
Received July 3, 2020, accepted July 20, 2020, date of publication July 23, 2020, date of current version August 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011598

A Bidirectional Iterative Algorithm for
Nested Named Entity Recognition
SŁAWOMIR DADAS AND JAROSŁAW PROTASIEWICZ
National Information Processing Institute, 00-608 Warsaw, Poland

Corresponding author: Sławomir Dadas (slawomir.dadas@opi.org.pl)

This work was supported by the Ministerstwo Nauki i Szkolnictwa Wyższego under Grant 10.13039/501100004569.

ABSTRACT Nested named entity recognition (NER) is a special case of structured prediction in which
annotated sequences can be contained inside each other. It is a challenging and significant problem
in natural language processing. In this paper, we propose a novel framework for nested named entity
recognition tasks. Our approach is based on a deep learning model which can be called in an iterative way,
expanding the set of predicted entity mentions with each subsequent iteration. The proposed framework
combines two such models trained to identify named entities in different directions: from general to specific
(outside-in), and from specific to general (inside-out). The predictions of both models are then aggregated by
a selection policy. We propose and evaluate several selection policies which can be used with our algorithm.
Ourmethod does not impose any restrictions on the length of entitymentions, number of entity classes, depth,
or structure of the predicted output. The framework has been validated experimentally on four well-known
nested named entity recognition datasets: GENIA, NNE, PolEval, and GermEval. The datasets differ in terms
of domain (biomedical, news, mixed), language (English, Polish, German), and the structure of nesting
(simple, complex). Through extensive tests, we prove that the approach we have proposed outperforms
existing methods for nested named entity recognition.

INDEX TERMS Information extraction, natural language processing, nested named entity recognition.

I. INTRODUCTION
Named entity recognition (NER) is a well-established tech-
nique in natural language processing (NLP) which involves
finding and classifying named entities in text. These tasks
have been widely applied in various domains for identifica-
tion of names of people, organizations, temporal expressions,
geographic locations, or specialized entities in scientific doc-
uments [1]. From a practical point of view, finding named
entities or, more generally, entitymentions is useful in solving
more complex problems such as information retrieval, knowl-
edge base population, or natural language understanding
(NLU). From a supervised learning perspective, named entity
recognition is an example of structured prediction, that is,
the prediction of structured objects from the data rather than
simple categories (classification) or numeric values (regres-
sion). In NER, those structures are defined as single words or
phrases which refer to named entities. Typically, the task is
simplified by the assumption that named entity mentions can-
not overlap. In practice, however, named entities frequently

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Shariq Imran .

contain names of other entities, and many applications could
benefit from the ability to identify hierarchical structures
of mentions. In Figure 1, we demonstrate an example of a
sentence from the NNE [2] corpus annotated with a set of
overlapping tags.

FIGURE 1. An example of a sentence annotated with nested named entity
tags with up to five levels of nesting. This sentence is sourced from the
NNE dataset [2].

The problem of nested named entity recognition has often
been ignored, mostly because of the computational complex-
ity involved and other technical limitations. Only in recent
years has it gained recognition, as an effect of rapid devel-
opment in the field of machine learning, specifically deep

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 135091

https://orcid.org/0000-0002-9177-6685
https://orcid.org/0000-0002-2416-2878


S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

learning techniques. As a result, several neural models for
achieving nested named entity recognition have been devel-
oped in recent years.

In this paper, we present a novel algorithm for nested
named entity recognition. The algorithm utilizes a neural
architecture consisting of a character-based language model,
bidirectional long short-termmemory (LSTM) [3] layers, and
an inference layer consisting of linear-chain conditional ran-
dom fields (CRFs) [4]. The distinctive feature of our model
is the ability to generate predictions in an iterative way. The
same sequence of words can be passed to the model several
times along with the set of previously generated named entity
annotations, and the model outputs a new set of predictions
in each iteration. This simple approach can easily adapt to
many nested named entity recognition tasks with various
output structures and depth of nesting. We offer the following
contributions in this work:
1) We propose an effective neural architecture for nested

named entity recognition. Our model works iteratively
and does not impose any restrictions on the length
of entity mention, number of entity classes, depth,
or structure of the predicted output.

2) We introduce a bidirectional algorithm for nested
named entity recognition which combines two iterative
models trained independently: one in the outside-in and
the other in the inside-out direction. The predictions of
both models are merged into a single coherent set of
entity mentions, using the pre-defined selection func-
tion, policy. We propose several selection policies that
can be used with our algorithm.

3) We evaluate our approach on four well-known nested
NER datasets, each of which operates in different
languages and domains. On each dataset, our algo-
rithm outperforms other recently introduced methods
for nested named entity recognition. We demonstrate
how applying different selection policies affects the
characteristics of the generated output and by exten-
sion, the performance of our method.

II. RELATED WORK
Early approaches to nested named entity recognition started
to appear following the release of GENIA corpus, a biomedi-
cal dataset wherein some of the annotated entities are embed-
ded inside other entities [5]. At that time,most studies ignored
this fact, and focused on detecting outer entities only. The
first solutions that attempted to predict nested structures used
a combination of Hidden Markov Models (HMM) to detect
subsets of named entities, and handcrafted rules to expand
these subsets. [6]–[8]. Support vector machines (SVM) have
also been used - Zhou [9] combined such a model with
a rule-based approach, while Gu [10] used two separate
SVM models to detect the innermost and outermost enti-
ties. From these beginnings, we now recognize methods
based on conditional random fields (CRF), hypergraphs, and
neural networks in the literature of nested named entity
recognition.

A. CRF-BASED METHODS
One publication in particular by Alex et al. [11] proved to
be important when addressing the problem of nested named
entity recognition. They proposed a number of techniques
based on CRF, namely layering, cascading, and joined label
tagging. In layering, several CRF models are trained to detect
subsequent levels of named entities. In addition to word-level
attributes, all models except the first use the predictions of
the previous model as features. Layering can be implemented
in one of two directions: inside-out layering starts with the
identification of the innermost entities and detects the outer
entities in the subsequent layers; whereas outside-in layering
begins with the outermost entities and detects the inner enti-
ties next. Cascading works by training separate CRF models
to identify separate types of named entity. As with layering,
the models have a specified order, and each model can use
the predictions of the previous model as an input. A major
drawback of cascading is that it cannot detect nested enti-
ties of the same type for the reason that type-specific CRF
models generate flat predictions. The final method, joined
label tagging, trains a single CRF model, but expands the set
of all possible labels by joining nested tags from all levels
into a single label. Two years later, Finkel and Manning [12]
formulated the task of nested NER as a parsing problem, and
proposed a CRF-based algorithmwithO(n3) time complexity
for solving it.

