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ABSTRACT The sudden climate change, that has taken place in recent years, has generated calamitous
phenomena linked to hydrogeological instability in many areas of the world. An accurate estimate of rainfall
levels is fundamental in smart city application scenarios: it becomes essential to be able to warn of the
imminent occurrence of a calamitous event and reduce the risk to human beings. Unfortunately, to date,
traditional techniques for rainfall level estimation present numerous critical issues. This paper proposes a new
approach to rainfall classification based on the LTE radio channel parameters adopted for the cell selection
mechanism. In particular, this study highlights the correlation between the set of radio channel quality
monitoring parameters and the relative rainfall intensity levels. Through a pattern recognition approach based
on neural networks with Multi-Layer Perceptron (MLP), the proposed algorithm identifies five classes of
rainfall levels with an average accuracy of 96 % and a F1 score of 93.6 %.

INDEX TERMS Rainfall classification, smart sensors, 4G/LTE technologies, radio signal quality, neural
networks.

I. INTRODUCTION
Recently, several smart environment applications have been
introduced, including smart transportation [1], smart health-
care [2], smart homes [3] and smart cities [4], due to the rapid
growth of urban populations. Currently, urban performance
depends, not only upon the physical infrastructure, but, also,
on the availability and quality of knowledge, communication
and social infrastructure [1]. The key enabler of these smart
city applications is possibly the IoT (Internet of Things),
which connects everyday objects and devices to network
technologies.

In fact, today the advanced IoT (Internet of Things)
sensing technologies cut across many areas of modern
research, industry and daily life [5]–[7]. They facilitate detec-
tion, transmission andmeasurement of various environmental
indicators.

Smart cities play a key role in transforming different areas
of human life, touching upon such sectors as transportation,
health, energy, and education. For example, the data regarding
weather information are significantly increasing at a rapid
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pace. Identifying and obtaining valuable information from
large amounts of weather data can be extremely beneficial
in terms of agricultural development. Moreover, analytics
of the weather data can help inform people in advance or
alert them about possibly hazardous weather conditions (e.g.
floods, extreme heat, droughts, and so on) [8].

For this reason, an accurate estimate of rainfall levels is
fundamental in smart city application scenarios.

The massive amount of data collected by low-cost sensors
plus the recent data analysis technologies help us greatly
improve the modern rainfall classification process.

Big data analytics in cloud computing systems move from
IoT to real-time control for smart cities.

The main existing rainfall level measurement methods
employ tilt rain gauges, weather radars and satellites.

These traditional estimation techniques present a wide
range of problems, for example:
• tilt rain gauges tend to underestimate the amount of
rainfall, particularly in snowfall and heavy rainfall
events and they are also sensitive to the inclination
of the receiver and different types of dirt that may
clog the water collection point. Moreover, rain gauges
only record local information, measuring the level of
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precipitation in the specific geographic location where
the gauge is installed. Information requests for any other
point must be obtained by interpolating the available
data provided by nearby rain checks, with the conse-
quence that this information may be influenced by a
higher error;

• weather radars have the advantage of being able to mon-
itor a larger area, compared to the rain gauge, and to
determine the real distribution of rainfall [9], [10], but
they are very expensive;

• the satellite ensures greater spatial and temporal resolu-
tion, but the estimate itself is less accurate [11], [12].

For all these reasons, these systems are not very fast and
accurate and are expensive to implement in smart cities. So,
they cannot be used to estimate the intensity of rain in smart
cities.

Aiming to implement rainfall estimate systems in smart
cities, our idea is to use the already existing 4G/LTE net-
work infrastructure. The innovative idea, proposed for the
first time in this study, concerns the possibility to determine
rainfall intensity based on the impact it has on the LTE radio
channel parameters adopted for the cell selection mechanism.
In particular, the study highlights the correlation between
some parameters of the LTE system that measure the qual-
ity of the radio channel, i.e. the handover mechanism that
selects the best base radio station for that particular mobile
terminal. Compared to a previous study [13], [14], focused on
the measurement of a single parameter related to the signal
strength, in this study, the authors propose a new, larger
set of parameters and use a wider class set of rain levels,
including the ‘‘No rain’’ class and adding the ‘‘Shower’’ and
‘‘Cloudburst’’ classes.

Therefore, the first part of the study involves analysing the
impact of different rain level statistics on the main parameters
adopted by the LTE radio-mobile system for the cell selection
mechanism to hook to.

Finally, keeping in mind the recent spread of artificial
intelligence andmachine learning techniques applied inmany
contexts, the second part of the study is devoted to defining
a pattern recognition technique based on the average and
variance of parameters that characterize the quality of the LTE
radio channel and an MLP (Multi-Layer Perceptron) neural
network, leaving out the use of the latest and most advanced
machine learning techniques for future work.

