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ABSTRACT Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries can ensure the
normal and effective operation of power systems using lithium-ion batteries. However, how to select battery
prediction parameters through scientific methods and how to accurately predict battery RUL values under
high and low temperature conditions are still a huge challenge. Thus according to the technique for order
preference by similarity to ideal solution (TOPSIS) based on information entropy, improved particle swarm
optimization (PSO) and moving average filter(MAF), a novel data-driven method for predict lithium-ion
batteries’ RUL is proposed. The TOPSIS method based on information entropy is proposed to select the
best degradation parameters; a sliding average low-pass filter is used to solve the capacity regeneration and
noise problem of the battery experimental data; the improved PSO algorithm is presented to predict the
battery RUL accurately. Based on the batteries experimental data from NASA and University of Maryland,
we have done many simulation experiments on parameters selection and RUL accuracy comparisons among
several data-drivenmethods. The experimental results shows:(1) comparedwith the other predictionmethods
without degradation parameters selection, the proposed method with TOPSIS and MAF filtering is more
accurate;(2) our proposed algorithm has higher prediction accuracy and use less training data than other
data-driven algorithms;(3) this method has high prediction accuracy under both the high and low temperature
conditions.

INDEX TERMS Lithium-ion batteries, remaining useful life (RUL), technique for order Preference by
similarity to ideal solution(TOPSIS) method, improved particle swarm optimization(PSO), moving average
filter(MAF).

I. INTRODUCTION
Compared with the traditional lead-acid batteries, nickel-
cadmium batteries and nickel-hydrogen batteries, lithium-ion
batteries have many advantages, such as high relative energy
density, light weight, long life and fast charge-discharge.
Therefore, lithium-ion batteries are now widely used in civil
electronic products, such as mobile phones, computers and
Bluetooth headsets; they are also widely used in low emission
energy saving electric vehicles and in large-scale production
such as aerospace systems, military communications [1]–[3].
Therefore, the failures caused by the decay of the life of the
lithium-ion battery may cause degradation or damage to the
device. The light failures make the machines unusable, and
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the fatal failures endanger the personal safety. For example,
the improper management of lithium-ion batteries in electric
vehicles caused the fire and explosion [4]. In the field of
aerospace, the power system failure caused by lithium-ion
battery is the main cause of system failure [1], [5].

Therefore, in order to ensure the normal operation of the
large systems with lithium-ion batteries, the most important
issue is to predict the battery remaining useful life (RUL)
accurately.

In order to predict the RUL of a lithium-ion battery accu-
rately, it is necessary to monitor the battery status. In general,
the state-of-health (SOH) is used to describe the battery
health status [6]. SOH is generally expressed as a decrease in
effective capacity or an increase in internal resistance [7], [8].
EOL indicates the end-of-life time of lithium-ion batteries.
When SOH reaches EOL, the battery can no longer be
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available [6], [9]–[11]. In general, when the SOH drops to
80% of the rated capacity, it means the battery reaches EOL
and must be replaced [12].

The RUL prediction methods of lithium-ion batteries
can be divided into model-based prediction methods and
data-driven prediction methods [1]. Model-based methods
can perform detailed physical and chemical analysis of the
battery aging process [13]–[16]. But the models are based
on specific environmental conditions and charging, discharg-
ing conditions. The parameters in the models are obtained
according to the physical characteristics and environmen-
tal variables of the batteries. So the model parameters are
complex and difficult to change with the battery working
conditions. Due to its high complexity, it is impossible to
predict the RUL efficiently and accurately.

The data-driven prediction methods don’t consider the
aging mechanism inside the lithium-ion battery, and the bat-
tery RUL can directly achieved based on the battery perfor-
mance test data and status monitoring data. Wei et al. [2]
proposed a method to predict RUL of lithium-ion batteries
by means of particle filtering (PF) and support vector regres-
sion (SVR). The internal resistance and cycle number of the
battery were selected as parameters of the degradation model
and a good RUL prediction result was achieved. The Wei’s
method has a large amount of training calculation and is prone
to over-fitting. So there are some problems in efficiency.
Jin et al. [3] predicted the RUL of lithium-ion batteries
through an improved odorless particle filtering method, and
the battery cycle number were used as the model’s degra-
dation parameter. The results show that the improved par-
ticle filtering method has some improvements compared
with the traditional particle filtering methods. But its param-
eters selection is subjective and unscientific. Based on
the local information fusion and support vector regression,
Chaoui et al. [8] proposed an integration algorithm to pre-
dict RUL of lithium-ion batteries. The local information
fusion of data is used to replace the original global informa-
tion, so the information layer fusion problem is transformed
into a decision layer fusion problem [8]. Erdinc et al. [15]
constructed a high-fidelity battery model through multi-
objective constrained nonlinear optimization technology and
derived a charging mode suitable for lithium-ion batteries.
Wang et al. [17] proposed a method for lithium-ion batteries
RUL based on the Verhulst model, particle swarm optimiza-
tion and particle filtering. Xian et al. [18] predicted RUL
of lithium-ion batteries based on spherical volume particle
filter. Liu et al. [13] proposed a ARD-based GPR model
for model training, verification and comparison of battery
calendar aging experimental data, and obtained more accu-
rate prediction results. On this basis, they compared the
performance of the solo-GPR, solo-LSTM, GPR+EMD and
LSTM+EMD models, and found that the prediction effect
of the LSTM+GPR combined model is better than other
models [14].

