space technology and the decrease on satellite launching cost,
the possibility of establishing aVLF space-borne transmitting
system began to enter people’s minds, and a feasible scheme
was to tether the antenna to a low-earth satellite. Since
these satellites usually operate on low-earth orbits (LEO)
of 300–400 km, this height is right located in the F2 layer
of the ionosphere, where the ionospheric parameters are
relatively stable [1]. For one thing, the ambient plasma near
a space-borne antenna has a refractive index of 50–150 at the
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VLF band [2], thus both the electrical length and radiation
efficiency of the antenna can be greatly improved without
increasing its geometric size. On the other hand, as the
satellites will move around the earth, the propagation distance
between the transmitter and the receiver is also significantly
shortened, which will further reduce the transmission losses.
The above advantages of a VLF space-borne transmitting
system may enable it to realize global overwater/underwater
communication and navigation without consuming very great
power.

Since the 1990s, a few countries including the U.S. and
Russia had initiated the investigations on VLF space-borne
transmitting and propagation experiments [3]–[7]. In 1992,
NASA and the Italian Space Agency (ASI) launched a
joint project aiming to deploy a 20 kilometers long con-
ducting tether which connected from a tethered satellite
system (TSS) to a space shuttle. The long conducting
tether was then regarded as a VLF transmitting antenna.
TSS-1R was a reflight of the TSS-1 satellite whose mis-
sion was aimed to test the TSS system and examine the
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electromagnetic interaction between the TSS and the ambi-
ent space plasma [8]. In addition, many other missions
like the imager for magnetopause-to-aurora global explo-
ration (IMAGE) have been developed [9], [10]. Zhangheng-1
or CSES (China Seismo-Electromagnetic Satellite), which is
a Chinese research satellite studying the ionospheric precur-
sors of earthquakes, has been successfully launched in 2018.
It was a collaboration between the China National Space
Administration (CNSA) and the Italian Space Agency (ASI)
[11]. In contrast, Russia adopted a large loop antenna as the
transmitting device. In 1987, the Soviet Union successfully
deployed two loop antennas with a diameter of 20 meters in
the ‘‘Progress-28’’ space station for transmitting VLF waves
[4]. It is worth noting that both the experiments implemented
by the U.S. and Russia had proved that VLF electromagnetic
signals transmitted from a low-earth satellite could penetrate
the ionosphere and propagate to the earth’s surface effec-
tively. Theoretical studies on VLF space-borne transmission
and propagation were also carried out by researchers during
the past thirty years. In 1993, the wave propagation theory for
a VLF space-borne linear antenna was initially investigated
by Bannister et al. [6], where the effect of the earth’s magnetic
field was only considered on the wave number. In 2001,
Nikitin and Swenson [12] calculated the radiation impedance
of a short dipole antenna in an anisotropic cold plasma by
using a quasi-static method. The current distribution and ter-
minal impedance of a VLF electric dipole antenna in themag-
netosphere were then examined by Bell et al. [13] in 2006 and
by Chevalier et al. [14] in 2008, respectively. Since the 2000s,
a few Russian scientists such as Zaboronkova, Kudrin, and
Chugunov [15]–[18] also conducted extensive research on
the current distributions and input impedances of VLF loop
and cylindrical antennas in an anisotropic magnetoplasma.
In the 2010s, in-depth investigations on the propagation the-
ory for VLF/ELF (extremely low frequency: 3–30 Hz) waves
excited by electric/magnetic dipole antennas in an anisotropic
ionosphere were carried out by Li et al. [19] and Pan and Li
[20]. In two recent papers by He et al. [21], [22], the current
distribution and input impedance of a VLF space-borne linear
antenna parallel or at arbitrary orientations to the earth’s
magnetic field were investigated in detail.