The paper is organized as follows: Section II briefly sum-
marizes the main studies regarding the rainfall classification
based on a radio link, followed by Section III which illustrates
the cell selection criteria adopted in LTE cellular networks;
Section IV proposes a new approach to rainfall classification
and Section V presents the testbed scenario; Section VI pro-
vides an overview of the neural networks adopted for this
study; Section VII depicts the data analysis; Section VIII
shows the results obtained using the MLP neural network;
Section IX is devoted to discussion and comparison between
the present study and other studies. Finally, Section X is
devoted to conclusions.

II. RELATED WORKS
The urbanization phenomenon has caused the insurgence of
a significant number of risks, concerns, and problems, which
lead solicitous administrations to seek optimal solutions.
According to researchers, such solutions can only be found
in ‘‘smartness’’, where ‘‘smart’’ can be sustainable, liveable,
secure, it can be green or connected. Indeed, ‘‘smart city’’ can
be defined as the aim to reach all of these objectives through
ICT (Information and Communication Technologies).
Generally speaking, using ICT to smartify an object stands for
adding two features to the normal functioning of the object:
sensing and automation [15].

The smart city paradigm focuses on six characteristics:
• Smart Economy;
• Smart Governance;
• Smart Living;
• Smart Mobility;
• Smart Healthcare;
• Smart Environment.
This study is particularly concerned with the latter charac-

teristic. In fact, in this paper we propose a smart rain gauge
that exploits the impact of rain on radio signals, in particular
that between the existing radio base stations using 4G/LTE
technology (at frequencies between 1.8 GHz and 2.4 GHz)
and the numerous mobile terminals in circulation.

Several past studies on this subject have only consid-
ered electromagnetic waves with frequencies greater than
10 GHz [16]–[18] since the impact of precipitation on the
attenuation of electromagnetic waves, and therefore on the
strength of the signal receiver, is best visible at high fre-
quencies. A very interesting scenario, however, is represented
by mobile radio systems that are widespread in the territory.
Hence, in recent years, similar studies have been conducted
considering frequencies used by cellular networks, therefore,
less than 3 GHz, trying to analyze the effect of the impact
of rain on the parameters that characterize the quality of the
radio-mobile channel. In particular, in [19], the effect of rain
on the Received Signal Strength Indicator (RSSI), i.e. the
intensity of the signal received by the user, was studied.

Network analysis on 2G links was performed in two
different geographies for nine non-consecutive days.
Measurements of the signal quality of each telephone ter-
minal were transferred to a computer at the end of the day,
alongwithmeasurements obtained by a rain gauge. The effect
of rain on the intensity of the cellular signal was studied
by analyzing variations in RSSI values measured by the
smartphone. Tests showed an RSSI drop during rainfall in
8 out of 9 cases. In general, however, the decline in RSSI
did not lead to a clear and unambiguous distinction between
the various levels of rainfall, since the decrease in power
was insignificant. In [20], the measurements were taken for
one year, using a transmitter/receiver system consisting of
conventional antennas at the operating frequency of 2 GHz.
The results showed reliable and accurate measurements for
amounts of rain less than 1 mm for periods of 5 minutes.
In our previous paper [21], [22], we proposed a study on the
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estimation of the rainfall level, based on the intensity of the
received signal in LTE systems, evaluating the parameters of
mean, variance and instant value of the RSSI calculated in
a sliding time window. These parameters were subsequently
inserted into a Probabilistic Neural Network, which resulted
in a satisfactory classification performance. The study deals
with a first approach to using radio signal parameters for pre-
cipitation estimation, using frequencies from LTE technology
(1.8 MHz/2.4 GHz). It is the first approach, as the distinction
between rainfall levels (weak, moderate and strong) was
not clearly evident and easily defined by the RSSI values.
Previous studies suggest that it is particularly difficult to
classify rainfall levels only by taking into consideration
signal strength received at frequencies below 3Ghz. For this
reason, in this paper we focus on the study and analysis of
additional radio parameters, other than the strength of the
signal received, i.e. RSSI, defined by the LTE technology,
which are able to provide the most accurate estimate of
the rainfall level. In addition, we assess the effectiveness,
in terms of classification, of all radio channel statistical
parameters provided by the LTE technology, i.e. mean and
standard deviation. Finally, the obtained data are fed as input
to a Multilayer Layer Perceptron (MLP) neural network [23]
which differentiates between various levels of rainfall. The
new rain gauge system, studied in this paper, offers great
spatial resolution inasmuch as it is based on the impact of
rain on radio routes between the mobile terminal and the base
radio station. Base stations, in fact, have a fairly even and
wide distribution in the territory and in cities. In smart cities
of the future, characterized by intense use of the 5G radio
route, this factor will be amplified as 5G base radio stations
will have lower coverage radius and, therefore, much wider
distribution in the territory than ever before.