The data-driven RUL predicted mentioned above are too
subjective in the parameter selection of the prediction model

and had little scientific basis. Only the number of cycles was
selected as the model parameter in [3], [10], [18], [19]. In this
case, the degradation mechanism and environmental factors
of the battery are not considered. The selected parameters
in reference [2] do not change with the working conditions.
Different parameters data have different states under different
working conditions. Some of them are suitable for battery
RUL prediction while others are not. Therefore, we should
use a scientific method to select best parameters of battery
degradationmodel. In terms of raw data processing, the above
methods did not eliminate the noise of the original data
through filtering. Moreover, the noise of the original data
affected the efficiency of model and made the model param-
eters fluctuate, which leaded to the inaccurate prediction
result. Finally, none of the above literature has predicted the
battery life under both the high or low temperature conditions
accurately. To solve the three problems, according to the
technique for order preference by similarity to ideal solution
(TOPSIS) based on information entropy, improved particle
swarm optimization (PSO) and moving average filter(MAF),
a novel data-driven method for predict lithium-ion batteries’
RUL is proposed in this paper.

The work of this paper is organized as follows. Section II
discusses the degradation mechanism of lithium-ion batteries
and selects suitable degradation parameters for prediction
model. Section III presents the methods of parameter opti-
mization, data filtering and model training under different
working conditions. Section IV establishes the overall exper-
imental framework. Section V gives the experimental results
and compares them. Section VI concludes all the work.

II. SELECTION OF DEGRADATION PARAMETRRS FOR
LITHIUMION BATTERIRS
In order to select the appropriate degradation parameters
to predict the RUL of lithium-ion batteries, it is neces-
sary to understand the capacity degradation mechanism
of lithium-ion batteries. Lithium-ion batteries usually use
graphite as anode material, lithium compounds (LiCoO2) as
cathode, LiPf6 and alkyl carbonates (such as vinyl carbon-
ate (EC) and diethyl carbonate (DEC) as electrolytes [20].
During the charge-discharge cycle of lithium-ion batteries,
the redox reaction consumes active materials, and excess
products are deposited on the negative electrode [21]. The
main causes of capacity loss of lithium-ion batteries are
as follows: (1) growth of solid electrolyte membranes
(SEI) [22]; (2) increase of internal resistance of batteries [23];
(3) consumption of active substances [24]–[26].

The amount of chemical reaction products generally
increases with the change of reaction time, while the amount
of reactants decreases with the change of reaction time.
Therefore, the thickness of SEI film and the loss of active
substances will change with the increase of the service time
of lithium-ion batteries, i.e. the number of charge-discharge
cycles N. In many references [17]–[19], the number of
charge-discharge cycles of lithium-ion batteries is used as the
first prediction parameter for estimating RUL of batteries.
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However, during the operation of a lithium-ion bat-
tery, load conditions and operating conditions may change
sometimes. For example, changes in temperature T can
cause changes in the rate of chemical reactions. In addi-
tion, the internal resistance of batteries and the impedance
response of SEI films are also related to temperature [22].
The output voltage of the lithium-ion battery under differ-
ent charging and discharging conditions, temperature and
cycling conditions was simulated, and a dynamic degrada-
tion model of the lithium-ion battery was established [16].
An electric and thermal model of a hybrid electric vehi-
cle (HEV) lithium-ion battery pack at low temperature was
established [27].Mejdoubi A E et al. predicted SOC and SOH
of batteries at different operating temperatures by extended
Kalman filter (EKF) [7]. Therefore, the working temperature
of lithium-ion battery is taken as the second model parameter
for RUL prediction.

The internal resistance of lithium-ion batteries is composed
of electrolyte resistance Re and charge transfer resistance
Rct. Normally, the battery’s internal resistance R of the bat-
tery is the sum of the two. The capacity and power loss
of lithium-ion batteries will increase the internal resistance
of lithium-ion batteries [28], [29]. Yuan H F et al. esti-
mated RUL of batteries by estimating charge transfer resis-
tance [30]. Schmidt A P et al. use the resistance R and the
battery capacity to predict the RUL value of the battery [31].
According to the above references and observation of battery
data, the internal resistance of lithium-ion batteries is closely
related to the capacity degradation of lithium-ion batteries,
so we consider the internal resistance of lithium-ion batteries
as the third degradation parameter of RUL estimation of
lithium-ion batteries.