When designing a linear antenna, it would be beneficial
to obtain its current distribution and input impedance in
order to improve the antenna efficiency. Unfortunately, due
to the complex anisotropic properties of the ionosphere in
the VLF band, computing the current distribution on a VLF
space-borne linear antenna was never an easy job. By consid-
ering the anisotropy of the ionosphere caused by the earth’s
magnetic field, VLF waves produced by space-borne anten-
nas will be separated into two modes, namely, the ordinary
wave (O-wave) and the extraordinary wave (E-wave). When
the antenna operates at a height of low-earth orbit, its trans-
mitted O-wave is an evanescent wave, while the E-wave is
a propagable mode with small attenuation rate. Hence in
previous works, contributions from the O-wave were often
neglected when computing the far-field. Considering that the

current distribution and input impedance are mainly depen-
dent on the fields in the near region (i.e., kρ � 1), where
the O-wave still has comparable amplitudes with the E-wave
[23], both the influences of the O-wave and E-wave should
be taken into account when dealing with a VLF space-borne
antenna. Moreover, because of the skin effect caused by the
alternating currents inside a conductor, the current distribu-
tion on a linear antenna will inevitably tend to the surface of
the antenna. In this case, the assumptions concerning a long
and thin antenna are no longer accurate, instead the model
of a tubular antenna assuming the currents aggregating on
the antenna surface will be more close to the real situation.
In this regard, though there exists a few works focusing on
the tubular antenna, it does not receive enough attention it
deserves. In 1970, Chang and Wait [24] present a partly
numerical method to investigate the input admittance and cur-
rent distribution of a finite vertical tubular dipole antenna over
an infinite dissipative half-space. King et.al [25] and Shen and
Wu [26] have dealt with this problem in an isotropic plasma
subsequently. When the medium is regarded as an anisotropic
one, numerical results based on the Clemmow-Mullaly-Allis
diagram were obtained by Bhat [27]. It is a pity that no
effort has ever directed toward calculating them analytically.
Therefore, as the importance of VLF space-borne transmit-
ting systems will continue growing in the next few decades,
the lack of reliable analytical solutions to this problem is the
motivation for the present study.

In this paper, we will attempt to propose a new theoreti-
cal method for evaluating the current distribution and input
impedance of a VLF space-borne tubular antenna. The ambi-
ent ionosphere of the antenna is regarded as a homogeneous
anisotropic cold plasma, where all the sheath effects and
wave-plasma interactions are ignored. The main contribution
of this paper is to take into account the skin effect of the
current, so that the current should be distributed on the outer
surface rather than concentrated on the axis. Consequently,
the treatment of a tubular model instead of a purely linear one
is desirable. In terms of the physical model, it has amore solid
geometric sense. And in terms of the mathematical formula,
the kernel function is a triple integral and the current distri-
bution will also differ from our original work in [21]–[23].
Moreover, the effect of the geomagnetic inclination angle to
the input impedance of a tubular antenna is also considered
in this work. The rest of the paper is organized as follows: the
analytical derivation procedures for determining the current
distribution and input impedance are provided in Section II.
Based on this method, some computations and discussions
under different conditions are carried out in Section III.
Finally, the paper concludes in Section IV.

II. FORMULATIONS OF THE PROBLEM
A. GEOMETRY AND NOTATIONS OF THE PHYSICAL
MODEL
The physical model of the discussed problem is illustrated
in Fig. 1. The center-driven antenna is composed of a very
thin and highly conducting tube with radius a and length 2h,
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FIGURE 1. Geometry and notations of a VLF space-borne tubular antenna
in a homogeneous anisotropic plasma.

where a � h. The center of the tube is located at the origin
of the coordinate system where a drive voltage V0 is applied
to maintain an axial current. Generally, the angle between the
tethered antenna and the earth’smagnetic field is not constant,
but will change with the satellite moving along the orbit.
For simplicity, we put the antenna in the ŷ-ẑ plane, and let
the geomagnetic field always be oriented along the ẑ axis.
Then the angle between the directional vector of the antenna
l and the ẑ axis can be defined as the geomagnetic inclination
angle θb.
Using a cold plasma treatment, the ambient environment

of the antenna is equivalent to a homogeneous anisotropic
plasma characterized by the following relative dielectric
tensor and permeability [20], [28]

ε̂ =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3

 (1)

µr = 1 (2)

where

ε1 = 1−
XU

(U2 − Y 2)
, ε2 =

XY
(U2 − Y 2)

