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ABSTRACT The Lagrangian approach for the two-dimensional incompressible fluid flows has been studied
with the help of dynamical systems techniques: Kolmogorov-Arnold-Moser (KAM) theory, stable, unstable
manifold structures, and Lagrangian coherent structures (LCSs). For the time-dependent perturbation
problems, we analyze in detail the development of transport barriers that play an important role in the
transport process. Firstly, the analytical study of KAM theory is adopted to explain the transport and mixing
phenomenon in measured and simulated airfoil flow. Then, the flow topology of unsteady flow behind
an airfoil is investigated for the low Reynolds number problem. Simulations are carried out based on a
particular Finite-Time Lyapunov Exponent (FTLE) technique for the detection of invariant manifolds of
the hyperbolic trajectories. Besides, the Characteristic Base Split (CBS) scheme combined with a dual time
stepping technique is utilized to simulate such transient flow problems. Thus, in the course of the current
research, the role of the velocity phase plot during vortex formation is explored that is highly periodic and
resulted in the formation of a stable pattern of manifolds and invariant tori. Hence, the proposed study
encouraged the new picture of the vortex shedding and flow separation process. As a conclusion, our results
give a better understanding of invariant tori control transport phenomena that will lead to a new heuristic for
unsteady flows.

INDEX TERMS CBS method, Hamiltonian dynamics, KAM theory, Lagrangian coherent structures,
nonlinear dynamics, transport phenomena.

I. INTRODUCTION
Understanding the dynamics of transport and mixing phe-
nomenon is an immediate imposing challenge in the multidis-
ciplinary areas of science and engineering [1]–[4]. Dynamical
systems tools, such as KAM theory and LCS, revealed the
evolvement of fluid parcels in the flow of interest. The sig-
nificance of these structures near the neighborhood flow is
their transport barrier behavior. The Lagrangian approach
of hyperbolic trajectories has been examined in many fluid
problems in the last few decades [5], [6].

For the dynamical system theory, invariant manifolds of
hyperbolic trajectories have become more informative for
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well-defined structures in the flow field. So, a Poincare map
for time-periodic flows is constructed to reveal such KAM
tori. The study of these structures attains much importance
in fluid dynamics because they serve as transport barriers
particularly in regular regions of the flow. In KAM tori,
mixing is restrained and the coherent regions are formed
[7]–[9]. While, in the case of LCS, mixing is enhanced
because of the stretching and folding nature of neighboring
elements [10], [11].

Much of the work on dynamical system tools have
explained some kind of structures, called LCS’s [12]. These
structures influenced the geometry of the mixing of fluids.
In 2000 Haller [13] presented a concept of a Lagrangian anal-
ysis which revealed the finite time material lines by comput-
ing the FTLE in the velocity field. The expanding divergence
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of nearby trajectories in the flow can be determined by
FTLE. As the particle arrangement is linear in kinematic
fluid, the FTLE is determined in backward/forward time.
FTLE measures the stretching and contraction of the fluid
for forward and backward time respectively. It is considered
that attracting and repelling barriers formed by the backward
and forward time of FTLE contours respectively. Mixing of
these barriers revealed the true picture of LCSs. Combination
of a repelling and attracting transport barrier encompassing
a circulating fluid present a good identifier of a vortex [14].
The deformity of FTLE confinement over time is involved in
determining coherent structures and the mechanism of fluid
entrainment for time-dependent flow [15], [16].

Many techniques have been developed and applied to
identify LCS in the various oceanic and atmospheric
flows [17]–[19]. Two of these techniques are very important.
The first one is stable and unstable manifolds of hyperbolic
trajectories that define chaotic transport in time-dependent
flows [20]–[23]. The second one is known as invariant
KAM tori, which has been associated with regular regions
of constrained transport [18]. Rypina et al. [24] have used
the true approach of dynamical systems like KAM theory,
stable/unstable manifolds, lobe dynamics, and its transfor-
mation. An analytical approach has been studied to express
the much attention of KAM invariant tori, stable/unstable
manifolds, and the behavior by which these structures
restraint transport. These tools and concepts of dynamical
systems are helpful and insightful in studies of fluid trans-
port [25]. Present literature has attained much attention to the
Lagrangian description of the transport and mixing of fluids
about coherent structures. Researchers preferred to use the
Lagrangian approach of the fluid and illustrate the non-linear
dynamics behavior of the flow. Van Dommelen et al. [26]
have worked on unsteady boundary layer equation and they
studied the flow separation criteria through the Lagrangian
way. Wiggins et al. [27] have explained the mass trans-
port and vortex formation adjacent to the wake of a circu-
lar cylinder by using manifolds theorem and lobe structure.
However, a non-linear dynamics approach can be applied for
infinite time flow by using a traditional manifold. Haller [13]
has analyzed the approach of LCSs and finite time mani-
folds and discuss the boundaries of the vortex in finite time
flow. Researchers are convenient to apply the Lagrangian
method to investigate fluid transport and unsteady separa-
tion. A wide range of flow phenomena, such as biological
phenomena [28], turbulent flows [29], vortex shedding [30],
geophysical flows [31], etc, have been studied by LCS.