B. HYPERGRAPH-BASED METHODS
Another group of methods models the representation of entity
mentions in a sentence as a hypergraph. Such a hypergraph
consists of various types of node that represent specific men-
tion properties, such as its left and right boundaries, labels,
or words that are included in the mention. This approach was
first proposed for nested NER by Lu and Roth [13]. The
construction of an optimal mention hypergraph was solved
using log linear modeling based on a number of handcrafted
features. This work was later improved by Muis and Lu [14],
who introduced a novel encoding scheme for nested men-
tions that assigns labels to the gaps between words.
Wang and Lu [15] proposed a modified hypergraph
representation that did not suffer from structural ambi-
guity, and included representation generated by bidirec-
tional LSTM for span, word, and character-level features.
Katiyar and Cardie [16] proposed a method for building
entity mention hypergraphs which varied from the previ-
ous approaches inspired by Lu and Roth [13]. They used
a multi-layer encoder-decoder style neural network with
bidirectional LSTM layers. Their decoder layer constructs a
simple hypergraph based on the BILOU (beginning-inside-
last-outside-unary) tagging scheme. Hypergraph-based
approaches are flexible and capable of modeling many types
of nested structure. However, their computational complexity
is affected by some of dataset-specific properties such as
sequence length, maximum length, depth of entity mention,
and the number of possible entity labels. As a result, they

135092 VOLUME 8, 2020



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

can quickly become computationally inefficient for larger
datasets with complex entity structures.

C. NEURAL METHODS
In recent years, several neural architectures for nested named
entity recognition have been developed. Due to the variety
of neural approaches, they cannot be fully categorized. How-
ever, we wish to highlight a few popular methodologies.

Exhaustive methods, enumerating all subsequences up to
a certain length, have been investigated. Xu et al. [17] built
a feedforward neural network classifier that examines all
possible entity candidates, and tags them with an appro-
priate entity label. A similarly exhaustive approach is pre-
sented in the research of Sohrab and Miwa [18], in which an
LSTM encoder is used to build word and sequence represen-
tations, and the output layer predicts a label for each possible
sequence.

The idea of combining several models into one nested
named entity recognition system is often exploited.
Lin et al. [19] train two neural models - one for identifying the
anchor words of a mention, and the other for detecting word
regions around those anchors. A framework composed of two
neural models has also been proposed by Xia et al. [20]. The
first model, detector is responsible for identifyingwhichword
segments are named entity mentions: the second, classifier is
responsible for assigning categories to those mentions. The
notion of separating boundary detection and named entity
classification is also utilized in Chen et al. [21]. The first
of their two models is used for identifying entity boundaries
which are the assembled into entity candidates using greedy
matching. The second model assigns a label to each entity
candidate, based on its right and left context as input features.

Another popular approach involves the use of transition-
based parsing. Wang et al. [22] combine this method with
a neural model to predict a set of nested entity tags repre-
sented as a forest where each outermost entity is a root of a
tree, and nested entities are its children. The forest is con-
structed sequentially, where in each step the system decides
which of the possible transition actions to execute, given
its current state. Transition based parsing is also utilized by
Marinho et al. [23], but with a different set of parser actions
and predicted representation.

Methods not falling into any of the above categories are
usually based on complex, multilayer neural architectures.
A model constructed by Ju et al. [24] detects nested entities
in the inside-out order with a stack of LSTM layers. Each
layer has a CRF output generating predictions for the current
level of nesting, and its hidden states are passed to the next
layer until no new entities are detected. Zheng et al. [25]
have trained an LSTM-basedmultitaskmodel to jointly detect
the boundaries of named entities and classify them. Recent
research has started to utilize transformer [26] architecture.
For example, Sun et al. [27] encoded sentences using two uni-
directional transformers followed by a convolutional layer.
Features representing word spans, generated by convolu-
tion, are then transformed into a fixed-length vector with

a specialized pooling operation. Finally, a fully connected
layer with a softmax activation assigns an entity label
to each such vector. Shibuya and Hovy [28] employed a
BiLSTM-CRF architecture with contextual word representa-
tions from a pre-trained BERT [29] model. The main contri-
bution of their work is the modification of a Viterbi decoding
algorithm in the CRF layer to recursively identify nested
entities in the outside-in manner.

III. RESEARCH METHODOLOGY
In this section, we describe our approach to nested named
entity recognition. First, we introduce a neural iterative
model which can be used for solving sequence tagging prob-
lems with nested structures. Next, we present a bidirectional
algorithm which utilizes two instances of that model and a
selection policy component. We then describe six selection
policies we have implemented in our work.

A. NEURAL ITERATIVE MODEL
In a typical sequence tagging model, data is processed
sequentially, in which a single input represents a sentence
from a text corpus. In our case, a sentence of length n is
defined as a sequence of words:

x = [x1, x2, . . . , xn−1, xn] (1)

Let m be the predicted entity mention of length k , defined
as a triplet consisting of k consecutive words from the input
sequence x, the entity label l, and the confidence score of the
mention c(m):

m = ([xi, xi+1, . . . , xi+k−1], l, c(m)) (2)

The goal of an entity recognition model is to find and cor-
rectly classify all entity mentions in a sentence. Our method
achieves this goal through multiple inference steps, each of
which identifies a new subset of entity mentions.

Let S denote the set of all predicted unique entity mentions
in the sentence x. We wish to learn a function f that, given
an input sequence x and a set of previously found entity
mentions S, outputs a sequence of entity labels y:

f : (x, S)→ y (3)

The iterative prediction works as follows. Before the first
iteration, S is initialized to be an empty set. After each
iteration, we add all entity mentions from the output of the
model to S. The process is repeated until no new mentions
are found. After the final iteration, S represents the final pre-
dictions of the model. This process is similar to the layering
technique described inAlex et al. [11], but with two important
distinctions. First, in layering each iteration is handled by
a separate model, so the number of models that need to be
trained is equal to the maximum depth of entity nesting in the
dataset. In our case, only one model needs to be trained, and
it is used to handle all iterations. Unlike in Alex et al. [11]
and many other nested named entity solutions, the maximum
depth of nesting does not affect the architecture of our model,

VOLUME 8, 2020 135093



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

and does not need to act as a pre-defined hyperparameter.
In practice, our model exploits the structure of a training set,
including the depth of nesting. In our experiments our model
never exceeded the number of iterations needed to detect the
deepest mentions found in the data. Secondly, in the classic
layering approach, only predictions from the previous model
are passed as inputs to the next model. We assumed that it
would be reasonable to take into account all of the predictions
from preceding iterations, so the set S is used as an input,
which includes all entity mentions identified so far.

Figure 2 illustrates the simplified architecture of our
model. From the sequence of words, we construct an
intermediate vectorized representation. Each word includes
three components: a contextual representation from a
character-based language model; a word embedding vector;
and a multi-hot vector encoding the set of named entity labels
predicted for that word in past iterations. The input to the
model is a concatenation of these three vectors. The dimen-
sionality of a single sequence element is therefore equal to
the sum of the dimensions of the respective vectors.

FIGURE 2. The architecture of our iterative neural model. The
intermediate representation of a word is constructed by concatenating
the output of a character-based language model (red color), static word
embedding (blue color), and a vector of encoded predictions for that
word from previous iterations (green color). This representation is then
used as an input for a stack of BiLSTM layers and the CRF inference layer,
which generates predicted word annotations for the current iteration.