The open-circuit voltage of a battery is the value of the bat-
tery voltage which reaches a steady state after a cycle of full
charge and discharge.Wemark it as Vdischarge. In this paper,
the open-circuit voltage of a battery is represented by the
battery voltage one minute after the battery is open-circuit.
By analyzing the relationship between the remaining capacity
data of the battery and its open-circuit voltage, there is a great
correlation between them, therefore the open-circuit voltage
of lithium-ion batteries is chosen as the forth degradation
parameter of lithium-ion batteries.

III. RELATED METHOD
A. TOPSIS METHOD
The TOPSIS method was originally proposed by Hwang and
Yoon to rank the schemes by evaluating the indicators of
multiple schemes [32]. TOPSISmethod finds the best scheme
by obtaining the distance from each scheme to the ideal
solution and the distance from each scheme to the negative
ideal solution [33]. The TOPSIS method for parameter opti-
mization is used in this paper. The basic steps of TOPSIS are
as follows:

Step 1) Forming the decision matrix:
Let the set of schemes for multi-index decision-making be

M = (M1,M2,M3. . ...Mm) The evaluation indicators of each

scheme are as follows: C = (C1,C2,C3. . ...Cn) The value of
scheme Mj to index Ci is recorded as Xij (j = 1,2, . . ...m;
i = 1,2, . . ...n). The multi-objective decision matrix X is as
follows

x =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (1)

Step 2) Standardizing the decision matrix
In order to eliminate the influence of each index dimension

on scheme decision-making, it is necessary to perform a
dimensionless process on the decision matrix and construct
standardized decision matrix V = (vij)m×n.

The better dimensionless process for the big indexes is:

vij =
(
xij − min

j
xj

)
/

(
max
j

xj − min
j

xj

)
(2)

The better dimensionless process for the small indexes is:

vij = (max
j

xj − x ij)/(maxj
xj − min

j
xj) (3)

Step 3) Constructing the weighted decision matrix
The dimensionless matrix is multiplied by the weight of

each index (in general, the weight is originated from the Ana-
lytic Hierarchy Process (AHP) method [32], this method is
subjective and may affect the evaluation results.) and Obtain
weighted decision matrix R = (rij)m×n.

rij = wi ∗ vij (i = 1, 2. . . . .m; j = 1, 2 . . . n) (4)

Step 4) Computation of ideal solutions and negative ideal
solutions

The ideal solution is:

S+ = max
1≤i≤m

{
rij
}

(j = 1, 2 . . . n) (5)

The negative ideal solution is:

S− = min
1≤i≤m

{
rij
}

(j = 1, 2 . . . n) (6)

Step 5) Calculating the distance
Distance from ideal solution:

Sd+i =

√√√√ n∑
j=1

(
s+j − rij

)2
(i = 1, 2 . . .m; j = 1, 2 . . . n)

(7)

Distance from negative ideal solution:

Sd−i =

√√√√ n∑
j=1

(
s−j − rij

)2
(i = 1, 2 . . .m; j = 1, 2 . . . n)

(8)

Step 6) Calculating the relative proximity and making
decisions

Calculating relative proximity degree ζi formula is as
follows:

ζi = Sd−i /(Sd
+

i + Sd
−

i ) (9)

Its value ranges from 0 to 1. The scheme with the biggest
ζi is the best scheme.
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B. TOPSIS METHOD BASED ON INFORMATION ENTROPY
Since the weight of the traditional TOPSIS method is deter-
mined by AHP method, the weight based on expert in AHP
scores is a subjective method. Sometimes errors in subjective
factors can lead to deviations or errors in the final decision
result. Entropy method can reflect the orderliness of data
information objectively. It determines the weight of the index
by the judgment matrix, so as to eliminate the subjectivity of
the weight of each factor as much as possible.

According to the definition of entropy, m schemes and
n evaluation indexes, the entropy of evaluation indexes can
be determined as follows:

Hj =
1+ vij
−ln (m)

∗ (
m∑
i=1

fij ln
(
fij
)
) (i = 1 . . .m; j = 1 . . . n)

(10)

vij is from Formula (2) or (3) and

fij = (1+ vij)/
m∑
i=1

1+ vij (11)

The entropy weight of each evaluation index is:

ωj =
1− HJ

n−
n∑
j=1

Hj

,

n∑
j=1

ωj = 1 (12)

C. PSO AND ITS IMPROVEMENT
Particle swarm optimization (PSO) is an optimization
algorithm based on bird predation proposed by Kennedy
in 1995 [33]. Suppose there is a piece of food in the area
(optimal solution). Birds pass information to each other in the
process of finding food, and cooperate to determine whether
they can find the optimal solution. At the same time, the
information of the optimal solution is transmitted to thewhole
bird population, and finally the optimal solution is obtained.