The paper objectives are summarized with the follow-
ing: (i) to review KAM theory for better understanding the
behavior of nearly integrable Hamiltonian systems, (ii) the
Lagrangian Coherent Structure is introduced to understand
the Lagrangian dynamics of the flow process, such as vor-
tex shedding and the separation bubble, (iii) a numeri-
cal method is introduced to simulate the flow around the
airfoil. Finally, we present the summary of the results and
conclusions.

II. KAM THEORY FORMULATION
Last few decades, the importance of KAM theory has been
increased, especially for the cognizance of the behavior of
non-integrable Hamiltonian systems. Nonlinear Hamiltonian
systems having complex motion can be analyzed extensively
by KAM theory. The dynamics of the perturbed Hamiltonian
systems is not performed well for the separable dynamical
systems that lead to the KAM theory formulation. For non-
integrable systems, fluid trajectories presents complicated
behavior until it becomes integrable.

In this work, we consider the equations of motion in the
velocity field as

Ṗ = v(P, t), (1)

where P = (x, y, z) and v = (u, v,w) are the position and
velocity at (x, y, z).

For incompressible flow, the components of velocity can be
defined in the form of a stream function. Hamiltonian form
of the equation of motion (2) can be given as

ẋ = −
∂ψ

∂y
(x, y, t), ẏ =

∂ψ

∂x
(x, y, t), (2)

where ψ(x, y, t) considers as the Hamiltonian equation and
(x, y) are the phase space coordinates in fluid flow.
Now we consider the stream function as

ψ(x, y, t) = h(x, y)+ r(x, y, �1t, . . . , �N t). (3)

where r is a multi-periodic function having periods 2π
σi
,

i = 1, 2, . . . ,N .
The perturbation stream function in bounded domain is

expressed as

ψ(x, y, t) = Ao(y)+
(N+1)∑

1

An(y)cos
[
kn(x − cnt)+ φn

]
. (4)

In a reference frame, time dependence is eliminated from the
flow. So the stream function at speed C(N+1) is written as

9(x̂, y, t) = H (x̂, y)+ R(x̂, y, �1t, . . . , �N t), (5)

where x̂ = x−C(N+1)t mod2πacosθo is the wave co-moving
zonal coordinates. And

H = C(N+1)y+ Ao(y)+ A(N+1)(y)cos(kN+1x̂ + φ(N+1)),

(6)

R =
N∑
1

An(y)cos
[
knx̂ −�nt + φn

]
, (7)

where �n = kn(cn − c(N+1))
Hence, fluid-particle motion complying Eq. (2) reduce to

the integrable system, using the stream function of type (5-7)
and KAM theory can handle such systems.

Further, action-angle (I , θ) variables are introduced in a
piecewise way. These variables exist when the energy level
set is compact and flows are complete. They give the most
concise explanation and easily applied to the KAM theory
results.
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The canonical remodeling (y, x) 7→ (I , θ)) is expressed as

I =
1
2π

∮
X̂ (y;H )dy, (8)

θ = ∂1G, (9)

G(y, I ) =
∫ y

0
X̂ (ξ ;H )dξ. (10)

Hence, the back ground and perturbed Hamiltonian,
respectively, defined as

H (x̂, y) = H(I ),

R(x̂, y, �1t, . . . , �N t) = R(I , θ,�1t, . . . , �N t). (11)

The action-angle variables (I , θ) expansion as

İ = −∂θR, θ̇ = ω(I )+ ∂1R, (12)

where

ω(I ) = H́. (13)

The Hamiltonian H is the first integral, when R = 0,
and the motion defined by Eqs. (11-13) is completely inte-
grable. Trajectories are then shown on one dimensional tori
I = constant .

Under perturbation, it is studied the special form of unper-
turbed tori (ω′(I ) = 0) which are resistant to break [3]. This
form of stability is recognized as strong KAM stability.