, ε3 = 1−
X
U
(3)

U = 1+ i
v
ω
, X =

ω2
0

ω2 , Y =
ωH

ω
(4)

ω2
0 =

Ne2

ε0me
, ωH =

∣∣∣∣eB0me

∣∣∣∣ (5)

In above formulas, ω0 and ωH are the plasma frequency
and gyro frequency, respectively, and ω = 2π f is the angu-
lar operating frequency. B0 represents the magnitude of the

geomagnetic field, and me and e denote the mass and charge
quantity of an electron, respectively. The electron density
and collision frequency for the ionosphere are denoted by
N and v, respectively. Besides, ε0, µ0, and k0 = ω

√
µ0ε0

are the permittivity, permeability, and wave number in free
space, respectively. In the whole text, the time harmonic
factor exp(−iωt) is assumed and suppressed.

With the rotational symmetry satisfied, the axial current
should aggregate on the surface of the tube. Thus the total
current at r ′ can be expressed by

I (r ′) = 2πaK (r ′) (6)

where K (r ′) denotes the surface density of the axial current.
It is seen that the distance from a surface current element

located by R′(x ′, y′, z′) to an observation point located by
R(x, y, z) on the surface of the tube is∣∣R− R′∣∣ = √(x − x ′)2 + (y− y′)2 + (z− z′)2 (7)

For convenience, we also put R(x, y, z) in the ŷ-ẑ plane
and make it above the axis of the antenna. Then the relative
coordinate between R and R′ can be rewritten as

x − x ′ = −a sin θ ′ = x̃ (8)

y− y′ =
(
r − r ′

)
sin θb −

(
1− cos θ ′

)
a cos θb = ỹ (9)

z− z′ =
(
r − r ′

)
cos θb +

(
1− cos θ ′

)
a sin θb = z̃ (10)

where −h ≤ r, r ′ ≤ h.
Here, θ ′ represents the angle between the projections of

R and R′ when they are in a same plane. By using (8)–(10),
the relative position between R and R′ in cylindrical
coordinates can be expressed with (ρ̃, ϕ̃, z̃). We have

ρ̃ =

√
x̃2 + ỹ2, ϕ̃ = tan−1

ỹ
x̃

(11)

and the longitudinal distance z̃ remains constant.

B. TANGENTIAL COMPONENT OF THE ELECTRIC FIELD
AND ITS SATISFIED BOUNDARY CONDITION
According to our previous work [22], the tangential electric
field excited by an arbitrarily oriented electric dipole in an
infinite homogeneous anisotropic plasma could be expressed
in the following form

Et (ρ, ϕ, z)

=
−iωµ0

(2π )2

∫
∞

−∞

exp(−ikzz)dkz

×

∫
∞

0

[
cos2 θbW1(kz, λ)+ sin2 θbW2(kz, λ, ϕ)

B(kz, λ)
J0(λρ)

+
sin2 θbW3(kz, λ, ϕ)+ sin θb cos θbW4(kz, λ, ϕ)

B(kz, λ)
J1(λρ)

]
× λdλ (12)

where J0 and J1 are the zero-order and first-order Bessel func-
tions of the first kind, respectively. In addition, the expres-
sions for B(kz, λ), W1(kz, λ), W2(kz, λ, ϕ), W3(kz, λ, ϕ),
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and W4(kz, λ, ϕ) are given by

B(kz, λ) = k60

[(
kz
k0

)4

ε3 +

(
λ

k0

)2 (
ε22 − ε

2
1 − ε1ε3

)
+

(
kz
k0

)2 (
λ

k0

)2

(ε1 + ε3)− 2
(
kz
k0

)2

ε1ε3

+ε3

(
ε21 − ε

2
2

)
+

(
λ

k0

)4

ε1

]
(13)

W1(kz, λ) =
(
k2z + λ

2
)
k2z − k

2
0ε1

(
2k2z + λ

2
)

+ k40
(
ε21 − ε

2
2

)
(14)