PSO particles have two properties, position X and
velocity V. The velocity represents the direction of the
particle and the position represents the current particle’s
solution. Each particle searches for the optimal solution in
space, which is recorded as the current individual extreme
value Pbest , and uses the optimal individual extreme as the
global optimal solution Gbest for the entire particle swarm.
Particles in the particle swarm update their velocities and
positions according to Pbest and Gbest . The updated formulas
for position and velocity are as follows:

V t+1
id = ωV t

id + C1 ∗ R (0, 1) ∗
(
Pid − X tid

)
+C2 ∗ R (0, 1) ∗

(
Pgd − X tid

)
(13)

X t+1id = X tid + V
t
id (14)

In the formula (13) and (14), d is the number of dimensions
in the search space, i is the number of particles. ω is inertial
weight, R (0, 1) is a random number in between 0 and 1. The
more the value ω, the more the global search ability and the
weaker the local search ability, and vice versa. V t

id is the

velocity of i particle in the t th iteration of d-dimensional
vector ,X tid is the position of i particle in the t th iteration of
d-dimensional vector. C1C2 is used as the accelerating factor
to adjust the iteration step and usually takes [0,2]. Pid is the
best individual position at present ,Pgd is the global optimal
position at present.

The farther C1C2 are from 2, the greater the impact of
initial position on the iteration process is. According to the
characteristics of the object, it is necessary to select the
appropriate C1C2 values. When the complexity of the system
is higher or the system is easier to fall into local optimum,
it is necessary to select the smaller C1C2 value. For simple
objects or systems, it is easy to select larger C1C2 value.
According to the battery prediction condition in this paper,
it is suggested that C1 = 1.85 to make the variance smaller
between the optimal position and the local optimal value in
order to reduce the system oscillation. C2 = 2 is selected
to make the optimal position be closest to the global optimal
value and to accelerate the optimization speed.

Other studies [34] showed that a larger inertial weight ω
can avoid local minimum and a smaller inertial weight is
helpful for convergence speed. In order to improve the global
search ability, we give a larger value of the inertial weight in
the initial stage of the search. Then, set the inertial weight to
a smaller value to accelerate the convergence rate in the later
stage of search.

Generally, linear decreasing inertia strategy is used to con-
trol weight.

ω (t) = ωbegin +
ωend − ωbegin

tmax
∗ t (15)

ω (t) is the change function, t is the number of iterations,
ω_begin is the initial weight , ω_end is the final weight. After
testing, select ω_begin = 0.9 and ω_end = 0.4.
Although the linear decreasing inertia strategy is simple,

it sometimes converges too slowly. The improved method is
to choose a larger ω value at the beginning of the iteration so
that the particle can accelerate for a short time. Near the final
stage of optimization, a smaller ω value is chosen to optimize
accurately. Therefore, the linear decrease of ω changes as the
following expressions:

ω (t) =
(
t
n

)m
∗ ωbegin +

ωend − ωbegin

tmax
∗ t (16)

m is the decreasing index and n is the iterator threshold
(usually about 1500).When the number of iterator t reaches n,
set ω(t) = ω_begin.
In summary, the process of the improved particle swarm

optimization is as follows:
Step1) Determine the fitness function.
The minimum value of RMSE is chosen as the fitness

function in this paper:

f (x) = min(

√√√√1
n
∗

n∑
i=i

(x i − yi)
2) (17)
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Step2) Initialize the velocity and position of the particle
population and set the initial parameters of the algorithm.

Step3) Evaluation of particle fitness with (17).
Step4) For each particle, compare its current fitness with

Pid and update Pid .
Step5) For each particle, compare its current fitness with

Pgd and update Pgd .
Step6) Calculate and update the velocity and position of

particles iteratively according to (11).
Step7) If the algorithm reaches the maximum number of

iterations n or the optimal fitness is less than the given thresh-
old, the algorithm stops and returns the result, otherwise, goes
back to step three and continues iteration.

D. MOVING AVERAGE FILTER
Based on the statistical laws, themoving average filter (MAF)
treats the continuous sampled data as a fixed-length N queue.
After a new measurement, the first data of the above queue is
removed and the remaining N-1 data is removed forward in
sequence. The sampled data is inserted as the tail of the new
queue. Then the arithmetic mean of the cohort is calculated
and is treated as the measurement result [35]. Fig. 1. shows
the implement structure diagram of a moving average filter
system.

FIGURE 1. Structure diagram of a moving average filter system.

We can see that MAF has high computational efficiency.
For a fixed-length window, it requires only one multiplica-
tion, one addition and one subtraction.

IV. THE PROPOSED PREDICTION SCHEME
The flow chart of the proposed prediction scheme is shown
in Fig. 2. Firstly, a correlation test and a moving mean filter
are used to eliminate the spike burr of data and to smooth the
data., which is detailed in Part A in section V. Secondly the
appropriate predictive parameters are selected by the TOPSIS
method based on entropy weight, which is detailed in Part B
in section V. Thirdly, the improved PSO algorithm is used to
fit the parameters of themodel and the RUL of the lithium-ion
battery is predicted, which is detailed in Part C in section V.
Finally, the comparative experimental analysis are done on
parameters selection and RUL accuracy comparisons among
several data-driven methods, which is detailed in Part D
in section V.