Consider a Hamiltonian system

İ = −
∂H
∂θ
, θ̇ =

∂H
∂I
. (14)

And the Hamiltonian

H (I , θ, t) = Ho(I )+ εH1(I , θ,�1t, . . . , �N t). (15)

The perturbation H (I , θ, t) in Eq. (15) is multi-periodic and
its Fourier series is written as

H1(I , θ, t) =
∞∑

m,n=−∞

Knm(I )cos(nθ − m�t + φnm), (16)

where the φnms are the phases. The equations of motion is
defined as

İ = ε
∞∑

m,n=−∞

nKnm(I )sin(nθ − m�t + φnm) (17)

and

θ̇ = ω(I )+ ε
∞∑

m,n=−∞

nK ′nm(I )cos(nθ − m�t + φnm). (18)

For small ε, ω(I ) satisfies ω(j−1)(Io) = 0, ωj(Io) 6= 0 for any
integer j ≥ 2 and Io ∈ I .

Let ψ = nθ −m�t + φnm be the term akin to the resonant
(n,m). By noting that ψ̇ = nθ̇ − m� and all the oscillating
values in Eqs. (17) and (18) are eliminated.
Knm(I ) is replacedwith the resonant valueKnm(Io) andω(I )

is to be expanded in a Taylor series around Io with δI =
(I − Io) and introduce the notation �i =

ω(i)(Io)
i! , i =

0, 1, . . . , (j− 2).

FIGURE 1. Level surfaces (Ĥ(δI, ψ)) in the phase plane (ψ, δI) for order of
degeneracy (j = 3).

The following approximate autonomous system results
from Eqs. (17) and (18) in the vicinity of the resonant level:

δİ = εnKnm(Io)sinψ, (19)

ψ̇ = n
(
σ0 + σ1δI + . . .+ σ(j−2)(δI )j−2 + ωj(I0)

(δI )j

j!

)
−m�. (20)

Higher terms in above equations has been omitted. Finally,
Eqs. (19) and (20) define a Hamiltonian system

δİ = −
∂Ĥ
∂ψ

, ψ̇ =
∂Ĥ
∂δI

. (21)

With Hamiltonian

Ĥ (δI , ψ) = n
[
σ0δI + σ1

(δI )2

2
+ . . .+ ωj(I0)

(δI )(j+1)

(j+ 1)!

]
−m�δI + εnKnm(I0)cosψ (22)

and

ω(δI ;�) = σ0 + σ1δI + . . .+ σ(j−2)(δI )(j−2)

+ωj(I0)
(δI )j

(j)!
. (23)

By defining � = �0 with m�0 = nσ0 and σ0 = σ1 = . . . =
σ(j−2) = 0.

Eq. (22) reduces to

Ĥ (δI , ψ) = nωj(I0)
(δI )(j+1)

(j+ 1)!
+ εnKnm(I0)cosψ. (24)

In Fig. 1, trajectories are trapped in the resonance region for
odd values of j. Here, we define the width of resonance on a
trapped region with maximum δI excursion of the separatrix

1I =
(2ε|KnmI0(j+ 1)|

|ω(j)(I0)|

) 1
(j+1)

. (25)

The corresponding frequency width is

1ω = |ωj(I0)|
(1I )j

j!

= |ωj(I0)|
(

1
(j+1)

)(
2ε|KnmI0(j+ 1)|
|ω(j)(I0)|

) 1
(j+1)

. (26)
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As resonances are stimulated at discrete values of ω, over-
lapping of resonances is only computed by the width
1ω rather 1I .
From Eq. (26) it follows that degenerate resonances are

generally correlated with smaller resonance widths then non-
degenerate resonances. Hence, resonances around degenerate
tori are expected to interwine and these regions are gener-
ally associated with enhanced stability. This phenomenon is
important for the presence of robust transport barriers near
non-twist trajectories in atmospheric and oceanic flows [18].
Poincaré section for a Hamiltonian system has been drawn
in Fig. 2 and Fig. 3. The strength and structure of the per-
turbation term εH1(I , θ,�(t)) in both cases are alike, but in
H0(I ) is different. Firstly, frequency ω(I ) is cubic with two
isolated (j = 2) degeneracies. In the other case, the frequency
structure is linear. The ω(I ) domain of the system is the same
for both cases so excited resonances are also similar. As the
resonance widths are distinct and this supports the strong
stability phenomena in the locality of degenerate tori in the
system having cubic frequency ω(I ).

