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ABSTRACT Recently, the increase in inexpensive and compact unmanned aerial vehicles (UAVs) and light-
weight imaging sensors has led to an interest in using them in various remote sensing applications. The
processes of collecting, calibrating, registering, and processing data from miniature UAVs and interpreting
the data semantically are time-consuming. In UAV aerial imagery, learning effective image representations
is central to the scene classification process. Earlier approaches to the scene classification process depended
on feature coding methods with low-level hand-engineered features or unsupervised feature learning. These
methods could produce mid-level image features with restricted representational abilities, which generally
yielded mediocre results. The development of convolutional neural networks (CNNs) has made image
classificationmore efficient. Due to the limited resources in UAVs, it is hard to fine-tune the hyperparameters
and the trade-offs between classifier results and computation complexity. This paper introduces a new
multi-objective optimization model for evolving state-of-the-art deep CNNs for scene classification, which
generates the non-dominant solutions in an automated way at the Pareto front. We use a set of two benchmark
datasets to test the performance of the scene classification model and make a detailed comparative study.
The proposed method attains a very low computational time of 80 sec and maximum accuracy of 97.88%
compared to all other methods. The proposed method is found to be appropriate for the effective scene
classification of images captured by UAVs.

INDEX TERMS Unmanned aerial vehicle, particle swarm optimization, deep learning, convolutional neural
networks, machine learning, internet of everything, aerial images, smart environment.

I. INTRODUCTION
Recently there has been a lot of interest in autonomous
unmanned aerial vehicles (UAVs) and their applica-
tions, which include search-and-rescue, surveillance and
reconnaissance, and examination of infrastructure [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Moayad Aloqaily .

Landcover classification is a significant element of UAV
applications, and it is difficult to build entirely autonomous
systems. The object detection task is highly composite, and
the demands for reduced costs are also challenging. Owing
to the motion of UAV, the images are blurred, with noisy
frequencies, as the on-board cameras frequently produce
low-resolution images. In numerous applications of UAVs,
the detection task is highly complex due to the requirement
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for practical performances. There has been a lot of research
on UAVs dealing with attempts to track and find particular
objects, kinds as vehicles, landmarks, landing sites, and
people (including moving pedestrians) [3]. However, there
exist some works which assume multiple object detection [4]
because multiple target object detection is important for
numerous UAV applications. The gap between the require-
ments of the application and the technical abilities exists
because of two crucial constraints: (i) it is complex to con-
struct and save various models of target objects and (ii) huge
computing power is required for practical object detection
even for a single object.

Aerial imagery classification of scenes categorizes the
derived aerial images into subregions by masking numer-
ous ground objects and kinds of landcover into various
semantic types. And, for numerous real-time applications of
remote sensing, like urban planning, computer cartography,
and management of resources, aerial image classification
is highly significant [5]. Commonly, a few similar object
classes or kinds of land cover are shared between various
types of scenes. For instance, residential and commercial are
two major types of scenes that might include trees, buildings,
and roads; however, there are differences in the spatial dis-
tribution and density of the three classes. Therefore, in aerial
scenes, classification based on structural and spatial pattern
complexity is a difficult problem. The usual approach is to
build a holistic scene representation for the classification of
the scene. In the remote sensing community, one well-known
method for scene classification problem solving is bag-of-
visual-words (BoVW). It was created for analysis of the text
that designs a document through the frequency of words.
To recognize images through the number of occurrences of
‘‘visual words’’ that were generated through local feature
quantizing, the bag of words (BOW) model is used with
a clustering technique. BoVW model is a version of BoW
model to image analysis, where every image is defined as
an orderless et of visual words from a visual dictionary by
a histogram of the visual words [6], [7].

Spatial information is disregarded by assuming the rep-
resentation of the BOW, using numerous variant tech-
niques [7]–[9], depending on the BOW model that had been
built for enhancing the capability to demonstrate the local
feature spatial relationships. The performance of BOW-based
techniques depends on the handcrafted local feature extrac-
tion, for instance, the color histogram [10], texture features,
and local structural points [11]. The process of unsupervised
feature learning (UFL) is used by a few researchers [12].
It is used to identify appropriate internal features in a huge
amount of unlabeled data through certain unsupervised learn-
ing techniques instead of engineered features, achieving
superior aerial scene classification. Though it seems that the
aerial scene classification performance has only been slightly
enhanced through an effective model of minor variants,
that is mainly due to the inefficient traditional techniques
of producing powerful feature representations sufficient for
aerial scenes. The UFL and BOW techniques produce feature

representations in the middle format for a definite limit.
Hence, highly representative abstractions are needed
for classifying the scene, which would also maximize
low-level features, and which might demonstrate high
discrimination.