The multi-hot encoded representation is a binary vector
with dimensionality equal to the number of labels plus 1,
in which each position corresponds to a specific label, and
the extra bit is used to mark the initial iteration. The value
at index i is equal to 1 only if the i-th label has been
predicted for that word in previous iterations, or otherwise
equals zero. For instance, let us assume we have a set of
four labels - three for entity types, and one for outside words
{PER,GEO,ORG,O}. At the first iteration, the multi-hot
vector for each word is equal to [0, 0, 0, 0, 1], with the extra

bit set to 1, indicating that no predictions have yet been
generated. If a word was tagged with the PER label, its vector
for the second iteration would be equal to [1, 0, 0, 0, 0].
From this moment, each new prediction for that word would
activate additional bits in the vector for subsequent iterations.
Note that for simplicity, we assumed that labels directly corre-
sponded to entity types. In practice, manymodern approaches
to named entity recognition utilize tagging schemes, such
as BIO (beginning-inside-outside) or BILOU (beginning-
inside-last-outside-unary), to be able to differentiate the inner
and boundary words of an entity mention. In this work,
we used the BIO scheme for encoding entity types. Therefore
the dimensionality of multi-hot vector and the number of
labels was three times the number of entity types.

The three-component intermediate word representation is
used as an input to two bidirectional LSTM (BiLSTM) lay-
ers that compute context-dependent hidden states. Finally,
the output of the last BiLSTM is sent to a CRF inference layer,
which is responsible for predicting a sequence of labels y
which maximizes the conditional probability P(y|x, S) for the
current iteration. The confidence score of the mention c(m) of
type l from Equation 2 is defined as the arithmetic mean of
probabilities of its individual words belonging to class l:

c(m) =

∑i+k−1
j=i P(yj = l|x, S)

k
(4)

B. TRAINING PROCEDURE
The training procedure is similar to that of flat NER models
which employ BiLSTM-CRF architecture, and their modern
variants which use pre-trained language models. In our case,
we split each nested NER example into several inside-out
and outside-in layers, and each layer is treated as a separate
training sample. The model can be trained either with an
inside-out or outside-in split, as is outlined in the classic
layering approach [11].

In some cases, the order of entity mentions can be
ambiguous, for example, the DATE and MONTH labels in
the sentence from Figure 1. In these situations, we collect
the frequency of parent-child relationships between the two
labels from all unambiguous examples in the training set,
and order the labels in accordance with the more frequently
occurring relation of the two. A single training example
consists of two input sequences: the sequence of words,
and the sequence of vectors representing the predictions of
previous iterations. At the training stage, the sequence of
previous predictions is created synthetically based on the
gold labels in the training set, as if it were generated by a
perfect classifier. We use the real predictions of the model
only at the stage of inference. By following this process,
the samples are independent of each other during training,
and the process need not be altered to fit the iterative nature
of the model. This training procedure, also known as teacher
forcing [30], has been successfully applied in the past for
generating other complex structures, such as images [31] or
audio [32]. Since we use a CRF output layer with Viterbi

135094 VOLUME 8, 2020



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

FIGURE 3. A high-level overview of a bidirectional iterative algorithm for nested named entity recognition. Two neural models are trained on the
same dataset to identify entity mentions in the inside-out and the outside-in orders. After all named entities for a specific sequence of words have
been detected, a model is expected to repeat the last prediction in subsequent iterations. The outputs of both models are combined using a
selection policy that constructs the final set of predictions of the algorithm.

decoding, the loss function is the sentence level negative log
likelihood.

C. BIDIRECTIONAL ITERATIVE ALGORITHM
We have described the neural model for iterative detection
of nested entity mentions. In this subsection, we propose an
algorithm that utilizes two such models, and combines their
outputs to generate the final set of entity mentions. Both mod-
els are trained on the same dataset, but their goals are to detect
named entities in opposite directions: using the inside-out
and outside-in approach. Although it is possible to use a
standalone iterative model, our hypothesis is that combining
two views of the same output structure identifies nesting pat-
terns that a single model would be unable to detect. Figure 3
demonstrates the core concept of our algorithm. Please note
that while both nested structures are always divided into the
same number of iterations for the same sentence, they are not
simply reversed versions of each other, as the model is trained
to detect entity mentions in the earliest iteration possible.
The algorithm works as follows: both models produce their
outputs independently, using the approach described in the
previous subsection. The predictions of the inside-out (Sin)
and outside-in (Sout ) models are then processed by function
g, which we have named the selection policy. g takes two sets
of entity mentions and produces a filtered set, S, that includes
zero or more elements from Sin and Sout :

g : (Sin, Sout )→ S (5)

In this study, we evaluated the following six selection
policies:

1) Outside-in model only - This is a baseline policy in
which only entity mentions from the outside-in model
are selected. Applying this policy is equivalent to using
a standalone outside-in model.

2) Inside-outmodel only - This is another baseline policy
analogous to the one above, but accounting only for the
predictions from the inside-out model.

3) Model intersection - In this policy, an entity mention is
included in the resulting set, S if and only if it is present
both in Sin and Sout .

4) Model union – In this policy, an entity mention is
included in the resulting set, S if it is present in any
of the sets, Sin and Sout .

5) Probability-based selection - This is a simple policy
that accounts for the confidence score of a mention,
c(m). In this policy, the mention, m is accepted if and
only if its confidence score, c(m) is greater than or
equal to a specified threshold hyperparameter. We use
separate threshold values for sets, Sin and Sout . Those
hyperparameters are found using a linear search to
maximize the F1-score on the validation set.

6) Linear classifier selection - This policy uses an addi-
tional logistic regression model which decides whether
to accept or reject a mention,m. Themodel is trained on
a list of features extracted from the sets of predictions,
Sin and Sout generated from the training data. For a spe-
cific mention,m, those features include: the confidence
scores of m in Sin and Sout (or 0 if m is not present
in the set), the label of m in Sin and Sout (or null if m
is not present in the set), the label of a parent entity
mention in Sin and Sout (or null ifm is not present in the
set or has no parent entity), the confidence of a parent
entity mention in Sin and Sout (or 0 if m is not present
in the set or has no parent entity), the minimum and
maximum confidence of mention m found in the sets
Sin and Sout . Let s(x) denote the sigmoid function of this
logistic regression model. As with probability-based
selection policy, we accept only those mentions for

VOLUME 8, 2020 135095



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

which s(x) is greater or equal to a specified threshold
hyperparameter. The threshold is set to maximize the
F1-score on the validation set.

Algorithm 1 A Bidirectional Iterative Algorithm
function BidirectionalIterativeAlg(x)

fout ← outside-in NER model
fin← inside-out NER model
g← selection policy function
Sout ← IterativePrediction(fout , x)
Sin← IterativePrediction(fin, x)
S ← g(Sout , Sin)
return S

end function

function IterativePrediction(f , x)
S0← ∅, i← 0
repeat

i← i+ 1
y← f (x, Si−1)
Si← Si−1 ∪ y

until {Si \ Si−1} = ∅
return Si

end function

A summary of our approach is demonstrated in
Algorithm 1, in which IterativePrediction is a prediction
method for the single model, f described in the previous
subsection, and BidirectionalIterativeAlg is a function com-
bining predictions of both models to produce the set of entity
mentions, S.