FIGURE 2. Poincaré section of Hamiltonian system for linear
frequency ω(I) (j = 2, ε = 0.028).

FIGURE 3. Poincaré section for Hamiltonian system for cubic
frequency ω(I) (j = 2, ε = 0.028).

Detection of invariant tori is complex due to the existence
of the multi-periodic time dependence in the stream function.
Some particular cases like simple periodic perturbation, a sur-
face of Poincaré section could be developed to identify the
presence of such structures. However, many frequencies in
the perturbed stream function are large, so the FTLE tech-
nique is used for computation.

III. LAGRANGIAN COHERENT STRUCTURES
Lagrangian Coherent Structures analysis was initiated to the
fluid mechanics research by Haller [1]. Attracting, repelling

and shearing nature of these material surfaces would lead
to the skeletons of Lagrangian particle dynamics. LCS’s are
considered as ridges of the FTLE field in many engineering
applications [32].Manifolds or material lines are produced by
these ridges. FTLEs and LCSs can help scientists understand
flow transport behaviors. The uniqueness and time depen-
dence of these manifolds are generated by their invariance
and its interaction with each other is mainly effective for fluid
mixing. A flow map is to be defined for fluid particles from
a position at time t0 to the region after a finite time interval
T at (t0 + T ). The initial point of an individual particle at t0
is x(t0) = x0, the particle after a time T is expressed by the
flow map

φ
t0+T
t0 (x) : x(t0) 7→ x(t0 + T ). (27)

FTLE can be defined as given

σ tt0 (x0) =
1

2(t − t0)
lnλmax(t, t0, x0), (28)

where λmax(t, t0, x0) is the eigenvalue of the deformation-
gradient tensor field(also known as a Cauchy-Green strain
tensor)

∑
t (x0, t0) which is described by the following

expression∑
t

(x0, t0) =
[∂x(x0, t)

∂x0

]T [∂x(x0, t)
∂x0

]
. (29)

By defining the FTLE, it is revealed that repelling(attracting)
LCS corresponds to maximizing curves and ridges of the
FTLE field computed in forward(backward) time. The distri-
bution of FTLE in the flow field is obtained and the contours
that will visualize LCS’s in the flow field are plotted. The
FTLE based detection scheme is also capable of detecting
barriers which are linked to surviving KAM invariant tori.
Barriers of this type are associated with regular motion and
thus are characterized by a generally narrow band of anoma-
lously small values of FTLE.

IV. NUMERICAL METHOD FOR FLOW AROUND
AN AIRFOIL AND DISCUSSION
Flow is incompressible and the governing Navier-Stokes
equations can be expressed as

∂ui
∂xi
= 0, (30)

∂ui
∂t
+ uj

∂ui
∂xj
= −

1
ρ

∂p
∂xi
+ υ

∂2ui
∂xj∂xj

= 0, (31)

where ui, ρ, p and υ are the velocity components, density,
pressure and kinematics viscosity respectively.

Dimensionless parameters of these quantities can be
written as

ũi =
ui
U
, x̃i =

xi
c
,

t̃ =
Ut
c
, p̃ =

p
ρU2 ,
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where ρ = 1 for incompressible flow. The non-dimensional
form of the governing equations is defined as

∂ ũi
∂ x̃i
= 0,

∂ ũi
∂ t̃
+ ũj

∂ ũi
∂xj
= −

∂ p̃
∂ x̃i
+

1
R e

∂2ũi
∂ x̃j∂ x̃j

,

where R = Uc
ν
, c is the characteristics length of airfoil,

U the velocity of free stream. The non-dimensional symbol
‘‘∼’’ of the variables in the above equation is dropped for
convenience.

The dual time-stepping technique of recovering numerical
solutions to transient flow around an airfoil is standard and
explained by P. Nithiarasu [33]. The pseudo time is intro-
duced that can iterate the solution in each real-time step.

The momentum equation can be defined as

∂ui
∂t
+
∂ui
∂τ
+ uj

∂ui
∂xj
= −

∂p
∂xi
+

1
R e

∂2ui
∂xj∂xj

= 0, (32)

where t is the real-time and τ is the pseudo time. The pseudo
time step is used to accelerate the solution to a steady-state
quickly. It addresses the addition of real-time term to the
correction stage to progress in real-time.

The Navier-Stokes equations have non-linear convective
terms which can leads to numerical oscillations by introduc-
ing the Galerkin finite element method. By eliminating the
convection term, the numerical oscillation can be avoided.
This problem can be tackled by introducing the CBS method.
Further, discretization is applied along the characteristic line
of the equation. The CBS algorithm can be derived in the
following three steps.