Deep learning (DL) techniques [13], [14] have been very
useful for solving conventional problems like object detection
and recognition, natural language processing, and speech
recognition, and also in numerous real-time applications.
In many fields, this technique is much more effective than
standard procedures, and it has attracted much interest in
industrial and educational groups. The method of deep learn-
ing tries to derive common hierarchical feature learning with
respect to various abstraction levels. Deep convolutional neu-
ral networks (CNNs) [7], [15] are the most common method
of deep learning. Today, this technique is well-known and
very successful in many detection and recognition tasks,
yielding better results than a count of standard datasets.

In image classification, CNNs have been popular in
recent years because they allow superior classification accu-
racy [34]–[38]. For industrial use, it is hard to adapt the
standard deep CNNs because of the complexity of manu-
ally fine-tuning the hyperparameters and trade-offs among
computational cost and classification accuracy. There has
been researched on minimizing the computational cost [16].
In UAV aerial scene classification, complexity of standard
CNNs has been reduced [17]. A specific kind of CNN struc-
ture is selected to reduce the search space, and a small search
space is formulated using special expert domain knowledge.

Keeping in mind the issues that exist in the earlier models,
the objective of this paper is to derive an effective scene clas-
sificationmodel based on the optimizedDLmodel. This work
introduces a newmulti-objective particle swarm optimization
(MOPSO) model for evolving state-of-the-art deep CNNs in
scene classification that generates the non-dominant solu-
tions in an automated way at the Pareto front. This method
helps to achieve a trade-off between the inference latency
and classification accuracy, known as multiobjective CNN
(MOCNN). For superior performance in UAVs, the CNN
hyperparameters are adjusted automatically by MOCNN and
placed into a trained model. TheMOPSO technique would be
built to find Pareto front model specifics. The validation of
the presented model takes place in two open access datasets,
the UC Merced (UCM) Land Use Dataset and the WHU-RS
Dataset.

The paper contributions are listed as follows.
• Develop an effective scene classificationmodel based on
the optimized DL model

• Design a new multi-objective particle swarm optimiza-
tion (MOPSO) model for scene classification

• Perform CNN hyperparameters are adjusted automati-
cally by MOCNN algorithm

• The MOPSO technique would be built to find Pareto
front model specifics

• Validate the experimental results against two open
access datasets namely UCM and WHU-RS dataset.
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The paper is structured as follows. A few standard tech-
niques of scene classification are reviewed in Section 2. The
proposed model is presented in Section 3. Section 4 summa-
rizes the experimental outcomes. Finally, Section 5 presents
the conclusions.

II. RELATED WORK
Research has been done on classifying the scenes captured
by UAV. BOW is one model that is frequently used for
scene classification. Initially, the local features of an image,
such as scale-invariant feature transform (SIFT) parameters,
are extracted and encoded toward the adjacent visible word.
Hence, the last image representation is considered to be a
histogram in which all bins count the incidence frequency for
local features. Numerous studies have proposed improvised
versions of BOW based on specific features of aerial scenes.
Al-Turjman et al. [18] introduced the spatial co-occurrence
kernel (SCK), which explains the spatial distribution of visual
words. Ye et al. [19] introduced a conversion, as well as a
rotation-invariant pyramid-of-spatial-relations (PSR) method
to explain relative and absolute spatial relationships of local
features. Zhao et al. [8] devised a concentric-circle-structured
multi-scale BOW (CCM-BOW) technique, which is used
to attain rotation invariance. Next, Cheng et al. [20] intro-
duced a rotation-invariant model by applying collections of
part detectors (COPD), which acquire the visual portions
of images. Though they achieve superior performance, they
are generally the extended versions of the traditional BOW
model, and it is hard to improve the results because of the
restricted representative’s ability of the low-and mid-level
features.