V. TEST RESULTS ANALYSIS
A. BATTERY DATA DENOISING AND PARAMETERS
CORRELATION TEST
The batteries data used in this paper is from NASA PcoE
Research Center and with the same specifications and

FIGURE 2. The flow chart of the proposed prediction scheme.

batches. These batteries are 18650 commercial lithium-ion
batteries. The batteries are charged under 1.5A constant cur-
rent (cc) mode at different room temperature until their volt-
age reaches 4.2V. Then the batteries continue to be charged
under constant voltage (cv) mode until the charging current
of the battery drops to 20mA. Finally, the batteries are dis-
charged with 2A discharge current until its voltage drops
to 2.7V. The impedance of the batteries is measured by
electrochemical impedance spectroscopy (EIS) sweep from
0.1Hz to 5kHz. B5 and B6 battery are selected as the battery
data set at room temperature, B40 battery is used for the low
temperature battery dataset, B32 battery is used for the high
temperature battery dataset. The change of SOH at different
operating temperatures is shown in Fig. 3.

From the Fig. 3, we can see that the raw battery data
has many spikes which are circled. We can see that data
noise pollution is serious, so it will affect the accuracy of the
prediction in the subsequent battery prediction stage.

Fig. 4 shows the effect of filtering by MAF filtering
method.

From Fig. 4 we can see that MAF method can eliminate
the spike of battery data. MAF filter is very simple and can
effectively remove spikes and noise from battery data. So in
the later work, the data used for prediction will be filtered
by MAF, from Fig. 3 we can observe that the SOH declining
trend of batteries at different temperatures is quite different.
A battery used at room temperature has a gentler decay curve
with fewer peaks and less fluctuation than a battery used at
low and high temperatures. Under the high temperature work-
ing environment, the battery showed a huge fluctuation and
a sharp decline trend, and it soon reached EOL. Therefore,
temperature is the most important factor affecting the life of
a lithium-ion battery.We chooseArrheniusmodel to study the
relationship between SOH drop and temperature in lithium-
ion batteries, because the Arrhenius model was usually used
to represent the effect of temperature stress on product failure.
The Arrhenius model formula is as follows:

Qloss = A0 ∗ exp
(
−
Ea
RT

)
∗ Ah (18)
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FIGURE 3. SOH and cycle charts of batteries at different temperatures.

FIGURE 4. Battery data comparison before and after filtering.

In formula (18) Qloss is the percentage of battery loss, i.e.
(1-SOH)%. A0 is the pre-exponential factor; Ea is activation
energy and it is 31500 J mol-1 by testing; R is Boltzmann
constant, T is Kelvin;Ah = (cycle number ∗ full battery
capacity). Select Ah instead of cycle number because the
initial capacity of each battery is different. Take the natural
logarithms on both sides of formula (18) and convert it to:

Ln (Qloss)+ Ea/RT = Ln(A0)+ Ln(Ah) (19)

Batteries operating at room temperature (24◦C) and at low
temperature (4◦C) were selected to fit the curve according to
formula (19). The results are shown in Fig. 5:

High temperature (43 ◦C) batteries are fitted and displayed
separately due to insufficient data. It is shown in Fig. 6:

From the linear relationships fitted in Fig. 5 and 6, the
temperature effect does follow the Arrhenius model. The
correlation coefficients of curve fitting are all above 0.95,
corresponding to the thermal activation process.

Fig. 7 shows the internal resistance curve of lithium-ion
batteries at room temperature of 24 ◦C.
From Fig. 7 we can observe that the internal resistance

of batteries operating at room temperature (24 ◦C) increases
with the rise of cycle. After calculation, the correlation coef-
ficient between internal resistance and number of cycles also
exceeds 0.9. Therefore, internal resistance can be used as an
aging parameter to predict the RUL of batteries. However,
similar to SOH degradation curve, due to environmental and
operational factors, the internal resistance also has a large

FIGURE 5. Temperature effect in 24◦C and 4◦C.

FIGURE 6. Temperature effect in 43◦C.

FIGURE 7. Parametric curve of Internal Resistance.

number of spikes and fluctuations. Therefore, we still need
MAFfiltering for internal resistance parameters. Fig. 8 shows
the result.

It can be seen that the filtered curve is smoother without
distortion. Therefore, it is more suitable for the prediction
of lithium-ion batteries. In later experiments, data will be
processed by MAF filters.

Fig. 9 shows the internal resistance curve of a battery
operating at 43 and 4 degrees.

From Fig. 9 we can observe that the variation regularity of
internal resistance at high and low temperatures is not strong,
and the correlation coefficient with cycle is less than 0.5,
the fluctuation is huge. Therefore, the following section will
prove that internal resistance is not suitable for battery pre-
diction at high temperature and low temperatures.
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FIGURE 8. Parametric Curves of Internal Resistance after Filtering.

FIGURE 9. Internal Resistance curve at high and low temperatures.

Fig. 10 shows the open-circuit voltage curve of lithium-ion
batteries at room temperature of 24 ◦C.