W2(kz, λ, ϕ) = k20
(
k20ε1ε3 − ε1λ

2
− ε3k2z

)
+

(
cos 2ϕ+1

2

)
λ2
(
k2z +λ

2
−k20ε3

)
(15)

W3(kz, λ, ϕ) = −λ
(
k2z + λ

2
− k20ε3

)(cos 2ϕ
ρ

)
(16)

W4(kz, λ, ϕ) = −2ikzλ
(
k2z + λ

2
− k20ε1

)
cosϕ (17)

Considering the relative coordinate between the
observation point and the surface current element is (ρ̃, ϕ̃, z̃),
the tangential component of the total electric field excited on
the surface of the tube could be written as

Et (r) =
−iωµ0

(2π )2

∫ h

−h

∫ 2π

0
G (ρ̃, ϕ̃, z̃) I (r ′)dθ ′dr ′ (18)

where G (ρ̃, ϕ̃, z̃) is the kernel function of the antenna.
We write

G (ρ̃, ϕ̃, z̃)

=

∫
∞

−∞

exp(−ikzz̃)dkz

×

∫
∞

0

[
cos2 θbW1(kz, λ)+ sin2 θbW2(kz, λ, ϕ̃)

B(kz, λ)
J0(λρ̃)

+
sin2 θbW3(kz, λ, ϕ̃)+ sin θb cos θbW4(kz, λ, ϕ̃)

B(kz, λ)
J1(λρ̃)

]
× λdλ (19)

Assume that the feeding gap is sufficiently small, then the
boundary condition requires that Et approximately equals to
−V0 at the driving point and must be zero elsewhere on the
surface of the tube. Thus, we have

Et (r) = −V0δ(r) (20)

where δ(r) denotes the Dirac delta function.
By combining (18) and (20), the boundary condition

satisfied by the antenna should be

−iωµ0

(2π )2

∫ h

−h

∫ 2π

0
G (ρ̃, ϕ̃, z̃) I (r ′)dθ ′dr ′=−V0δ(r) (21)

C. DETERMINATION OF THE CURRENT DISTRIBUTION
It is known that the current distribution for a bare tubu-
lar antenna in a homogeneous isotropic medium has been
examined and rigorously verified by King et al. [25]. Their
proposed formula consisted of three trigonometric current
terms, where the three indeterminate coefficients were eval-
uated through numerical methods. Based on King’s theory,
if we adopt similar procedures and take into account both
the O-wave and E-wave in an anisotropic ionosphere, it then
yields that the current distribution on a VLF space-borne
tubular antenna could be expressed in the following form

I (r ′) = I (o)v

[
sin ko

(
h−

∣∣r ′∣∣)+ T (o)
u
(
cos kor ′ − cos koh

)
+T (o)

d

(
cos

kor ′

2
− cos

koh
2

)]
+I (e)v

[
sin ke

(
h−

∣∣r ′∣∣)+ T (e)
u
(
cos ker ′ − cos keh

)
+T (e)

d

(
cos

ker ′

2
− cos

keh
2

)]
(22)

where I (o)v , T (o)
u , T (o)

d , I (e)v , T (e)
u , and T (e)

d denote the complex
amplitude coefficients for the O-wave and E-wave, respec-
tively, they are yet to be determined. Besides, ko and ke
represent the wave numbers for the O-wave and E-wave when
the propagation direction is oriented along the antenna, they
are also functions of θb. We write

k2o,e(θb) =
k20

2
(
ε1 sin2 θb + ε3 cos2 θb

)[ε1ε3 (1+ cos2 θb
)

±

√(
ε21 − ε

2
2 − ε1ε3

)2
sin4 θb + 4ε22ε

2
3 cos

2 θb

+

(
ε21 − ε

2
2

)
sin2 θb

]
(23)

Next, we will solve the six indeterminate coefficients via
the method of moments (MoM) [29]. By letting

I1(r ′) = sin ko
(
h−

∣∣r ′∣∣) (24)

I2(r ′) = cos kor ′ − cos koh (25)

I3(r ′) = cos
kor ′

2
− cos

koh
2

(26)

I4(r ′) = sin ke
(
h−

∣∣r ′∣∣) (27)