IV. EXPERIMENTS
Our experiments were conducted on four nested named
entity recognition datasets: GENIA [5] (biomedical domain),
NNE [2] (news domain), PolEval [33] (mixed texts, a Polish
corpus), and GermEval [34] (news and Wikipedia, a German
corpus). Each dataset was split into three parts: training,
validation, and test sets. Where possible, we used the offi-
cial splits provided by the authors of the datasets, or the
most common splits from existing literature. The model is
trained using the training set. The validation set is utilized
for hyperparameter selection, early stopping, and finding the
optimal threshold parameters for probability-based and linear
classifier selection policies. The test set is used only for the
final evaluation, and for reporting the results of themodel. For
each of the four datasets, we repeated the training and evalua-
tion procedure three times. The reported precision, recall, and
F1-score values are averaged over three runs. We did this to
counter the effect of randomness on the training procedure.
Since random initialization of the network’s weights and
shuffling of batches during training affects the final results
of the model, reporting a single result might misrepresent
the actual performance of our approach. We compared the
results of our algorithm with other neural and non-neural
methods, using scores provided by their authors or, in the case

of NNE dataset, our own evaluation based on the released
source code of the models.

The models were trained with the mini-batch gradient
descent algorithm and a batch size of 32. We employed a
training scheduler with a decreasing learning rate and early
stopping, based on the validation set performance. More
specifically, the initial learning rate was set to 0.1, and halved
after three consecutive epochs with no improvement in vali-
dation loss. The trainingwas stopped after reaching a learning
rate of 0.0001, and the best model checkpoint (that with the
lowest validation loss) was selected as the final model for
evaluation.

A. HYPERPARAMETER SELECTION
In this subsection, we discuss the process of hyperparame-
ter selection for our model. We consider the choice of the
number of BiLSTM layers, the hidden size of a BiLSTM
layer and a contextual word representation among the most
commonly used pre-trained languagemodels: Flair [35], [36],
ELMo [37], and BERT [29]. In the case of traditional flat
NER problems, the Flair model proposed by Akbik et al. [35]
proved to be particularly effective, setting new state-of-
the-art results on several popular named entity recognition
datasets, such as CoNLL-2003 [38], OntoNotes [39], and
WNUT 2017, as well as the CoNLL datasets for the
German andDutch languages. The initial configuration of our
inside-out and outside-in models followed, where applica-
ble, the hyperparameters of the best performing architecture
from Akbik et al. [35]. The reason for this decision was
that detecting nested entities with a single iterative model is
comparable to applying multiple flat NER steps on the same
input. Therefore, the optimal hyperparameters for an iterative
model should not be different from the those of a traditional
NER model. Each model by default had two bidirectional
LSTM layers with a hidden size of 256. During training,
we used word-level dropout with a probability of 0.05, and
variational dropout [40] with a probability of 0.5 before each
BiLSTM layer.

To validate our assumptions, we conducted a series of pre-
tests. In those experiments, we trained separate inside-out
and outside-in iterative models with different hyperparam-
eter values. We used the NNE dataset, which is the largest
English language nested named entity recognition dataset
with a deep and complex structure of nested entities. Only the
training and validation splits were utilized in this experiment -
we trained the models with the training part of the data,
and assessed the results on the validation part. As with the
other experiments, we repeated the procedure three times
and reported the average F1-scores. We tested three different
word representations, four LSTM hidden sizes (from 128 to
512 neurons), and architectures from one to four stacked
BiLSTM layers. We consider only one hyperparameter at a
time. In each experiment, the initial values have been used
for the remaining hyperparameters.

The results of the hyperparameter selection are shown
in Table 1. We provide the F1-scores for both the inside-out

135096 VOLUME 8, 2020



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

TABLE 1. The results of inside-out and outside-in iterative models
trained with different hyperparameters. We examine the effect of the
word representation used, the number of LSTM layers and the
hidden size of a single LSTM cell.

and outside-in models. For suboptimal hyperparameter val-
ues, we additionally include an absolute difference to the
best result. In the word representation experiment, we used
the output of the final layer of each model as input features.
The pre-trained models employed in the evaluation included
the large English language ELMo model [37], the large
BERT cased model [29], and Flair embeddings trained on
a news corpus [36]. With our neural iterative model, Flair
proved to be the most effective representation. The results are
therefore consistent with studies on flat NER. The advantage
of Flair in named entity recognition is often explained by
the fact that it is a fully character-based language model,
unlike ELMo and BERT. The importance of character level
features in NER has been highlighted in several previous
publications [41]–[43]. In the case of LSTM hidden size,
we can observe a clear performance drop for the lowest
value (128), which indicates an underparametrized model.
The model achieves the best results with a hidden size of 256,
but the drop in performance for higher dimensionalities is not
as substantial as for the lower value. The number of BiLSTM
layers affects the model in a similar manner, although using
a single BiLSTM layer has a lesser impact on the model than
reducing the hidden size. The performance of the outside-in
model also appears to be more sensitive to the number of
layers than that of the inside-out model.

We use the selected hyperparameters for all experiments
described in this section, with the exception of the PolEval
dataset, for which Dadas [44] have performed a comprehen-
sive hyperparameter analysis. To make a direct comparison
with their state-of-the art model, we apply the same hid-
den size, number of layers, and word representations. More
details can be found in the PolEval subsection.

B. GENIA
GENIA is one of the most popular benchmarks for nested
named entity recognition methods. The corpus contains
2000 abstracts from MEDLINE/PubMed, a biological and
medical bibliographic database. Texts are annotated with
entities coming from the biomedical domain, such as names

of substances, tissues, cell types, or viruses. The dataset
includes 51 546 outer named entities, of which 4895 (9.5%)
contain nested entities. Themaximum level of nesting is equal
to 4. To make a fair comparison with other publications,
we pre-processed the corpus following the guidance of Finkel
and Manning [12]. Their procedure, which involved splitting
the dataset and reducing the number of entity types, was
reused by most of the studies included in our comparison.
The remainder of this paragraph describes the precise proce-
dure we applied to the corpus. The dataset was split in the
following way: the first 90% of the corpus was selected for
training, and the remaining 10% for evaluation. We divided
the first part of the corpus again, and used 90% of it as a
training set and 10% as a validation set. We also reduced
the number of classes by collapsing all DNA subtypes into
DNA; all RNA subtypes into RNA; and all protein subtypes
into protein. We maintained the cell line and cell type classes,
and removed all other entities. Only five possible entity types
remained of the original 36.

For this experiment, we used domain-specific pre-trained
word representations. As a word embedding layer, we used
400-dimensional Word2Vec [45] trained on biomedical
abstracts from MEDLINE/PubMed library. We also utilized
contextual string embeddings [35] had been trained on the
same data source.

Table 2 demonstrates the performance of our algorithm
using different selection policies, in comparison with other
methods. We can observe that the selection function based on
logistic regression achieves the highest F1-score while also
being the most balanced in terms of precision-recall tradeoff.
In specific practical cases, it could be beneficial to use an

TABLE 2. Results on GENIA dataset.

VOLUME 8, 2020 135097



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

intersection or union policy which maintains an acceptable
F1-score, but maximizes either the precision or recall of the
algorithm. In the case of this dataset, there are no significant
differences in F1-score between evaluated policies. This may
be due to the fact that in this dataset relatively few entities
are nested, and the performance is primarily dependent on
the effectiveness of flat rather than nested entity recogni-
tion. Of other approaches, only the deep exhaustive model
by Sohrab and Miwa [18] and recursive Viterbi-decoding
approach by Shibuya and Hovy [28] offer comparable results.