FIGURE 10. Open-circuit voltage curves at different temperatures.

As the open-circuit voltage data is insufficient in a work-
ing environment of 43 degrees, it is not shown in the fig-
ure because too few data is meaningless for the subsequent
prediction work. We can observe that the open-circuit voltage
of the battery shows a good trend at room temperature, and
the fluctuation is also small in Fig. 8. At low temperature,
the voltage fluctuates sharply at the beginning and there is
no obvious trend of increase or decrease about the curve.
Therefore, the selection of open-circuit voltage is uncertain
in TOPSIS parameter selection method at low and high tem-
peratures.

The open-circuit voltage curve after filtering is shown
at Fig. 11.

FIGURE 11. Open-circuit voltage curves at different temperatures after
filter.

B. PARAMETERS SELECT OF BATTERY DEGRADATION
MODEL
From the figures and data in the previous section, we can
see that there is insufficient data for some parameters at
different temperatures, for example, open-circuit voltage of
batteries at high temperature and low temperatures in Fig. 10.
Sometimes the data fluctuates too much which might affect
battery prediction as shown in Fig. 9. However, most refer-
ences do not change the predictive parameters according to
different working conditions and the changes of parameter
data such as references [13], [17]–[19]. And this will have a
certain impact on the accuracy of battery prediction. There-
fore, we need to select different degradation parameters using
TOPSIS method based on information entropy for battery
prediction under different conditions.

The flowchart of select parameters by TOPSIS method is
shown in Fig. 12.

Through the analysis of section II and section V.A of this
article, temperature (T), internal resistance (Re+Rct), open-
circuit voltage (OCV) and cycle number (CycleNum) are
selected as the set of parameters to be selected by TOPSIS
method. For the index we select: 1. The amount of data.
The reason is that the amount of data is the basis of battery
prediction. If the amount of data is missing too much, it will
inevitably affect the accuracy of battery prediction and may
cause errors; 2. Correlation coefficient between parameter
data and SOH. The correlation coefficient is a statistical index
used to reflect the degree of close correlation between vari-
ables, reflecting the relationship between the two variables.
If there is no relationship or weak relationship between the
predicted parameters and the predicted values, it is mean-
ingless to use this parameter to predict, which will directly
lead to the distortion and reduce the accuracy of the predicted
results; 3. The fluctuation degree of the battery data (we
choose variance to describe the fluctuation of data) Because
there is a direct functional relationship between the predicted
parameters and the predicted results, if the fluctuation of the
predicted parameters is too large, it will indirectly affect the
predicted results and make the fluctuation of the predicted
results larger. Therefore, the prediction parameters are also
the necessary parameters optimization index; 4. A subjective
index which represents how much each parameter correlates
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FIGURE 12. TOPSIS based on information entropy Flow Chart.

with battery life degradation. The 4th index is the subjective
result obtained by comprehensively analyzing the battery
prediction parameters used by predecessors, the physical and
chemical properties of batteries, and the physical and chemi-
cal relationship of battery degradation.

Based on the above conclusions, we can define Decision
matrix, as shown in Table 1:

Table 2 shows the decision matrix at room temperature.
Each value in the matrix ranges from 0 to 10 where the
best quality parameter is specified to 10 under each index.
Because the values of each index could not be exactly 10, for
example, the maximum correlation coefficient is 1 and the
minimum is 0, so the final results should be changed to the
range of 0-10 proportionally.

TABLE 1. The form of decision.

TABLE 2. Decision matrix.

The normalized matrix using (2), (3) is shown in Table 3.
The entropy weight of each index can be calculated by

formula (11), (12), (13) as follows: Data quantity: 0.012,
Correlation coefficient: 0.277, Fluctuation degree: 0.0289,
Subjective: 0.421.

By multiplying the corresponding weight value for each
item in thematrix of Table 3We can get the weighted decision
matrix shows in Table 4.

TABLE 3. Normalized matrix.

TABLE 4. Wrighted decision matrix.

The positive ideal solution vector is:
(0.0030 0.0812 0.0906 0.1276)
The negative ideal solution vector is:
(0.0030 0.0404 0.0453 0.0766)
Through formula (7), (8), (9), the relative proximity of each

parameter is:
ζcyc = 1.000, ζtemp = 0.833, ζVdis = 0.452, ζR = 0
Generally speaking, the difference of relative proximity

is more than one order of magnitude, which indicates that
the disparity between the two schemes is too large, and the
parameters with small relative proximity should be discarded.
So we choose CycleNum, temperature, Vdischarge, as the
predictive parameter of batteries at room temperature.
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Through the steps shown above, the Decision matrix of the
battery at low temperature is shown in Table 5.

TABLE 5. Decision matrix of battert at low temperature.

The relative proximity of each parameter is:
ζcyc = 1.000, ζtemp = 0.748, ζVdis = 0.052, ζR = 0
So we choose CycleNum and temperature as the predictive

parameter of batteries at low temperature.
The Decision matrix of the battery at high temperature is

shown in Table 6.