I5(r ′) = cos ker ′ − cos keh (28)

I6(r ′) = cos
ker ′

2
− cos

keh
2

(29)

and

Vj(r) =
∫ h

−h

∫ 2π

0
G (ρ̃, ϕ̃, z̃) Ij(r ′)dθ ′dr ′ (30)

where j = 1, 2, 3, 4, 5, 6, (22) can be rewritten as

I (r ′) = I (o)v

[
I1(r ′)+ T (o)

u I2(r ′)+ T
(o)
d I3(r ′)

]
+I (e)v

[
I4(r ′)+ T (e)

u I5(r ′)+ T
(e)
d I6(r ′)

]
(31)
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Also, (18) can be rewritten as

Et (r) =
−iωµ0

(2π )2

{
I (o)v

[
V1(r)+ T (o)

u V2(r)+ T
(o)
d V3(r)

]
+I (e)v

[
V4(r)+ T (e)

u V5(r)+ T
(e)
d V6(r)

] }
(32)

Now we multiply a function Ii(r) on both sides of (32) and
make an integration to r between −h and h. When repeating
this step for all I1–I6, the above equation could be reformu-
lated in terms of matrix multiplication. By further using the
boundary condition (20) and rearrangements, (32) becomes

V0 · Ĩ =
iωµ0

(2π )2

(
M̃ · C̃

)
(33)

where
Ĩ = [I1(0) I2(0) I3(0) I4(0) I5(0) I6(0)]′ (34)

C̃ =
[
I (o)v I (o)v T (o)

u I (o)v T (o)
d I (e)v I (e)v T (e)

u I (e)v T (e)
d

]′
(35)

The superscript ′ in above vectors denotes matrix
transpose, and M̃ is a 6×6 matrix with each of its component
expressed as follows

Mij =

∫ h

−h
Ii(r)Vj(r)dr

=

∫ h

−h

∫ h

−h

∫ 2π

0
G (ρ̃, ϕ̃, z̃) Ii(r ′)Ij(r)dθ ′dr ′dr (36)

Considering that ρ̃, ϕ̃, z̃ are also functions of θ ′, r ′,
r , G (ρ̃, ϕ̃, z̃) can be replaced by G(θ ′, r ′, r) and the final
formula for Mij is

Mij =

∫ h

−h

∫ h

−h

∫ 2π

0
G(θ ′, r ′, r)Ii(r ′)Ij(r)dθ ′dr ′dr (37)

where i, j = 1, 2, 3, 4, 5, 6.
It is worth mentioning that the kernel function G(θ ′, r ′, r)

in above equation contains a double infinite integral, which
can be precisely evaluated through the method for computing
the near-field [23]. However, there still exists a triple finite
integral in each element of M̃ . Thus in the next section,
we will address the evaluating method for this triple integral.

D. EVALUATION OF MATRIX M̃
Here, we adopt a Gauss-Legendre quadrature (GLQ) [30] to
process the triple integral in Mij. The basic idea for the GLQ
can be described by the following equation∫ 1

−1
f (x)dx ≈

n∑
i=0

wif (xi) (38)

where xi are zeros of the Legendre polynomials, and wi are
the corresponding Gauss coefficients.

With the help of linear transformation, a finite integral
between the interval [X1,X2] could be approximated as∫ X2

X1
f (x)dx

=
X2 − X1

2

∫ 1

−1
f
(
X2 − X1

2
x +

X1 + X2
2

)
dx

≈
X2 − X1

2

n∑
i=0

wif
(
X2 − X1

2
xi +

X1 + X2
2

)
(39)

If we let

w′i =
X2 − X1

2
wi, x ′i =

X2 − X1
2

xi +
X1 + X2

2
(40)

then (39) becomes∫ X2

X1
f (x)dx = w′i

n∑
i=0

f (x ′i ) (41)

By applying the above method to (37) in an iterative way,
the integral of Mij can be converted to a triple sum form.
We write

Mij =

n∑
i=0

w′i


m∑
j=0

w′j

 q∑
p=0

w′pf (θ
′
i , r
′
j , rp)

 (42)

where

f (θ ′i , r
′
j , rp) = G(θ ′i , r

′
j , rp)I (r

′
j )I (rp) (43)

Once every component of M̃ is calculated, the current
distribution on the antenna can be completely determined
by solving the six indeterminate coefficients in vector C̃ .
Moreover, the input impedance of the antenna Zin is also
obtained readily. We have

Zin =
V0
I (0)

(44)

By now, we have provided the complete procedures for
evaluating the current distribution and input impedance of a
VLF space-borne tubular antenna. Next, we will carry out the
corresponding computations and analyses.