In addition to standard evaluation, we conducted an abla-
tion study for GENIA, the results of which are shown
in Table 3. The first three positions correspond to the best
performing selection policy from Table 2, a single outside-in
model and a single inside-out model. We also demonstrate
the effect of running the algorithm in a non-iterative manner
(No iteration). In this case, we run both models only once to
predict a set of the innermost and outermost flat entity men-
tions, and combine those predictions using linear classifier
selection policy. It is evident from the results that disabling
iteration has a minor effect on the F1-score. We also studied
the effect of replacing our neural models with simpler base-
lines which do not include contextual word representations
from the language model (No pre-trained language model).
The baseline was derived from a well-known BiLSTM-CRF
architecture by Lample et al. [41], in which word repre-
sentation is constructed from static word embeddings and
a BiLSTM character-level encoder. Finally, to ensure a fair
comparison with all the methods from Table 2, we retrained
our model without using any domain-specific word represen-
tations (No biomedical word representation). In this experi-
ment, we replaced the language model and word embeddings
trained on the MEDLINE/PubMed corpus with original
character-level LM by Akbik et al. [35] trained on the
news corpus, and 300-dimensional GloVe embeddings by
Pennington et al. [46]. To the best of our knowledge,
Sohrab and Miwa [18], Zheng et al. [25], Sun et al. [27] and
Shibuya andHovy [28] used biomedical word representations
in their work. Without domain pre-training, our algorithm
performs 1.77% worse in terms of F1-score. However, com-
paring our approach only to those methods that do not use
biomedical embeddings, it still achieves the highest F1-score
of 75.6%.

TABLE 3. Ablation study for GENIA dataset.

C. NNE
The Nested Named Entity (NNE) corpus is a large dataset
explicitly targeted for the evaluation of nested named entity

recognition methods. It contains annotations of the Wall
Street Journal portion of the Penn Treebank (PTB). The total
number of named entities is 279 795, of which 118 525 are
outer entities. Over 60% of the outer entities contain nesting,
with a maximum depth of six levels. The dataset uses a
rich, fine-grained ontology of 112 entity types. The most
commonly occurring entity types are typical for news-related
NER datasets, and include classes such as names of
people, organizations, geographical objects, dates, or
cardinals.

For this experiment, we used contextual string
embeddings [35] trained on the news corpus, and
300-dimensional GloVe embeddings trained on Wikipedia
and the Gigaword corpus [46]. We also used the original
train, test, and validation splits suggested by the authors of
the dataset.

The NNE dataset was introduced recently in a study by
Ringland et al. [2] which also included the evaluation of three
baseline models, in addition to a transition-based model by
Wang et al. [22], and a hypergraph based model byWang and
Lu [15]. We compare our algorithm with these approaches
in Table 4. The three baselines shown in the table are based on
the BiLSTM-CRF neural architecture [41], and were trained
to detect only the outermost or innermost entity mentions.
Baselines (a) and (b) are simple flat NER models detecting
the outermost and innermost entities respectively. Baseline
(c) is a concatenation of predictions from the first two
models. In addition, we have retrained and performed an
evaluation of other recentmethods, implementations of which
are publicly available: Zheng et al. [25], Ju et al. [24], and
Shibuya and Hovy [28]. We can see that the linear classifier
policy is again the best performing one, achieving an F1-score
of 94.1%, an improvement of 0.6% compared to the work of

TABLE 4. Results on NNE dataset. Ringland et al. [2] evaluated three
variants of baseline model based on BiLSTM-CRF architecture: (a) a flat
NER model detecting only the outermost entities; (b) a flat NER model
detecting only the innermost entities; and (c) a combination of
predictions of those two models. Our comparison also includes other
known methods, retrained and evaluated using publicly available source
codes. † denotes methods evaluated by Ringland et al. [2], ‡ denotes
methods which we evaluated.

135098 VOLUME 8, 2020



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

Shibuya and Hovy [28], and a significant increase over all
other methods.

As in the case of GENIA, we conducted an ablation study
of our model on NNE, the results of which are presented
in Table 5. The list of compared approaches is the same as
in the previous study, except for the last model, which is not
applicable here. It is worth noting that, unlike for GENIA,
there is a significant difference in F1-score between the full
model and the non-iterative version. This suggests that the
best performing flat NER models would not be able to reach
the level of nested NER methods for this dataset. In cases
which the predicted structures are complex, iterativeness
becomes a crucial feature of the algorithm. As for the other
variants of our model, even after the drop in F1-score, they
still outperform the methods evaluated in Ringland et al. [2]
by 2% or more.

TABLE 5. Ablation study for NNE dataset.

D. PolEval (2018)
PolEval is a competition for natural language processing in
Polish language inspired by SemEval.1 It is a regular event
in which a variety NLP challenges are held. PolEval 2018,
which lasted from June to August, included an evaluation of
named entity recognition methods [33]. The task was based
on two datasets: NKJP (The National Corpus of Polish [50]),
which was used as a training corpus, and an additional eval-
uation corpus created specifically for the challenge. Both
datasets were manually annotated using the same guidelines
with 14 entity types. Of these entity types, some can appear
both as top-level and as nested entities, and some are defined
as subtypes, and therefore can appear only as nested entities.
The combination of training and evaluation sets contains 121
707 sentences annotatedwith 127 937 named entitymentions.
Approximately 42% of outer entities contain nesting, and the
maximum depth of nested entities is 6. The maximum length
of a named entity is 16 words. The corpus consists of various
types of text, including literature (contemporary and histor-
ical), reportage, press releases, scientific texts, legal texts,
internet discussions, and transcriptions of speech. The types
of entities include names of real and fictional people, names
of organizations, names of geographical andman-made struc-
tures, geopolitical names, dates, and times.

Since there was no official validation set for this task,
we decided to use 10% of the training corpus for validation.
For this experiment, we utilized pre-trained word represen-
tations for Polish language: the ELMo language model and

1https://en.wikipedia.org/wiki/SemEval

100-dimensional Word2Vec embeddings from Dadas [44].
We also changed the number of LSTM layers to three and
the hidden representation size to 100, in accordance with the
optimal hyperparameters used in their study.

Table 6 highlights the results of our method in com-
parison with the three best solutions from the PolEval
competition [47]–[49], and two variants of the model intro-
duced in Dadas [44]: one with static and one with contextual
word representation. In the case of PolEval, we used the offi-
cial metrics proposed by the organizers rather than precision,
recall, and F1-score. The metrics are as follows: exact match
score (ES), which is based on a standard F1-score measure;
overlap score (OS), based on an F1-score computed for partial
matches of entity mentions; and final score (FS), which is
a weighted average of the two aforementioned measures,
in which the weight is equal to 0.2 for exact and 0.8 for over-
lap score. We can observe that for this dataset, the differences
between the individual selection policies are minor, with
the exception of the model union, for which the final score
is noticeably worse. Model intersection, probability-based
selection, and linear classifier selection all perform equally
well. Comparing our iterative approach with other methods,
we can observe only a slight increase in overlap score over the
best performing model (0.2%), but a significant improvement
in exact match score (2.5%). This may be due to the fact that
the other approaches evaluated on this task could only detect
nested entities to a limited extent, usually up to a certain level
of nesting. Our method can handle a set of deeply nested
entities that were undetectable with simpler models.