TABLE 6. Decision matrix of battert at high temperature.

Because the amount of data of batteries in high temperature
working environment is too small, it is meaningless to judge
the correlation coefficient and fluctuation degree of batteries.
Therefore, the correlation coefficient and fluctuation degree
of open-circuit voltage and internal resistance parameters are
all 0.

The relative proximity of each parameter is:
ζcyc = 1.000, ζtemp = 0.092, ζVdis = 0, ζR = 0
So only CycleNum is selected as the predictive parameter

for RUL prediction at high temperature.

C. CURVE FITTING RESULTS OF IMPROVED PARTICLE
SWARM OPTIMIZATION
According to Section III part C, we can get the flow chart
of the improved particle filter algorithm, which is shown as
in Fig. 13.

Generally, the parameters used to judge the curve fitting
results are root of mean square error (RMSE), residual sum
of squares (SSE), correlation coefficient (R), determination
coefficient (R-sqare). RMSE is the fitting standard devia-
tion of regression system. Generally, the RMSE value is
smaller, the result is better. SSE is sum variance. The sta-
tistical parameter calculates the square of the error between
the fitting data and the corresponding points of the original
data. The closer the SSE value is to 0, the better fitting
effect. The Correlation Coefficient(R) represents the degree
of correlation between fitting curve and original curve. The
closer the R value is to 1, the greater correlation. R-sqare is
the change of data to represent the quality of a fitting. The
value range is between 0 and 1. The closer the R-sqare value

FIGURE 13. Flow chart of improved particle filter algorithm.

FIGURE 14. The original particle Swarm Optimization.

is to 1, the greater the correlation. We use particle swarm
optimization, improved particle swarm optimization, genetic
algorithm and Particle filtering algorithm to fit the battery
data under standard operating conditions. The fitting results
are shown in Fig.14-Fig.17. The blue curve represents the
original data, and the red curve represents the fitted data. The
abscissa in the figure means the number of battery charge and
discharge cycles, and the ordinate means the battery’s SOH.
The fitting equation is as follows:

y = a1 ∗ cycle2 + a2Vdischarge+ a3exp(−Ea/RT )+ a4

(20)
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FIGURE 15. The genetic Algorithm.

FIGURE 16. The particle filtering algorithm.

FIGURE 17. The improved particle swarm optimization.

Among them, a1, a2, a3 and a4 are fitting parameters, cycle
is the number of charge and discharge cycles of batteries,
Vdischarge is open-circuit voltage Ea is activation energy, R
is Boltzmann constant and T is the absolute temperature.
It can be seen from Fig. 14-17 that the improved particle

swarm algorithm has better convergence and accuracy than
the original particle swarm algorithm and other related algo-
rithms in fitting the curve.

The four parameters RMSE, SSE, R, R-square of each
fitting curve are shown in the Table 7.

From the table 7 above, we can see that compared with
the original PSO, Particle filtering(PF) algorithm and other
fitting algorithms [2], [3], [18], the improved PSO has smaller

TABLE 7. Parameters of Fitting Results of algorithm.

fitting error, higher fitting degree and better accuracy. So we
choose the improved particle swarm optimization algorithm
to fit the battery life prediction parameters.

D. COMPARATIVE EXPERIMENTAL ANALYSIS
Based on the TOPSIS method and the conclusions drawn
from Figure 24-26, we choose CycleNum, temperature, Vdis-
charge as the predictive parameters of batteries at room
temperature under standard operating conditions. And use
formula (20) as the model for battery prediction.

In order to verify the battery prediction method proposed
in this paper, we provide four schemes for comparison
experiments.

In the first scheme, we select the battery data without MAF
filtering to predict the battery RUL. We use battery data from
the first 40 cycles to train parameters. After training, we use
the model to predict the battery RUL and compare it with the
original battery data. Formula (20) is selected as the battery
RUL prediction model. The predicted results are shown in
the Fig. 18.

FIGURE 18. Prediction of battery RUL without filtering.

In the second scheme, we only select the cycle number as
the parameter of battery RUL prediction. AfterMAFfiltering,
we use the battery data from the first 40 cycles to train the
parameters. After training, we use this model to predict the
battery RUL and compare it with the original battery data.
The fitting equation is as follows:

y = a1cycle2 + a2cycle+ a3 (21)

The predicted results are shown in the Fig. 19.
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FIGURE 19. Battery RUL prediction data after data filtering with the
parameter which with only one parameter (CycleNum).

In the third scheme we select the cycle number, internal
resistance of battery Re+Rct, Vdischarge as the parameter
of battery RUL prediction. After MAF filtering, we use the
battery data from the first 40 cycles to train the parameters.
After training, we use this model to predict the battery RUL
and compare it with the original battery data, the fitting
equation is as follows:

y = a1cycle2 + a2Vdischarge+ a3 (Re+ Rct)+ a4 (22)

The predicted results are shown in the Fig. 20.