This distribution allows to potentially convert each base
radio station into a radio rain gauge. This technique comes
with numerous advantages in terms of greater accuracy, speed
and geographic accuracy, i.e. it will be possible to estimate the
intensity of rain with high spatial precision.

At a functional level, even with the introduction of
5G technology, the proposed method will remain valid, as it
will still be possible to use all the radio parameters to estimate
the level of precipitation.

In perspective it is true that 5G uses higher frequencies
offering a greater correlation between rainfall intensity levels
and the RSSI parameter, but it is also true that 5G provides
operating modes even at frequencies below 10 GHz. For this
reason, for a more correct and robust classification of rainfall
levels, all radio channel monitoring parameters proposed in
this study are required to be used also in 5G systems.

III. CELL SELECTION CRITERIA IN LTE TECHNOLOGY
The smart city paradigm is a vision for future cities centred
around the concept of connectivity. Indeed, connectivity is
the core requirement for smart cities to exist, enabling tight
integration among citizens, devices and service providers.

However, it is also a means for interoperable access and
interconnection among different services.

Studies have been conducted on the use of the LTE infras-
tructure to implement different methodologies and scenarios
that form smart cities [24]–[26].

This section describes the main features of the LTE
technology with particular reference to the parameters that
characterize the quality of the radio channel between the
mobile terminal and the base station, as well as the handover
mechanism.

A. DESCRIPTION OF NETWORK PARAMETERS
In an LTE cellular network, when a mobile terminal moves
between cells or can no longer have certain signal strength
requirements from the cell it is hooked up with, it must
perform the selection/re-selection operation of a base sta-
tion. For such an operation it is necessary to measure the
strength and signal quality of the neighbouring cells. In LTE,
the E-UTRAN Node B, also known as Evolved Node B
(abbreviated as eNodeB or eNB), is the element in E-UTRA
of LTE that is the evolution of the element Node B in UTRA
of UMTS. It is a hardware connected to the mobile phone
network that communicates directly wirelessly with mobile
handsets (UEs), like a base transceiver station (BTS) in GSM
networks. In LTE, a UE (User Equipment) measures the
following two parameters of the reference signal, signalling
them to the electronic node:
• Reference Signal Received Power (RSRP);
• Reference Signal Received Quality (RSRQ).
From these two indexes, the eNB returns the Received

Signal Strength Indicator (RSSI) parameter, which is the ref-
erence signal intensity indicator. The RSRP, which typically
ranges between−44 and−140 dBm, is a goodmeasure of the
power of a specific sector, excluding noise and interference
from other sectors. When the UE is near an LTE station,
the average RSRP values are around −75 dBm, and around
−120 dBm when the UE is near the edge of the cellular
coverage area [27].

B. CELL ACQUISITION
After being turned on, the mobile device performs a low-
level capture procedure to identify nearby LTE cells and
find out how they are configured. The acquisition process is
summarized in the following stages: The UE receives syn-
chronization signals from all nearby cells. From the Primary
Synchronization Signal (PSS), the mobile terminal reads the
symbol timing and gathers information about the identity of
the physical cell; from the Secondary Synchronization signal
(SSS), the UE derives the frame timing, Physical Cell Identity
(PCI), transmission mode (FDD or TDD), and duration of the
cyclical prefix (normal or extended). At this point, the UE
initiates the reception of cell-specific reference signals. These
provide a reference of amplitude and phase for the channel
estimation process, so they are essential for the following
steps. The UE is then assigned the physical transmission
channel and, subsequently, the UE reads the main block of
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information. The UE, after the first and second synchroniza-
tion signals, receives the control format indicators.

Finally, the UE initiates the reception of the Physical
Downlink Control Channel (PDCCH). This allows the UE to
read the remaining blocks of system information (SIB), which
are sent on the Physical Shared Downlink Channel (PDSCH).
It captures all the remaining cell configuration data, such as
the identities of the networks towhich it belongs. TheUE then
initiates the reception of reference signals in the downlink
channel [28]. Such signals are useful for the mobile terminal
to:
• provide an amplitude and a phase reference to be used
in the estimation of channels;

• measure the strength of the received signal according to
the frequency;

• calculate the channel quality indicators.
These procedures are carried out while the terminal is in

the ‘‘IDLE’’ state, i.e. there is no active phone call or data
transfer.

C. CELL SELECTION
At this stage, the mobile terminal begins by performing the
procedure of selecting the network and cell, which involves
two main steps. Firstly, the UE selects a Public Land Mobile
Network (PLMN) it will register with; secondly, it selects
a cell that belongs to the selected network. Cell selection
can be done in two ways. Usually, the UE has access to
information stored on the potential frequencies and cells
of the LTE service operator, starting from the last turning
on or network selection procedure described above. If this
information is not available, the device scans all supported
LTE carrier frequencies and identifies the most powerful cell
on each carrier on the selected network.