TABLE 6. Results on the PolEval dataset. Unlike in the case of other tasks,
we have not compared methods using precision, recall, and F1-score.
We report official metrics from the PolEval competition instead, produced
using a script provided by the organizers. The metrics are: the exact
match score (ES), the overlap score (OS), and the final score (FINAL). The
final score is based on a combination of the exact and overlap scores.
Final score = 0.8 * Overlap score + 0.2 * Exact match score.

E. GermEval (2014)
GermEval is a series of natural language processing
challenges inGerman language. A nested named entity recog-
nition task formed part of the series in 2014. For this pur-
pose, a dataset consisting of 31 297 sentences annotated with
12 named entity types was created [34]. From the point of
view of the nested NER, this is a fairly simple dataset, as there

VOLUME 8, 2020 135099



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

FIGURE 4. Statistical significance of differences between selection policies for each of the evaluated tasks.

are only two levels of nesting. Of the 37 832 outer entity men-
tions, only 3173 contain nested entities (approximately 8%).
The maximum length of a named entity is 20 words. The
corpus is composed of text from theGerman language version
ofWikipedia and German online news. The set of entity types
is typical for news corpora, and includes names of locations,
organizations, people, and other entities.

For word representations in this experiment, we used Ger-
man contextual string embeddings from Akbik et al. [35],
and German FastText word embeddings [53]. We also used
the same train, test and validation dataset splits as in the
GermEval 2014 competition.

The results of our evaluation are shown in Table 7.
We compare our approach with the top three models from
the GermEval competition: ExB Group [51], UKP [52], and
MoSTNER, as well as recent nested named entity recog-
nition methods: Sohrab and Miwa [18], Ju et al. [24], and
Zheng et al. [25]. We can see that in the case of this dataset,
our model achieves the best F1-score by a significant margin.
However, due to the fact that this is not a challenging task in
the context of nested NER, we cannot attribute this advantage
to the architecture of our framework. This is most likely the
effect of utilizing the German language model pre-trained
by Akbik et al. [35], as all other methods use either static

TABLE 7. Results on GermEval dataset.

word embeddings or handcrafted features as their word
representations.

F. DISCUSSION
Each of the experiments performed in this study was repeated
three times. When comparing our model to other approaches,
we reported average precision, recall, and micro F1-scores.
We also conducted a series of unpaired Student’s t-tests to
compare the selection policies proposed in this study, and
check if the reported differences in results were statistically
significant. The statistical significance, α of all tests indicated
is judged at the 0.05 significance level. Figure 4 offers a
summary of those tests for the datasets evaluated. Each row
in the grid represents a comparison between a particular
selection policy and all other policies. Green color indicates
that the mean F1-score (with the exception of PolEval, for
which a custom task-specific score is reported) for the current
policy (row) was higher than the compared policy (column,)
and the result was statistically significant. Red color indicates
that the score was lower. Gray color indicates that the null
hypothesis could not be rejected. The number in each cell is
equal to the p-value for that specific test.

Based on the evaluation results on all four datasets we
can conclude that linear classifier policy works well in most
cases, and is an appropriate default choice for our algorithm.
In 15 out of 20 cases, it was found to be significantly better
than in other selection methods. It was also the only selection
policy which outperformed the previous approaches on all
four datasets, including GENIA in which the performance
of our method was the closest to the results of previous
state-of-the-art methods. Among the other selection policies,
fixed probability policy had a comparable performance on
three of the tasks, but was slightly worse for GENIA. The
performance gap increased in favour of our method in cases
of more demanding datasets with complex nested structures,
and a large number of entity classes, such as NNE or PolEval.
In these cases, at least four of the six policies evaluated
proved to be better than other the approaches. These results,
in addition to those of ablation studies, suggest that the
iterative approach is especially effective for deeply nested

135100 VOLUME 8, 2020



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

entities. This may be due to the fact that the predictions of
subsequent layers of named entities are explicitly conditioned
on previous layers. This allows our model to learn both
the horizontal (between words in the sentence) and vertical
(between iterations) relationships.

It is also worth noting that performance differences
between outside-in and inside-out models are task-specific
- for some problems one works better: for others the other.
We also wish to highlight that from a practical point of view,
the ability to choose a selection policy for a particular appli-
cation is an advantage of our algorithm. For example, in some
cases it could be useful to choose intersection or union policy
if the precision or recall of the solution is more important
than a balanced F1-score. For many other known models,
there is no easy method of controlling the precision/recall
balance.

V. CONCLUSION
In this paper, we have proposed an iterative deep learning
model for nested named entity recognition in which the rep-
resentation of words is constructed from the character and
word-level features, and a vector of encoded entity types
identified in the previous iterations. We then proposed a
bidirectional algorithm that combines the predictions of two
iterative models using a pre-defined selection policy.We have
presented several selection policies that can be used with
the algorithm. Since the performance of specific selection
policies appears to be dependent on the features of the dataset,
an interesting direction for further development would be to
identify these features, and automatically recommend the best
selection policy for a particular dataset type. We conducted
experiments on four datasets sourced from different domains
and differing in terms of frequency and structure of nested
mentions. The evaluation of our method shows that it is
competitive for tasks involving mostly flat mentions with
occasional nesting, as well as tasks with a large number of
complex nested structures.

REFERENCES
[1] V. Yadav and S. Bethard, ‘‘A survey on recent advances in named

entity recognition from deep learning models,’’ in Proc. 27th Int.
Conf. Comput. Linguistics. Santa Fe, NM USA: Association Compu-
tational Linguistics, Aug. 2018, pp. 2145–2158. [Online]. Available:
https://www.aclweb.org/anthology/C18-1182

[2] N. Ringland, X. Dai, B. Hachey, S. Karimi, C. Paris, and
J. R. Curran, ‘‘NNE: A dataset for nested named entity recognition
in english newswire,’’ in Proc. 57th Annu. Meeting Assoc. Comput.
Linguistics. Stroudsburg, PA, USA: Association Computational
Linguistics, 2019, pp. 5176–5181.

[3] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[4] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, ‘‘Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence
data,’’ in Proc. 18th Int. Conf. Mach. Learn. San Francisco, CA,
USA: Morgan Kaufmann, 2001, pp. 282–289. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645530.655813

[5] T. Ohta, Y. Tateisi, and J.-D. Kim, ‘‘The GENIA corpus: An anno-
tated research abstract corpus in molecular biology domain,’’ in
Proc. 2nd Int. Conf. Human Lang. Technol. Res. San Francisco,
CA, USA: Morgan Kaufmann, 2002, pp. 82–86. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1289189.1289260

[6] D. Shen, J. Zhang, G. Zhou, J. Su, and C.-L. Tan, ‘‘Effective adaptation
of a hidden Markov model-based named entity recognizer for biomed-
ical domain,’’ in Proc. ACL Workshop Natural Lang. Process. Biomed.
Stroudsburg, PA, USA: Association Computational Linguistics, 2003,
pp. 49–56.