FIGURE 20. Battery RUL prediction data after data filtering with the
parameter which with the parameter which are not be selected
by TOPSIS method.

In the fourth scheme, we select the cycle number, tempera-
ture and Vdischarge as the parameter of battery RUL predic-
tion, which are selected by the TOPSIS method in Chapter V,
After MAF filtering, we use first 40 cycles of the battery
data to train the parameters. After training, we use this model
to predict the battery RUL and compare it with the original
battery data. The fitting equation we use is Formula (20).

The predicted results are shown in the Fig. 21.
Table 8 shows the comparison results of the four schemes.
From Fig.18-21 and table 8 we can see that: (1) The effect

of single parameter prediction is average, and the prediction
curve has a large deviation. (2) The predicted results of raw
data without MAF filter are quite different from the actual
results. (3) The parameters obtained by the non-TOPSIS

TABLE 8. Comparison of four schemes.

FIGURE 21. Battery RUL prediction data after data filtering with the
parameter which are selected by TOPSIS method.

method have a great influence on the predictions, making
the predicted results inaccurate. (4) After MAF filtering and
TOPSISmethod parameter optimization, the predicted results
using PSO algorithm is quite accurate and has high accuracy.

Different training data points were taken to train the model,
and the first 20, 25, 30, 50 capacity measurement data points
were taken to the experiment. The predictions at 20, 25, 30,
50 and 100 cycles are shown in Fig. 22, Fig. 23, Fig. 24 and
Fig. 25.

The predictions of different data points are shown
in Table 9.

TABLE 9. Prediction results of different training points.

FromTable 9, we can see that the predicted results obtained
by different training data points are different. As the number
of data points increases, the accuracy of the model improves
and eventually reaches convergence.

Finallywe experiment with different data sets. Fig.26 shows
the battery prediction results of the University of Maryland
lithium-ion battery cycle life experiment, the battery number
is A12.
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FIGURE 22. Predict results of 20 data points.

FIGURE 23. Predict results of 25 data points.

FIGURE 24. Predict results of 30 data points.

Because the battery experiment data is insufficient,
CycleNum can only be selected as the battery model
parameter.

It can be seen from Fig.26 that we use 70 training data
points to train the model and the predicted result is 6 cycles
earlier than the real result, The prediction result is accurate
but have a certain deviation, the reason may be that the lack
of other battery data makes the battery model inaccurate.

E. COMPARISON WITH OTHER PREDICTION METHODS
AND TEST UNDER HIGH AND LOW TEMPERATURE
To illustrate the advantage of our proposed frameworks,
we have done some comparison experiments among some
frequently-used data-driven RUL prediction algorithms such
as particle filter (PF), support vector regression (SVR), neural
network (NN), and our method. The comparison results are
shown in Table 10.

FIGURE 25. Predict results of 50 data points.

FIGURE 26. University of Maryland battery data prediction results.

TABLE 10. Comparison with other methods.

From table 10 We can see that our method has higher
prediction accuracy and use less training data than other
data-driven algorithms. Under the condition of 40 training
data, the prediction results are almost accurate. Neural net-
work algorithms need more training data to get higher accu-
racy, for example, the LSTM method [16] needs 100 training
data points to get more accurate prediction results. The PF
and SVR methods [2], [3], [7] got lower prediction accu-
racy through 50 training data points. Therefore, the method
described in this paper ismore suitable for the RUL prediction
of lithium-ion batteries.

Furthermore, most of other methods cannot get the pre-
diction results of the battery at high and low temperature.
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FIGURE 27. Predict results of battery at high temperature.

FIGURE 28. Predict results of battery at low temperature.

In order to verify the robustness of our method, the RUL
value of the battery under high and low temperature condi-
tions is predicted using our method. The results are shown
in Fig.27-28.

As shown in Figures 27 and 28, the RUL prediction results
of the methods described in this paper are still accurate under
high and low temperature conditions. Therefore, the proposed
method not only has higher accuracy and less data training,
but also guarantees the predicted results under high and low
temperature conditions.

VI. CONCLUSION
A RUL estimation method for lithium-ion batteries based
on improved particle swarm algorithm (PSO) and TOPSIS
is proposed in this paper. The work focuses on the fol-
lowing aspects: (1) Optimizing the parameters involved in
battery RUL prediction by using the TOPSIS method based
on entropy weight, and selecting appropriate parameters for
prediction; (2) Using MAF filter to perform battery raw
data filter to get a smooth battery life degradation curve.
(3) Using the improved particle swarm algorithm to make
RUL prediction more accurate.

By comparing many experimental cases including under
high and low temperature conditions, our method can achieve
more accurate battery RUL prediction and acceptable per-
formance threshold under different battery conditions. Com-
pared with the other data-driven RUL prediction algorithms,
our method has the following advantages: (1) The prediction
accuracy of our algorithm is higher than that of other predic-
tion algorithms; (2) Our method requires a smaller amount

of sampled data; (3) Our method are also accurate and robust
under high and low temperature conditions.
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