The selected cell is the one that meets several criteria, from
release 9 onwards, standardized by 3GPP [29]. The most
important criterion is show in (1):

Squal > 0 (1)

During the initial network selection, the UE calculates
Squal as follows:

Squal = Qqualmeas − Qqualmin (2)

In this equation, Qqualmeas [30] is the quality of the
received reference signal (RSRQ) measured, which indicates
the signal-interference ratio plus the noise ratio of cell-
specific reference signals.Qqualmin is the minimum value for
the RSRQ, which the base station makes available in System
Information Block 1 (SIB 1). This prevents a mobile phone
from selecting a cell on a carrier frequency that is subject to
high levels of interference.

D. CELL RESELECTION
For mobile terminals in the ‘‘IDLE’’ state, cell reselection
management procedures have two main goals: maximizing
mobile terminal battery life and minimizing signalling load

on the network. From release 9 [31], a UE can also start
taking measurements on neighbouring cells if the quality of
the received reference signal (RSRQ) falls below a threshold:

Squal ≤ SIntraSearchQ (3)

where, SIntraSearchQ is another threshold made public by the
base station in SIB 3. Squal depends on the RSRQ of the
service cell and is calculated using (2). After finding and
measuring the neighbouring cells, the UE calculates the clas-
sification scores of the service cell and one of its neighbours.
TheUE thenmoves on to the cell with the best score, provided
that three conditions are met. Firstly, the UE must have been
hooked up to the service cell for at least a second. Secondly,
the new cell must meet the criteria set out in ‘‘Cell Selection’’.
Finally, the new cell must be better classified than the service
cell for a certain period between 0 and 7 s.

IV. RAINFALL CLASSIFICATION BASED ON RADIO
SIGNAL QUALITY PARAMETERS
The new method for estimating rainfall levels, proposed in
this paper, is based on a nonlinear matching pattern recog-
nition approach. As in previous studies carried out in audio
biometrics [32]–[33], once the set of parameters that charac-
terizes the radio channel is extracted, they are analyzed on
time windows by measuring the statistical parameters of the
first and second order. The parameter set is sent to a nonlin-
ear matching block based on multi-layer perceptron neural
networks (MLP). In particular, the radio parameters used
for analyzing and creating the dataset in input to the neural
network were measured in terms of average and variance, via
the app GMON for each level of rainfall. The following radio
parameters were therefore obtained:

RSRPAVG, the average power of the RSRP signal received
from the mobile terminal;
• RSRQAVG, the average signal power quality received
from the mobile terminal;

• RXLAVG, the average instant power of the RXL signal
received from the mobile terminal;

• SNRAVG, the average signal-to-noise ratio received from
the mobile terminal;

• RSRPVAR indicates variations in signal strength of the
RSRP signal received from the mobile terminal between
two consecutive measurements;

• RSRQVAR indicates variations in received signal
strength quality from the mobile terminal between two
consecutive measurements;

• RXLVAR indicates variations in instant power of the
RXL signal received from the mobile terminal between
two consecutive measurements;

• SNRVAR indicates variations in the signal-to-noise ratio
received from the mobile terminal between two consec-
utive measurements.

In addition, with regard to the Cell Identification (CID),
i.e. the identification number of the LTE cell the terminal is
hooked to, several parameters have been calculated:
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• The ‘‘reference CID’’, CIDCSR, the CID for which the
terminal remains hooked to for longer;

• The ‘‘CIDHOPS’’, the number of connections to other
cells the mobile terminal makes;

• TheCIDPERMANENCE that indicates how long themobile
terminal remains hooked to the reference cell;

• The CIDCSR indicates the number of times the mobile
terminal disconnects from the reference cell, and then
returns to it.

These parameters are used for statistical analysis and as
input to an MLP neural network.

V. THE TESTBED SCENARIO
In order to assess the impact of rain on the main parameters
that characterize cell selection phases, the scenario taken into
account is that of an LTE mobile terminal in the ‘‘IDLE’’
state, equipped with an application (e.g. GMON) for the
measurement of the parameters used by the cell selection
mechanisms (Fig. 1). Nearby, a classic tipping bucket rain
gauge records rainfall levels in mm/h using a processing,
labelling and synchronizing board with radio-mobile channel
data measured by GMON. The mobile terminal, as described
in the previous section, detects the power level of the base
radio stations nearby and hooks to the stationwith the greatest
power.

FIGURE 1. Testbed scenario.