[7] J. Zhang, D. Shen, G. Zhou, J. Su, and C.-L. Tan, ‘‘Enhancing
HMM-based biomedical named entity recognition by studying spe-
cial phenomena,’’ J. Biomed. Informat., vol. 37, no. 6, pp. 411–422,
Dec. 2004.

[8] Z. GuoDong and S. Jian, ‘‘Exploring deep knowledge resources in biomed-
ical name recognition,’’ in Proc. Int. Joint Workshop Natural Lang.
Process. Biomed. Appl. (JNLPBA). Stroudsburg, PA, USA: Association
Computational Linguistics, 2004, pp. 96–99.

[9] G. Zhou, ‘‘Recognizing names in biomedical texts using mutual informa-
tion independence model and SVM plus sigmoid,’’ Int. J. Med. Informat.,
vol. 75, no. 6, pp. 456–467, Jun. 2006.

[10] B. Gu, ‘‘Recognizing nested named entities in GENIA corpus,’’ in
Proc. HLT-NAACL BioNLP Workshop Linking Natural Lang. Biol. (LNL-
BioNLP). Stroudsburg, PA, USA: Association Computational Linguistics,
2006, pp. 112–113.

[11] B. Alex, B. Haddow, and C. Grover, ‘‘Recognising nested named entities
in biomedical text,’’ in Proc. Workshop BioNLP Biol., Transl., Clin. Lang.
Process. (BioNLP). Stroudsburg, PA, USA: Association Computational
Linguistics, 2007, pp. 65–72.

[12] J. R. Finkel and C. D. Manning, ‘‘Nested named entity recog-
nition,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.
Stroudsburg, PA, USA: Association Computational Linguistics, 2009,
pp. 141–150.

[13] W. Lu and D. Roth, ‘‘Joint mention extraction and classification with
mention hypergraphs,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. Stroudsburg, PA, USA: Association Computational Linguistics,
2015, pp. 857–867.

[14] A. O. Muis and W. Lu, ‘‘Labeling gaps between words: Recognizing
overlapping mentions with mention separators,’’ in Proc. Conf. Empiri-
cal Methods Natural Lang. Process. Stroudsburg, PA, USA: Association
Computational Linguistics, 2017, pp. 2608–2618.

[15] B. Wang and W. Lu, ‘‘Neural segmental hypergraphs for overlapping
mention recognition,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., 2018, pp. 204–214.

[16] A. Katiyar and C. Cardie, ‘‘Nested named entity recognition revisited,’’ in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1, 2018, pp. 861–871.

[17] M. Xu, H. Jiang, and S. Watcharawittayakul, ‘‘A local detection approach
for named entity recognition and mention detection,’’ in Proc. 55th Annu.
Meeting Assoc. Comput. Linguistics, vol. 1. Stroudsburg, PA, USA: Asso-
ciation Computational Linguistics, 2017, pp. 1237–1247.

[18] M. G. Sohrab and M. Miwa, ‘‘Deep exhaustive model for nested named
entity recognition,’’ in Proc. Conf. Empirical Methods Natural Lang. Pro-
cess., 2018, pp. 2843–2849.

[19] H. Lin, Y. Lu, X. Han, and L. Sun, ‘‘Sequence-to-nuggets: Nested entity
mention detection via anchor-region networks,’’ in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics. Florence, Italy: Association Com-
putational Linguistics, Jul. 2019, pp. 5182–5192. [Online]. Available:
https://www.aclweb.org/anthology/P19-1511

[20] C. Xia, C. Zhang, T. Yang, Y. Li, N. Du, X. Wu, W. Fan, F. Ma, and
P. Yu, ‘‘Multi-grained named entity recognition,’’ in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics. Florence, Italy: Association Com-
putational Linguistics, Jul. 2019, pp. 1430–1440. [Online]. Available:
https://www.aclweb.org/anthology/P19-1138

[21] Y. Chen, Y. Wu, Y. Qin, Y. Hu, Z. Wang, R. Huang, X. Cheng, and P. Chen,
‘‘Recognizing nested named entity based on the neural network boundary
assembling model,’’ IEEE Intell. Syst., vol. 35, no. 1, pp. 74–81, Jan. 2020.

[22] B. Wang, W. Lu, Y. Wang, and H. Jin, ‘‘A neural transition-based model
for nestedmention recognition,’’ inProc. Conf. EmpiricalMethods Natural
Lang. Process., 2018, pp. 1011–1017.

[23] Z. Marinho, A. Mendes, S. Miranda, and D. Nogueira, ‘‘Hierarchical
nested named entity recognition,’’ in Proc. 2nd Clin. Natural Lang. Pro-
cess. Workshop. Minneapolis, Minnesota, USA: Association for Computa-
tional Linguistics, Jun. 2019, pp. 28–34.

[24] M. Ju, M. Miwa, and S. Ananiadou, ‘‘A neural layered model for
nested named entity recognition,’’ in Proc. Conf. North Amer. Chap-
ter Assoc. Comput. Linguistics, Hum. Lang. Technol., vol. 1, 2018,
pp. 1446–1459.

VOLUME 8, 2020 135101



S. Dadas, J. Protasiewicz: Bidirectional Iterative Algorithm for NER

[25] C. Zheng, Y. Cai, J. Xu, H.-F. Leung, and G. Xu, ‘‘A boundary-
aware neural model for nested named entity recognition,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. 9th Int. Joint Conf. Natu-
ral Lang. Process. (EMNLP-IJCNLP). Hong Kong, China: Association
Computational Linguistics, Nov. 2019, pp. 357–366. [Online]. Available:
https://www.aclweb.org/anthology/D19-1034

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc.
Adv. Neural Inf. Process. Syst., I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[27] L. Sun, F. Ji, K. Zhang, and C. Wang, ‘‘Multilayer ToI detection approach
for nested NER,’’ IEEE Access, vol. 7, pp. 186600–186608, 2019.

[28] T. Shibuya and E. Hovy, ‘‘Nested named entity recognition via second-
best sequence learning and decoding,’’ 2019, arXiv:1909.02250. [Online].
Available: http://arxiv.org/abs/1909.02250

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,’’ in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics,
Hum. Lang. Technol., vol. 1. Minneapolis, Minnesota: Association Com-
putational Linguistics, Jun. 2019, pp. 4171–4186. [Online]. Available:
https://www.aclweb.org/anthology/N19-1423

[30] R. J. Williams and D. Zipser, ‘‘A learning algorithm for continually
running fully recurrent neural networks,’’ Neural Comput., vol. 1, no. 2,
pp. 270–280, Jun. 1989.