Unsupervised feature learning (UFL) is popular among
the researchers and machine learning (ML) communities.
The UFL method learns the features from a massive number
of unlabeled samples in an automated way. It can identify
the most relevant data captured by the corresponding infor-
mation. Cheriyadat [21] used a sparse coding method to
understand the sparse local features from image scenes and
to pool local features to produce the image representation.
Zhang et al. [22] make use of a traditional neural network
(NN) known as a sparse autoencoder, which trains a set of
selected image patches and which is tested using the saliency
degree to filter local features. Coates et al. [12] enhanced the
traditional UFL pipeline using the learned features. Though
the UFL methods are handcrafted features, there is room for
improvement because of the shallow learning architectures.

The familiarity of CNN is useful in diverse application
areas. LeCun et al. [14] started a model for training the CNN
structure using the backpropagation technique and attained
satisfactory performance in character recognition. Recently,
CNN has been frequently used in the computer vision com-
munity. At the same time, it is difficult to provide training for
a deep CNN that has a large number of attributes, such as is
often used for specific tasks, using less amount of training
samples. Research has been done to extract the intermit-
tent features from deep CNNs that underwent training on

adequately large-scale datasets, like ImageNet, which is used
for a broader view of visual recognition processes, namely
scene classification [13], object identification, and image
retrieval.

Roughly, all experiments are done with CNN activations
from fully connected layers and with features from the con-
volutional layer, which is often overlooked. Cimpoi et al. [23]
reported better results with examining texture through pool-
ing CNN attributes derived from convolutional layers and the
Fisher coding process. The use of CNNs for scene classifi-
cation for UAVs is yet to be investigated in detail. In [24],
a pre-trained CNN is applied and tuned thoroughly on a
scene dataset exhibiting superior classifier results, whereas
the pretrained CNN model is transferred to scene datasets
lacking training modalities. In [25], the generalized potential
of CNN features derived from fully connected layers under-
went testing while classifying remote sensing images, and
offered better results than the comparablemethods in the open
access scene dataset.

Though severalmethods for UAV image classification have
been available in the literature, there is still a need to impro-
vise the classification performance. At the same time, some of
the methods have offered better results on a particular dataset
and have not been applied on a large dataset. Therefore,
in this study, a new UAV image classification model using
MOPSO has been developed.

III. THE PROPOSED METHOD
This paper proposes a technique of the MOPSO algorithm to
manage a trade-off between the inference latency and clas-
sification accuracy that is known as MOCNN. For superior
performance inUAVs, the CNNhyperparameters are adjusted
automatically by MOCNN and placed into a trained model.
A MOPSO technique would be created to find Pareto front
model specifics. Hence, depending on target devices and the
image classification task, a highly appropriate model for a
UAV is derived. The entire procedure involved in this work is
shown in Figure 1. As shown in the figure, the UAV captures
the videos, which are then divided into a set of frames.
Then preprocessing of the video frames is done, allowing
further processing. Afterward, training takes place using opti-
mal multi-objective particle swarm optimization (OMOPSO)
with CNN. Once the training process is completed, a model
is derived. During the testing phase, the CNN-based model is
executed, and the provided input image undergoes effective
scene classification.

A. PREPROCESSING
The scenes captured by the image sensors in a UAV might
be not clear in some cases. If the color of an object is vari-
able, image segmentation techniques allow the frame to be
segmented into target regions and other objects. Through the
subsequent steps, the possible object areas undergo additional
processing. This phase allows the frame region to be pro-
cessed, and, in a few instances, to filter or skip the frameswith
no possible object areas. Hence, this method offers superior
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FIGURE 1. The overall process of the proposed method.

object localization and minimizes computation time. With
a sliding window, in the HSV color space, a frame might
be scanned in the preprocessing phase, and every window
would be checked through saturation window component
thresholding thsat (V ). The thresholding is done according to
the following equation:

thsat (V ) = 1.0−
0.8V
255

(1)

where V is the intensity component rate. When the saturation
component rate is higher than or equal to thsat (V ), the pix-
els are determined with respect to that object. In this case,
the window does contain an object.