In cases where atmospheric precipitation occurs, in an
‘‘IDLE’’ state the mobile terminal may be affected by small
changes in the radio signal. The mobile terminal, in fact,
receiving a lower power signal from the base station to which
it is hooked, could pick up a higher power signal from another
base station nearby. The impact of the rain can, thus, lead to
greater frequency of the reselection phases of the base station
to which the device is hooked. This data can have a major
impact on the classification of rainfall levels as the higher
the level of rainfall the higher the selection and reselection
procedures of one or more neighbouring cells may be. The
parameter used to describe this procedure is the CID, which

distinguishes, as already seen, the cell to which the mobile
terminal is hooked, the number of hops, i.e. jumps that it
makes from one reference cell to another, and the timespan
of continuous connection to a given reference cell; which
is the one to which it is statistically hooked to the longest.
Following, in the next subsections, we will describe the
testbed and the database used to train the MLP neural
network.

A. THE TEST CAMPAIGN
This section will describe RSRQ, RXL, SNR, RSRP, and CID
(LTE defines it as PCI) data collection procedure. The data
employed for the creation of the radio database, on which the
analyses and tests were carried out, were collected through
an ad hoc implemented acquisition system consisting of: a
tilting tub, a processing unit and a 4G smartphone SIM inside
a shaker.

A dedicated application, called GMON, is installed on the
smartphone, able to export a full report for different network
and signal parameters such as RSSI, RSRP and RSRQ (illus-
trated in section III) in CSV format. A), signal-to-noise ratio
(SNR), Location Area Code (LAC), CID and connection type
(LTE, HSPA, UMTS, etc.). As for the tipping bucket rain
gauge, it acts as a rain indicator. It includes a rain-gathering
funnel, two triangular tubs mounted on a fulcrum and an
electronic switch.

The rain is channelled through the funnel to one of the
trays. When the tub is full, it loses balance and flips over,
emptying into the outer shell of the meter, while the other
tub is lifted into place for later reading. The rain gauge is
connected to the processing unit via an RJ11 cable and is
managed ad hoc through a software interface that can detect
and count the ‘‘interruptions’’ generated by the rain gauge
tray whenever a tilt occurs.

To process the proposed classification approach, a database
was created by recording the collected data. The database
includes measurements of the parameters described above
in five different weather conditions: ‘‘No rain’’, ‘‘Moderate
rain’’, ‘‘Heavy rain’’, ‘‘Shower’’ and ‘‘Cloudburst’’. The
database framework is displayed in Table 1.

TABLE 1. Rain classification and precipitation intensity range.

B. DATABASE
The database is made with GMON for each terminal and
comprises data from LTE radio parameter measurements and
CID. This data is sent at once as the tipping bucket rain gauge
is activated. Tips generated by the tipping bucket rain gauge
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are sent to an IoT platform, using the publisher/subscriber
protocol. The values taken from the tray are used to label the
radio signal with different rain intensity. A labeling algorithm
is applied to obtain the estimate in mm/h (described in detail
in [14]). Once the labelling algorithm is executed, the rainfall
values, in mm/h, are compared and synchronized in time with
the data in the CSV file created by GMON. This process
enables data labelling in the CSV file. In fact, this allows
obtaining files where the network parameters are related to
each classification level. The database consists of five cate-
gories of precipitation intensity, defined in Table 1; for each
category there is a CSV file containing network parameters:
RSRP, RSRQ, RSSI and SNR; date and time from when the
data was recorded; CID and LAC. The current database was
created by recording network parameters on different days
and in different areas of the territory during the precipitation
(in various rain intensity conditions, including the ‘‘No rain’’
case). This implies a certain robustness of the system, as the
results obtained take into account the use of base stations in
different locations.

VI. NEURAL NETWORK DESCRIPTION
In this section wewill describe the chosen neural network and
supervised learning algorithm used in our study and applied
to the statistical parameters of the first and second-order
LTE radio channel. One of the first algorithms used in
machine learning for supervised learning is the Single Layer
Perceptron (SLP). Frank Rosemblat in [34] published the
first concept of the Perceptron learning rule based on the
McCullock-Pitts (MCP) neuron. This learning rule consists
in an algorithm that automatically expresses the optimal
weight coefficients to be multiplied by input characteristics.
This multiplication operation allows making the decision on
whether to activate the neuron or not; with the possibility,
therefore, to define whether or not a given sample belongs
to a particular class.

Mathematically, it is possible to have input signals xi and
weights wi. One must define a function of activation, which
works on a linear combination of certain X input values and
a corresponding vector of W weights, where Z is the neural
network input:

W = [wi . . .wm] ,X = [xi . . . xm] (4)

Z = (w1x1 + w2x2 + . . .+ wmxm) (5)

8 (z) = {1 if z ≥ 0− 1 otherwise (6)

If the activation of a particular sample x(i), which is the
output of the8(z), is greater than the given threshold, one can
predict which class it belongs to. In the Perceptron algorithm,
the activation function is defined in sections.

The input of the z = W TX network is reduced to a binary
output by the Perceptron activation function, thus being used
to linearly discriminate between the two classes.