III. COMPUTATIONS AND DISCUSSIONS
Since the O-wave is a fast attenuating wave while the E-wave
is the propagable one, we will choose the phase constant
of the E-wave, i.e., βe = Re(ke), as the reference quantity.
By using the aforementioned method, the six indeterminate
coefficients in the current distribution are computed with
different antenna radii and the results are listed in Table 1.
The parameters are taken as follows: the operating frequency
is f = 12.5 kHz, the drive voltage is V0 = 1 V, the half
length of the antenna is h = 50 m, the magnitude of the
earth’s magnetic field is B0 = 0.5× 10−4 T, and the electron
density and collision frequency of the ionosphere are taken
as N = 1.4 × 1012 m−3, v = 103 s−1, respectively. Then
we have ω0 = 6.6 × 107 arc/s, ωH = 8.6 × 106 arc/s, and
the relation ω < ωH < ω0 is satisfied. Here, we firstly
discuss the most general case, i.e. let θb = 0◦. It is found
that the amplitudes of I (o)v and I (e)v will increase with the
radius of the antenna, whereas the rest four coefficients are
decreased when the radius becomes larger. As is different
with that of a space-borne linear antenna, the coefficients
for the O-wave and E-wave have very similar amplitudes
when assuming the currents concentrating on the antenna
surface. Nevertheless, considering the O-wave is an evanes-
cent wave, it is still necessary to raise the coefficients for the
E-wave as high as possible while diminish the coefficients for
the O-wave.
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TABLE 1. Amplitude coefficients for the O-wave and E-wave of a VLF space-borne tubular antenna with different radii.

FIGURE 2. Current distributions on a VLF space-borne tubular antenna at
(a) βeh = 0.211, (b) βeh = 0.423, (c) βeh = 0.845, (d) βeh = 1.056.

After obtaining the amplitude coefficients, the normalized
current distributions at different electrical lengths (βeh) of a
VLF space-borne tubular antenna are shown in Figs. 2 and 3.
The radius of the antenna is taken as a = 0.01 m, and
all other parameters are same with those used in Table 1.
It is found that due to the complex characteristics of the
ionosphere in the VLF range, the distributions for both the
real and imaginary currents on the antenna are not fixed,
but will change significantly with the electrical length of
the antenna. We may observe that when the electrical length
of the antenna is small (say βeh < 1), the amplitude of
the current does not exhibit remarkable regularity. However,
once the electrical length exceeds a certain value (in this
case, βeh ≥ 1), the magnitude of the current will increase
with the electrical length of the antenna monotonically.

FIGURE 3. Current distributions on a VLF space-borne tubular antenna at
(a) βeh = 1.584, (b) βeh = 2.007, (c) βeh = 2.641, (d) βeh = 2.958.

This is probably because for antennas with small lengths,
their sizes are more comparable to the wavelength and the
current magnitude is thereby more susceptible to the elec-
trical length of the antenna. Meanwhile, the symmetric cur-
rent distribution always reaches its maximum at the driving
point, and will gradually tends to zero at the two terminals
(i.e. close to triangular distributions). This indicates that the
main contribution of the radiation comes from the central
part of the antenna, and how to increase the total current
moment on the antenna with limited power will be the key to
improve the antenna efficiency. To the best of our knowledge,
the real part of the current represents the active power while
the imaginary part represents the reactive power, and the latter
is the power loss. Thus, in order to improve the efficiency,
the electrical length should be adjusted properly so as to make
the imaginary current as small as possible.
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FIGURE 4. Input impedance of a VLF space-borne tubular antenna versus
antenna radius.