Step I:

u∗i = uni +1τ
[
− uj

∂ui
∂xj
+

1
Re

∂2ui
∂xj∂xj

]n
+
1τ 2

2
unk

∂

∂xk

(∂(ujui)
∂xj

+
1
Re

∂2ui
∂xj∂xj

)n
. (33)

Step II:

θ
∂

∂xi

(∂p(n+1)
∂xi

)
=

1
1τ

∂

∂xi

(
u∗i − (1− θ )

∂pn

∂xi

)
. (34)

Step III:

u(n+1)i − u∗i = −1τ
∂p(n+θ )

∂xi
−1τ

3uni − 4uNi + u
(N−1)
i

21t
,

(35)

where 1τ and 1t are the pseudo and real-time, respectively.
θ ∈ [0, 1] is the control parameter. And N and n are the
pseudo and real-time steps, respectively.

Finally, the standard finite element method can be easily
applied to the Eqs. [32]–[34].

FIGURE 4. Computational mesh local view.

V. NUMERICAL RESULTS AND DISCUSSIONS
Consider a two-dimensional airfoil, NACA0012, flow is sim-
ulated numerically, and the Reynolds number is taken as
5000 which is based on the chord of the airfoil. No-slip
boundary condition is taken on the airfoil surface, and the
boundary condition on the boundary of the flow field is a
velocity boundary condition that is set to U. The local view
of fine mesh NACA0012 airfoil is shown in Fig. 4.

In order to ensure the high requirements in mesh quality,
three types of meshes, which are obtained by the Easymesh
program, are used at angle of attack 6◦. As expected, the sep-
arated region begins farther upstream as angle of attack is
increased. A closer inspection of such manifolds will show
another trend. For our purpose it has been determined that
the 0-9 angle of attack presents the most illustrative cases
for vortex formation. As shown in Table 1, it can be seen
that all of the mean lift coefficients obtained from three types
of meshes are close to each other. Mesh 2 is chosen as the
computational mesh in following studies.

TABLE 1. Lift coefficient at α = 6◦ and Re = 5000.

A. VERIFICATION OF NUMERICAL METHOD
In Fig. 5, lift coefficient (Cl) is shown for the various angle
of attack and good alignment with the experimental data [34].
It is observed that values of Cl are uniformed with the exper-
imental value within the range of angle of attack (AOA)
between 0◦ − 9◦. Our results simulation complies well with
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FIGURE 5. Variation of lift coefficient (Cl ) for various angle of attack.

FIGURE 6. Distributions of pressure coefficient at various angle of attack.

the previous research work and hence the present method is
validated.

B. COEFFICIENT OF PRESSURE DISTRIBUTION
Figure 6 displays the pressure coefficients classification over
the upper and lower surfaces of the NACA0012 airfoil at a
different angle of attack. From Fig. 6, this is noticed that as
the angle of attack raised, suction manages increasing on the
leading edge of the upper part of the airfoil and its peak curve
position reaches to the leading edge.Moreover, the stagnation
point of the airfoil at Cp = 1 with 0◦ angle of attack over the
leading edge is deranged downstream from the airfoil on the
lower surface, while at a 6◦ angle of attack, the stagnation
point is located on the lower surface. Coefficients of pres-
sure distribution is validated by Swanson and Langer [35]
as shown in Fig. 7. Our results are in good agreement with
the experimental data which shows that the presented algo-
rithm is efficient for studying the transient flow over the
airfoil.

C. FORMATION OF SEPARATION BUBBLE
Figure 8 displays the repelling and attracting LCSs over
NACA0012 airfoil, the red lines denote the unstable

FIGURE 7. Pressure distribution literature comparison with the present
method.

FIGURE 8. Contour plots of separation bubble structure.

FIGURE 9. Contour plots of FTLE over airfoil displaying stable (blue) and
unstable (red) manifolds.

FIGURE 10. Schematic diagram of stable and unstable manifolds near the
surface of airfoil (The red and blue lines denote the unstable and stable
manifolds respectively).

manifolds, and the blue lines the stable manifolds. Trans-
port barriers of repelling LCSs divided the upward flow
into two parts. The flow adjacent to the airfoil is trans-
ferred into the separation bubble to form a vortex shedding.
Thereafter, a number of flow particles from upstream with
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FIGURE 11. Contour plots of stable and unstable manifolds near the surface of airfoil (a) t = 0T, (b) t = 0.35T, (c) t = 0.70T and (d) t = T in a period.

immense kinetic energy would be transferred into the separa-
tion bubble. From Fig. 8, vorticity is carried into the separa-
tion bubble in addition to the fluid transport. P is considered
as the separation point and R is the reattachment point of the
flow.