SLP is a very simple neural network, which manages well
to classify only if the variables are linearly separable. Based
on the statistical analysis described in the following sections,

it is possible to note that the variables involved in this study
cannot be separated linearly.

For this reason, we have used a Multi-Layer Perceptron
(MLP) network which, unlike the SLP which has a single
hidden layer and a single neuron, contains multiple hidden
layers and for each layer there are multiple neurons. The sub-
stantial difference is that sigmoid functions such as logistic
regression are used in MLP networks, to activate neurons,
according to (7).

8 (z) =
1

1− e−z
(7)

MLP is a typical example of a feedforward artificial neural
network. The term feedforward refers to the fact that each
level acts as input to the next level, without loops.

As for our study, it is possible to observe in Figure 2 that
we used a five-layer MLP. The first is the input layer, the
second, third and fourth are hidden layers with 150, 100 and
50 neurons, respectively, while the last layer is the output
layer.

FIGURE 2. Diagram of how multilayer perceptron works.

VII. DATA ANALYSIS AND RESULTS
This section presents the data analysis and the main results
obtained in this study. As previously mentioned in Section V,
the data collected by GMON are stored, every second, in a
CSV file and this file is composed of records containing the
data related to the radio parameters indicated above.

In particular, the number of records for each level of rainfall
is as follows:
• No rain: 124.210 records
• Moderate rain: 378.584 records
• Heavy rain: 18.667 records
• Shower: 15.595 records
• Cloudburst: 5.255 records
Initially, the first and second-order statistical parameters of

the radio channel quality parameters described in section IV
were calculated.

The statistical analysis was conducted by considering a
180-second sliding window with 15 second off-sets. The first
order statistical parameters, represented by the averages of
the values, are as follows:
• RXLAVG
• RSRPAVG
• RSRQAVG
• SNRAVG
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The statistical parameters of the second order, represented
by the variations, are as follows:
• RXLVAR
• RSRPVAR
• RSRQVAR
• SNRVAR
The number of databases for each class is as follows:
• No rain: 686 records
• Moderate rain: 2089 records
• Heavy rain: 103 records
• Shower: 86 records
• Cloudburst: 29 records
Due to the non-uniformity of the data in the dataset for each

class, it was decided to reduce the number of samples in the
‘‘No rain’’, ‘‘Moderate rain’’, ‘‘Heavy rain’’ and ‘‘Shower’’
classes to 50 records each and to leave the ‘‘Cloudburst’’ class
unchanged.

The three cell change parameters were also analysed:
CIDHOPS, CIDPERMANENCE and CIDCSR. Subsequently,
the degrees of linear separation were assessed using the
Fischer Discriminant Ratio (FDR), which allows measur-
ing the degree of linear separation that the given parameter
has [35]. Finally, a multi-layer perceptron-type neural net-
work (MLP) was applied, providing the parameters used for
statistical analysis as an input, and the 5 classes of rainfall lev-
els as an output. After the training phase the neural network
ranks the contribution made by each parameter considering
that the best match is the one based on non-linear techniques.
Finally, by analysing the confusion matrix, the accuracy of
the system is determined.

A. STATISTICAL DATA ANALYSIS
First, mean and variance of radio parameters are studied to
determine if there is a link between the values obtained from
the statistical analysis of these parameters and the rainfall lev-
els defined in Table 1. The statistics of the individual parame-
ter with the representation of mean, minimum and maximum,
standard deviation and typical distribution of values around
the mean were represented for each class of rainfall.

Figure 3, 4, and 5 show that there are no parameters clearly
distinguishing between classes, although some classes have
low-overlapping value distributions with other classes (e.g.
RSRPAVG and RXLAVG have ‘‘No Rain’’ class values that
overlap with those of the other classes). The same goes for the
RSRQAVG parameter that ensures a good separation between
the ‘‘Shower’’ and ‘‘Cloudburst’’ classes. The same case
applies to the variance of radio parameters (Figure 4).

Figure 5 shows the average jump that is made from one
cell to another at each level of rainfall. In this case, there is a
clear distinction between ‘‘s’’ and ‘‘c’’ classes. In general, it is
noted that the data appears to be jagged and does not give a
clear distinction between precipitation levels according to lin-
ear analysis criteria. A simple first and second level statistical
analysis is therefore not enough to establish clear classifica-
tion of rainfall levels. For this reason, section B, following

FIGURE 3. Representation of radio parameter averages statistics:
(a) average RSRP, (b) average RSRQ, (c) average RXL, (d) average SNR.
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FIGURE 4. Representation of radio parameter variance statistics: (a) RSRP
variance, (b) RSRQ variance, (c) RXL variance, (d) SNR variance.

FIGURE 5. Representation of CIDHOPS statistics.

an analysis of the Fisher Discriminant Ratio applied to radio
parameters, presents the results of classification techniques
suitable for those cases with non-linear separation in order to
define the parameter that helps obtain better discrimination.