[31] A. van den Oord, N. Kalchbrenner, L. Espeholt, K. kavukcuoglu,
O. Vinyals, and A. Graves, ‘‘Conditional image generation with
pixelCNN decoders,’’ in Proc. Adv. Neural Inf. Process. Syst., D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2016, pp. 4790–4798. [Online]. Available:
http://papers.nips.cc/paper/6527-conditional-image-generation-
with-pixelcnn-decoders.pdf

[32] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, ‘‘WaveNet:
A generative model for raw audio,’’ 2016, arXiv:1609.03499. [Online].
Available: http://arxiv.org/abs/1609.03499

[33] A. Wawer and E. Malek, ‘‘Results of the poleval 2018 shared task 2:
Named entity recognition,’’ in Proc. PolEval 2018 Workshop. Warsaw,
Poland: Institute Computer Science, Polish Academy of Sciences, 2018,
pp. 53–62. [Online]. Available: http://poleval.pl/files/poleval2018.pdf

[34] D. Benikova, C. Biemann, andM. Reznicek, ‘‘NoSta-D named entity anno-
tation for German: Guidelines and dataset,’’ in Proc. 9th Int. Conf. Lang.
Resour. Eval. (LREC). Reykjavik, Iceland: European Language Resources
Association (ELRA), May 2014, pp. 2524–2531.

[35] A. Akbik, D. Blythe, and R. Vollgraf, ‘‘Contextual string embeddings for
sequence labeling,’’ inProc. COLING, 27th Int. Conf. Comput. Linguistics,
2018, pp. 1638–1649.

[36] A. Akbik, T. Bergmann, and R. Vollgraf, ‘‘Pooled contextualized embed-
dings for named entity recognition,’’ in Proc. NAACL-HLT, Annu. Conf.
North Amer. Chapter Assoc. Comput. Linguistics. Stroudsburg, PA, USA:
Association Computational Linguistics, 2019, pp. 724–728.

[37] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, 2018, pp. 2227–2237.

[38] E. F. Sang and F. De Meulder, ‘‘Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition,’’ in Proc. 7th Conf.
Natural Lang. Learn. (HLT-NAACL), 2003, pp. 142–147. [Online]. Avail-
able: https://www.aclweb.org/anthology/W03-0419

[39] R. Weischedel, S. Pradhan, L. Ramshaw, M. Palmer, N. Xue, M. Marcus,
A. Taylor, C. Greenberg, E. Hovy, R. Belvin, and A. Houston, ‘‘Ontonotes
release 5.0,’’ in Proc. Linguistic Data Consortium, Philadelphia, PA, USA,
vol. 23, 2013, p. 53.

[40] Y. Gal and Z. Ghahramani, ‘‘A theoretically grounded application of
dropout in recurrent neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 1019–1027.

[41] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer, ‘‘Neural architectures for named entity recognition,’’ in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol. San Diego, CA, USA: Association Computational Lin-
guistics, Jun. 2016, pp. 260–270. [Online]. Available: https://www.
aclweb.org/anthology/N16-1030

[42] X. Ma and E. Hovy, ‘‘End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF,’’ inProc. 54th Annu.Meeting Assoc. Comput. Linguis-
tics, vol. 1, 2016, pp. 1064–1074.

[43] N. Reimers and I. Gurevych, ‘‘Optimal hyperparameters for deep LSTM-
networks for sequence labeling tasks,’’ 2017, arXiv:1707.06799. [Online].
Available: http://arxiv.org/abs/1707.06799

[44] S. Dadas, ‘‘Combining neural and knowledge-based approaches to named
entity recognition in polish,’’ in Proc. Int. Conf. Artif. Intell. Soft Comput.
Berlin, Germany: Springer, 2019, pp. 39–50.

[45] R. McDonald, G. Brokos, and I. Androutsopoulos, ‘‘Deep relevance rank-
ing using enhanced document-query interactions,’’ in Proc. Conf. Empiri-
cal Methods Natural Lang. Process., 2018, pp. 1849–1860.

[46] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[47] M. Marcińczuk, J. Kocoń, and M. Janicki, ‘‘Liner2–a customizable frame-
work for proper names recognition for polish,’’ in Intelligent Tools for
Building a Scientific Information Platform. Berlin, Germany: Springer,
2013, pp. 231–253.

[48] M. Marcińczuk, J. Kocoń, and M. Gawor, ‘‘Recognition of named enti-
ties for polish-comparison of deep learning and conditional random
fields approaches,’’ in Proc. PolEval Workshop, M. Ogrodniczuk and
L. Kobyliński, Eds. Warsaw, Poland: Institute Computer Science, Polish
Academy of Science, 2018, pp. 77–92.

[49] L. Borchmann, A. Gretkowski, and F. Graliński, ‘‘Approaching nested
named entity recognition with parallel LSTM-CRFs,’’ in Proc. AI NLP
Workshop, 2018, pp. 63–73.

[50] A. Przepiórkowski, M. Banko, R. L. Górski, and B. Lewandowska-
Tomaszczyk, National Corpus of Polish. Warsaw, Poland: Polish Scien-
tific Publishers PWN, 2012. [Online]. Available: http://nkjp.pl/settings/
papers/NKJP_ksiazka.pdf

[51] C. Hänig, S. Thomas, and S. Bordag, ‘‘Modular classifier ensemble archi-
tecture for named entity recognition on low resource systems,’’ in Proc.
GermEval, 2014, pp. 1–4.

[52] N. Reimers, J. Eckle-Kohler, C. Schnober, J. Kim, and I. Gurevych,
‘‘Germeval-2014: Nested named entity recognition with neural net-
works,’’ in Proc. GermEval, 2014, pp. 1–4. [Online]. Available: http://nbn-
resolving.de/urn:nbn:de:gbv:hil2-opus-3023

[53] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov,
‘‘Learning word vectors for 157 languages,’’ in Proc. 11th Int. Conf.
Lang. Resour. Eval. (LREC). Miyazaki, Japan: European Language
Resources Association (ELRA), May 2018, pp. 1–5. [Online]. Available:
https://www.aclweb.org/anthology/L18-1550

SŁAWOMIR DADAS received the M.S. degree
in computer science from the Warsaw School of
Information Technology, Warsaw, Poland, under
the auspices of the Polish Academy of Sciences,
Warsaw. He is currently pursuing the Ph.D. degree
inmachine learning. He has been with the National
Information Processing Institute, Warsaw, since
2011, where he was involved in the design and
implementation of information systems incorpo-
rating machine learning solutions, primarily in the

field of natural language processing. He works as the Leader of a Research
and Development Team. His research interests include natural language
processing, applications of machine learning in scientometric research, dis-
tributed computing, algorithms, and data structures.

JAROSŁAW PROTASIEWICZ received the Ph.D.
degree in computer science with the Systems
Research Institute, Polish Academy of Sciences,
Warsaw, Poland. He is currently an Assistant Pro-
fessor and the Head of the National Information
Processing Institute, Warsaw. His research inter-
ests include agile project management, software
design and development, big data, machine learn-
ing, and bio-inspired algorithms.

135102 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	CRF-BASED METHODS
	HYPERGRAPH-BASED METHODS
	NEURAL METHODS

	RESEARCH METHODOLOGY
	NEURAL ITERATIVE MODEL
	TRAINING PROCEDURE
	BIDIRECTIONAL ITERATIVE ALGORITHM

	EXPERIMENTS
	HYPERPARAMETER SELECTION
	GENIA
	NNE
	PolEval (2018)
	GermEval (2014)
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	SŁAWOMIR DADAS
	JAROSŁAW PROTASIEWICZ