D. STABLE AND UNSTABLE MANIFOLD OF AIRFOIL
The detailed discussion of area or lobes of definite particle
mixing is explained by the stable and unstable manifolds.
Therefore, a thorough understanding of the flow topology,
it is required to combine the two to know how they merge.
Stable and unstable manifolds combinations will uncover the
true vortex boundaries, regions where entrainment is viable
with a time-dependent profile of the separation bubble. The
limited time evolution of the manifolds is shown in Fig. 9.
For this case, we have computed the cognizant structure of
the unstable manifolds with a contour map of the FTLE, and
further enclosed a clipped contour map of the stable mani-
folds. Overall a thorough map of the manifolds is expressed
in vortex shedding. Mostly, manifolds encounter and occa-
sionally overlap. It validates that the flow boundaries are
the mixture of stable/unstable manifolds. The more readable
and complex behavior occurs inside the separation bubble.
It is displayed in schematic Fig. 10. The stable manifold P
divides the fluid near the leading edge of the airfoil into two
regions I and II. The fluid in the region I flow over the airfoil
to the downstream, and the fluid in region II flows beneath

the airfoil. Region III is the energy exchange region between
the separation bubble and the main flow I.

In Fig. 10, the impact of manifold S3 can be seen. This
manifold segregates the creation of region from the whole
flow except the inlet during vortex formation. The novel
vortices would show their stability from S3 and separate it.
With time changes, manifolds S1, S2 and S3 adopt more
defined as S4 is eroding. Hence, manifold S3 has lessened its
defining shape, on the other hand, S1 and S2 manifolds have
attained original shapes. Here, the formation of manifolds in
action is generated. S1, S2, S3 and S4 are forming manifolds
periodically that separate pairs of vortices from each other.
This evolution of manifolds is continuously working and no
longer contain their initial features.

Figure 11 shows the changes of stable/unstable manifolds
and the position of the particles around the surface of the
airfoil in a period. The farthest upstream unstable manifold
which attaches to the airfoil is the separation point in the flow.
This manifold is well defined and observed to be largely time
invariant. The manifolds coincide with forming vortices and
have a well-defined structure, form an attachment between
the vortices. Finally, we have found that the reattachment
profile periodically develops and propagates downstream to
be shed with a vortex as a new reattachment profile forms
upstream.

Following the physical meaning, LCSs and KAM tori can
be considered as the boundary or barriers of the flow area. The
method which is briefly described to identify tori is based on
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the calculation of FTLE in forward and backward time. This
method is defined to identify KAM tori like LCSs is apparent:
these structures are described as trenches of FTLE fields that
cohere in forward/backward time calculations.

VI. CONCLUSION
In the present analysis, we show the significance of KAM
tori and the associated robust transport barriers. From the
dynamical presepective, Lagrangian behavior of fluid is stud-
ied extensively. We also performed the flow topology for low
Reynolds number, unsteady flow in the wake of an airfoil.
The transport process in terms of Lagrangian dynamics has
been analyzed based on KAM theory, stable and unstable
manifold structures, and LCSs. We have used a numerical
technique applicable for the detection of invariant manifolds
of hyperbolic trajectories. The applied technique is based
on the calculation of FTLE. We give additional insight into
vortex shedding phenomena based on Lagrangian coherent
structures (LCSs). There is not much research on the compre-
hensive mass transport phenomena near the wake of the air-
foil. The present work focuses on the complete mass transport
and mixing phenomena which would show more intuitively
and concretely from the Lagrangian point of view. The impor-
tance of the process on the stable and unstable manifolds
near the airfoil are analyzed in depth. The results show that
stable and unstable manifolds could be mixed with each other
as time evolves, and the KAM tori are generated to induce
the transport process between the main flow and separation
bubble. We have also examined that the mixing of unstable
and stable manifolds can be used to detect vortex bound-
ary. These manifolds can be used to trace vortex shedding,
development, and evolution. As a result, it is concluded that
Lagrangian analysis based on LCSs would give a deep insight
into the dynamics of a vortex, which plays a significant role
in understanding the unsteady aerodynamics of fluid flow.
A comprehensive explanation of the mass transport process
can contribute a new perspective for the investigation of the
transient fluid flow.
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