B. LINEAR AND NON-LINEAR SEPARABILITY BETWEEN
THE CLASSES
In this section, FDR value between two adjacent classes,
relative to each parameter described in the previous section,
will be evaluated. As there are five levels of rainfall consid-
ered in this study, there will be five classes and, therefore,
four FDR values, for each radio parameter considered, for the
classes: NR-M,M-H, H-S, S-C. Figure 6 shows the total FDR
values of all parameters for each pair of adjacent classes. The
parameters that have the highest degree of linear separation
are:
• the RXLAVG and the RSRPAVG for classes NR to M
(Figure 6.a);

• The SNRAVG and RXLVAR for classes M through H
(Figure 6.b);

• he CIDCSR and CIDHOPS for classes H to S (Figure 6.c);
• RSRQAVG and RSRQVAR for classes S through C
(Figure 6.d).

By analysing and calculating the degree of total linear sep-
aration (see Figure 7), i.e. applicable to all classes, we obtain
the parameters with the highest linear separation index: the
RSRQAVG, the CIDCSR and the CIDHOPS. Starting from these
values, it was decided to carry out the Principal Component
Analysis (PCA) [36] of these parameters. PCA is a technique
aimed at deriving a smaller set of ‘‘artificial’’ orthogonal
variables starting from a set of correlated numerical variables.
The reduced set of linear orthogonal projections (known as
‘‘principal components’’, ‘‘PC’’) is obtained by appropriately
combining the original variables linearly.

Figure 8 outlines the results obtained by the PCA. As evi-
denced, individual parameters contribute differently to the
separability of the individual classes. To find a solution to
this problem, we implemented a Multilayer Perceptron Neu-
ral Network (MLP) with multiple classes, where the above
parameters are used as input, while the output will comprise
the accuracy of the classification and the determination of
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FIGURE 6. Parameter FDR values between adjacent classes: (a) FDR
between NR – M, (b) FDR between M – H, (c) FDR between H – S, (d) FDR
between S – C.

FIGURE 7. Total FDR.

FIGURE 8. PCA analysis.

parameters which are more important than others to neural
network training.

VIII. PERFORMANCE EVALUATION
Once the statistical analysis was completed and the FDR was
calculated, as noticeable from Figure 8, the separation of
classes is not linear. For this reason, the Perceptron neural
network was applied to the dataset. The dataset used for train-
ing and testing the Perceptron network has been described in
Chapter IV.B.

In particular, from the CSV files, containing the recordings
of radio parameters made by GMON, relating to each precip-
itation level, the statistical parameters were extracted within a
window of 180 seconds (data is recorded every second) and a
15 second offset. The dataset is therefore divided as follows:
• Fifty data samples for the ‘‘No rain’’ class;
• Fifty data samples for the ‘‘Moderate’’ class;
• Fifty data samples for the ‘‘Heavy’’ class;
• Fifty data samples for the ‘‘Shower’’ class;
• Twenty-nine data samples for the ‘‘Cloudburst’’ class.
The training data makes up 70% of the dataset, while the

remaining 30% of the dataset is used to the testing phase,
once the neural network was trained. The result of this phase
is shown in Figure 9 with the confusion matrix. The sta-
tistical classification functions [37] are applied to evaluate
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FIGURE 9. Confusion matrix.

the proposed method, based on the results obtained from the
confusion matrix.

In particular, we applied sensitivity, also known as True
Positive Ratio (TPR); Fall – out, also known as False Positive
Ratio (FPR); Precision (PRE) and Recall (REC), which are
performance metrics closely related to the TPR and FPR
values. In practice, a combination of precision and recall is
often used, i.e. the so-called F1 score.

The equations below are related to the previously described
classification functions

TPR = REC =
TP

TP+ FN
(8)

FPR =
FP

FP+ TN
(9)

PRE =
TP

FP+ TP
(10)

F1 = 2
PRE × REC
PRE + REC

(11)

The results obtained in terms of statistical parameters are
shown in Table 2.

TABLE 2. The overall values of accuracy, TPR, FPR, PRE and F1 score.

Table 2 suggests good performance of Accuracy (96.0%),
Sensitivity/Recall (96.0%), Fall – out (13.32%), precision
(91.4 %) and F1 score (93.6 %).

Once these accuracy metrics are implemented and calcu-
lated, it is possible to use an additional model validation
tool, namely the one based on the ROC (Receiver Operator
Characteristic) and ROCAUC (AreaUnder the Curve) graphs
to validate the model.

A perfect classifier would be located in the upper left
corner of the graph, with a true positive rate equal to 1 and
a false positive rate equal to 0. Based on the ROC curve,
we can therefore calculate the area under the curve, AUC,
to characterize the performance of the classification model.