With the current distribution determined, the input
impedance of the antenna is also computed under several
different conditions. Fig. 4 shows the results for the input
impedance varying with the dimensionless variable a/λe
(where λe = 2π/βe denotes the wavelength of the E-wave).
The half length of the antenna in Fig. 4 is taken as h = 50 m
and all other parameters remain constant. It is seen that
because of the complex anisotropic properties of the iono-
sphere at the VLF range, the input impedance of a VLF
space-borne tubular antenna does not vary monotonously, but
will decreasewith evident fluctuations as the radius increases.
As a whole, both the real and imaginary parts of the input
impedance are smaller when the radius becomes larger, indi-
cating that the overall efficiency of the antenna is increasing
with the antenna radius. Despite that, pronounced minima
can still be observed at certain points. It means that once the
radius is restricted to a certain range, there exists an optimal
value. What’s more, in the real air and space environment,
even if the input impedance will always decrease with the
increase of the radius, the radius of the antenna is limited
and it is impossible to make the radius infinitely large. This
somewhat arbitrary radius must be thick enough so as not
to burn out when the current is large, but thin enough to
avoid too heavy to launch. In the meanwhile, in practical
engineering applications, manufacturing cost is also another
significant factor that needs to be carefully considered. Since
in most cases, thicker antenna means higher cost.

Also of interest is the relationship between variations of
the input impedance and the electrical length. Both the tubu-
lar and linear antenna model are considered and depicted
in Fig. 5. All the parameters are still the same as those in
former figures except θb = 30◦ in Fig. 5a and θb = 60◦

in Fig. 5b, respectively. By observing the tubular curves,
similar with Fig. 4, the input impedance will also show
an overall downward trend with the increase of the elec-
trical length and pronounced minima can still be observed.
Considering enlarging the length of the antenna will also

FIGURE 5. Input impedance of VLF space-borne tubular and linear
antennas versus electrical length of the antenna. (a) θb = 30◦,
(b) θb = 60◦.

inevitably augment the manufacturing costs, it is more desir-
able to decrease the antenna impedance by selecting proper
parameters. From a comparison of curves labeled tubular and
linear in Fig. 5, it is noted that when the electrical length is
relatively small, the input impedance of these two models has
similar trends. With the further increase of the length, there
is very little change of the linear one, whereas the tubular one
will continue decline. Hence the difference between these two
models lead to the following conclusion, the input impedance
of a tubular antenna is somewhat smaller than that of a linear
antenna once the electrical length is sufficiently large.

It is known that in the VLF range the electron collision
frequency v is much greater than the angular frequency ω,
which is the main reason for the strong anisotropy of the
ionosphere. However, as ω increases, the contribution of v
to the relative dielectric tensor ε̂ becomes smaller, and even
can be neglected at last. Under this circumstance, the iono-
sphere can be considered transparent for high-frequency
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FIGURE 6. Comparison with FEKO results versus frequency.

electromagnetic waves, in other words, as if they were in
free space. Therefore attention will be restricted to MHz fre-
quencies and comparisons are made with numerical solutions
taken from FEKO in Fig. 6. Here the radius and length of
the antenna are a = 0.01 m and 2h = 100 m, while all
parameters of the ionosphere are still the same as those used
in Table 1. Apparently, the analytical curve and FEKO curve
variation tendencies were approximate and unanimous, com-
pletely confirming the high accuracy of our method. It can
also be seen that, with increasing frequency, the value of the
input admittance increases first and then decreases, reaching
a maximum near f = 1.5 MHz. In this case, the wavelength
is 200 m and the length of the antenna is 100 m. It means
the result shows a great correspondence with the well-known
theory that half-wavelength antenna has the smallest
input impedance and is highly efficient in an isotropic
medium.

As pointed out by Li and Pan [31], only when
tan2 θ < −ε3/ε1, the E-wave can be a propagable one.
Therefore, the critical angle θA in the VLF range can be
obtained in the form of θA = arctan

√
−ε3/ε1 ≈ 89◦. To

further explore the effect of the geomagnetic inclination angle
to the antenna, Fig. 7 shows the input impedance of the
antenna over the angle θb from 0◦ to 89◦ for fixed h = 1 m
and a = 0.001 m. The angular frequency is f = 12.5 kHz.
It is found that the input impedance will also show a rising
trend with obvious fluctuations as θb varies, illustrating that
the impedance of a VLF space-borne tubular antenna is very
sensitive to its relative posture to the background magnetic
field. It is also noteworthy that though there exist some
sudden dips of the real part in certain angles like around 50◦,
meanwhile the imaginary one is somewhat large. Considering
all of the above, we may infer that overall, the optimal
orientation for a VLF space-borne tubular antenna shoule be
as parallel as possible to the earth’s magnetic field since the
antenna has a smaller input impedance when θb approaches
to 0◦. However, if all other parameters are fixed, it is possible
to find other optimal angles.

FIGURE 7. Input impedance of a VLF space-borne tubular antenna versus
the geomagnetic inclination angle.

FIGURE 8. Input impedance of VLF space-borne tubular versus some
environmental changes. (a) electron density, (b) collision frequency.

According to the data given by [32], the electron density
will exhibit totally different characteristics at different
heights. Since we are considering low-Earth orbit satellites
of 300–400 kilometers high, simulation to show its impact
to the final input impedance in this range is made and the
result is depicted in Fig. 8a. It is seen that if it increases,
the input impedance will decrease slowly in general but the
change is not large. Maybe it is because within 300–400 km,
the change of the electron density N is relatively very little.
Compared with the order of magnitude of N , its effect on the
final result is limited. The discussion of the impact of the
collision frequency comes next in Fig. 8b. As the collision
frequency increases, the real part of the input impedance
does not change drastically, whereas the imaginary one will
fluctuate violently. We speculate the reason maybe that the
variation in collision frequency directly affects some compo-
nents of the relative dielectric tensor. Changes in the dielectric
tensor, in turn, will have a direct effect on the entire inte-
grand. Therefore, the effect of a certain variable on the final
input impedance is very complicated, not a single positive or
negative correlation. And further work is required to draw a
more specific conclusion. In fact, the environmental changes
like altitude, temperature, electron concentration, day-night
changes, alternating seasons, and even solar activity can cause
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changes of the ionosphere, but all of them are reflected
through the dielectric tensor ε̂ in our problem. Therefore,
no matter how the environment changes, our method of
evaluating the antenna always works.

IV. CONCLUSION
In this paper, we treat the problem of a VLF tubular antenna in
an anisotropic cold plasma both analytically and numerically,
and propose a theoretical method for computing the current
distribution and input impedance of the antenna. The assumed
current distribution includes the effects of both the O-wave
and E-wave and thereby has a more complicated form. The
kernel function of the antenna is also obtained by evaluating
the near-field, and the six amplitude coefficients in the current
equation are determined through the MoM as well as the
GLQ algorithm. Computations reveal that the current distri-
bution and input impedance of a VLF space-borne tubular
antenna are quite sensitive to parameter changes andmay vary
unpredictably. Overall, the efficiency of the antenna will to
some extent be improved as the radius or electrical length
of the antenna increases. However, for economic purpose,
the dimension of the antenna should be selected appropriately
so that the antenna can possess a larger current moment and a
smaller input impedance with its size limited. To demonstrate
the accuracy of the proposed method, comparisons with the
linear antenna model and numerical solutions simulated in
FEKO are also carried out subsequently. Moreover, we find
that the antenna has a smallest input impedance when θb is
close to 0◦ with several sudden dips in some certain angles.
Hence in practical applications the orientation of the antenna
should be as parallel as possible to the direction of the geo-
magnetic field in order to achieve maximum efficiency. But
for a specific set of antenna parameters, perhaps one can find
more than one optimal inclination angles. Qualitative discus-
sions of environmental changes are also presented in the end.
In summary, by determining the optimal antenna parameters
in a variable ionospheric environment, the proposed method
may provide heuristic advice to the design of a practical VLF
space-borne tubular antenna.
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