Applying this concept to our classification method, in
Figure 10 we observe the resulting ROC curve which indi-
cates that a certain degree of variance between the various
parts and the average ROC AUC lies between the perfect
score (1.0) and the diagonal (0.5).

FIGURE 10. ROC curve.

Research on the performance of a classifier such as ROC
AUC may provide additional information on its performance
compared to unbalanced samples.

In [38] Bradley demonstrated that ROCAUC and accuracy
metrics generally agree with each other.

The micro-average is calculated from the individual true
positives, true negatives, false positives and false negatives
of the system. In our case the micro-average of the precision
score in a 5 (nr, m, h, s and c) class system can be calculated
as follows:

PREmicro =
TPnr + TPm + TPh + TPs + TPc

TPnr + . . .+ TPc + FPnr + . . .+ FPc
(12)

The macro-average is simply calculated as the average
scores of the different systems:

PREmacro =
PREnr + PREm + PREh + PREs + PREc

5
(13)

Micro-media is useful if we want to weigh each instance
or forecast, while macro-media weighs all classes equally to
evaluate the overall performance of a classifier compared to
the labels given to the most frequent classes. The graph shows
that the area under the ROC curve is very large. This means
that our model has excellent performance.

In general, tipping bucket rain gauge labelling does
not allow establishing typical variations in rain intensity.
By means of the causal forest technique [39], it is possible
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TABLE 3. Comparison of rainfall classification methods.

FIGURE 11. Level of importance of features.

to gather useful information concerning the importance that
the network assigns to various input parameters. The graph
in Figure 11 shows that the five features in the order of
importance for the neural network are: RXLAVG, RSRPAVG,
SNRAVG, RSRQAVG and RSRPVAR.

IX. DISCUSSION
In this section the obtained results are discussed and com-
pared with recent studies in the state of the art.

Our five-class classifier (nr, m, h, s and c) has managed
to obtain classification accuracy of 96.0 % and an F1 score
of 93.6 %. Table 3 shows the comparison in terms of radio
technology in use, features, classification methods, classifi-
cation levels and achieved performance.

Based on research carried out on the current state of knowl-
edge, the study referenced in [22] and the one described
in [40] are the only studies dealing with the classification
of precipitation levels by radio signals at frequencies below
10 GHz. In [40] GSM technology is used, and the RSL
(Received Signal Strength) parameter is considered as a fea-
ture. As for the classifier, a 3-class (nr, w, h) SVM (Support
Vector Machine) is used. Compared to the study [22], it can
be seen that overall it has lower performance, since in [22]
we consider 4 rainfall levels (nr, w, m, h).

In [16] commercial microwave link is used to analyze the
radio signal attenuation caused by rain at frequencies about

20 Ghz. In this study the authors adopted the KFD (Kernel
Fisher Discriminant) method for intensity classification into
only 3 classes: dry (no rain), rain and sleet (i.e. melted
snow/freezing rain which, for simplicity, has been considered
as weak rain).

It should be emphasized that the comparison proposed
in Table 3 presents a congruity of classes only for the two
No rain/Rain columns, from which there is already a clear
performance improvement in the proposed method compared
to the existing solutions. As indicated, the classes of rain
levels vary in number and therefore it is not possible to make
a direct comparison between the various methods. It should
also be noted that the datasets used are different.

However, comparing this study with the previous one [22],
it can be said that in this study several classification levels
are proposed, adding the highest intensity classes (Shower
and Cloudburst) and using more parameters of 4G radio
technology to strengthen the system in the previous study [22]
which exploits only the mean and the variance of the RSL
parameter.

In fact, it is well known that the radio signal strength
may undergo variations depending on the conditions of signal
propagation and, therefore, on the surrounding environment.

With regard to the matching technique, this study exploits
a very simple neural network with low computational com-
plexity, compared to the study proposed in [22], achieving,
however, overall good performances.

At high frequencies the impact of rain on attenuation
is very big, resulting in greater performance in terms of
classification accuracy. In any case, for further performance
optimization, it is always useful to add the set of parameters
proposed in this study in addition to that of simple signal
strength.

X. CONCLUSION
The paper proposes an innovative approach to rainfall clas-
sification for smart city applications. The main idea is based
on the impact that rain has on a set of parameters that charac-
terize the radio-mobile channel quality. The paper highlights
the link between rainfall levels and the trend of parameters
adopted for the cell selection phase in the LTE mobile net-
work. In particular, the system requires only the extraction
of the parameters that a mobile terminal measure and the
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subsequent comparison with a nonlinear matching system
based on MLP networks. The performance is very good in
terms of accuracy and spatial resolution. Taking into account
the typical micro-variances of rainfall intensity, it is possible
to consider an average accuracy of 96 %. The new rain
gauge exceeds the limits of the traditional ones, as it has no
mechanical parts and requires no maintenance.
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