B. PROPOSED IMAGE CLASSIFICATION ALGORITHM
Once the images are preprocessed in the previous stage, the
classification process will take place using MOCNN model.
The proposed MOCNN framework consists of three phases.
The first phase is initializing the defined population based
on the proposed particle encoding scheme. For two objective
optimizations, the multi-objective PSO technique known as
OMOPSO [26] is used in the subsequent phase. Finally, in the
Pareto set, the non-dominant solutions are derived from the
original CNNs; the user may select one based on what is
needed. The entire system structure is shown in Figure 1.
The dataset is divided into a test set and a training set, and
the set subjected to training is further segmented into test and
training parts. The test and training parts are then subjected
to the proposed OMOPSO technique. While the objective is
evaluated, the testing part is used to improve testing accuracy,

and the training part is used to train the NN that is used as
the classification accuracy objective. Non-dominant solutions
are created through the proposed OMOPSO technique that
is used to optimize CNN frameworks. For actual use, one
non-dominant solution might be chosen based on the trade-
off between the hardware resource ability and classification
accuracy. For the chosen CNN framework, the evaluation
requires fine-tuning, and the entire test and training sets are
used to derive the end classification accuracy.

1) THE PSO ALGORITHM
Initially, PSO had evolved from swarm behavior, like in fish
schools and bird flocks. PSO received increasingly more
attention and became a wide field of study known as swarm
intelligence. This technique is used to search the space of
an objective function by modifying the trajectories of single
agents, termed particles, which have piecewise paths gener-
ated by a positional vector in a quasi-stochastic manner.

The trend of a swarming particle has two main units: a
stochastic unit and a deterministic unit. Every particle is
based on the position of the current global best g∗ and the
corresponding best location x∗l , while it includes a random
movement. Assume that xl and vl are the vectors of, respec-
tively, position and velocity of particle l. A new velocity
vector is computed using the function below [13].

vz+1l = vzl + αε1
[
g∗ − xzl

]
+ βε2

[
x∗l − x

z
l

]
(2)

where ε1 and ε2 are random vectors, and all entries are
assigned values from 0 and 1. The parameters α and β are
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referred to as learning measures and can be represented as
α ≈ β ≈ 2.
The initial position of every particle is shared in an iden-

tical fashion, which can be sampled in several regions. This
is considered vital in several issues. The primary velocity of
a particle is assigned to 0, that is, vz=0l = 0. Hence, the new
positions are found by

xz+1l = xzl + v
z+1
l (3)

Though vl has different values, it is often bounded
by [0; vmax].

There are several well-known variants that expand on the
PSO technique, and a useful adjustment is to exploit the
inertia function θ (z), so that vzl is substituted by θ (z)v

z
l :

vz+1l = θvzl + αε1
[
g∗ − xzl

]
+ βε2 �

[
x∗l − x

z
l

]
(4)

where θ consumes the values from 0 and 1. In a simple case,
the inertia function is considered a constant, generally θ ≈
0.5 ∼ 0.9. It is used both to establish the virtual mass and to
retain the movement of the particles, and it converges rapidly.

2) PARTICLE ENCODING STRATEGY
The hyperparameters that need to be optimized in the
DenseNet are the block count and the layer count in every
block, and every block’s growth rate. A vector with two
lengths can represent the growth rate and layer count for every
block. With the block count × fixed length of 2, the growth
rate and layer count in every block might be encoded when
the block count is described. Vector examples that carry
out the DenseNet hyperparameters with 3 blocks are shown
in Figure 2.

FIGURE 2. An example of a particle vector.

The block count needs to be configured initially as deter-
mined through the proposed encoding scheme. This gives
two benefits. Initially, with fixed dimensions, the OMOPSO
might be effectively working over a consequent search
space; the hyperparameters of the DenseNet are encoded into
fixed-length vectors after fixing the block counts wherever
OMOPSO might be used. In the search space, when the
ith particle block shifts to the optimal position while car-
rying out the OMOPSO evolutionary operators, the block
count is fixed. When carrying out OMOPSO, one method
to resolve the issue is to combine the hyperparameters to
create fixed-length particles. When the block counts are not
fixed, that might create many disturbances within the search
space through the concept of breaking every block to the best
location. Another way is to shift the matched blocks to their
best location; this reduces the flying particles by maintaining
a few blocks in previous positions. Hence, the simpler and

more efficient solution is to fix the block counts through the
proposed encoding method.

3) POPULATION INITIALIZATION
Depending on the hardware resource capability and network
efficiency, every dimensional range needs to perform initially
before population initialization. When a layer count within a
block is small—for instance, when the layer count is smaller
than 2—there would be connections of shortcuts constructed
within a dense block, and smaller feature map counts, that is,
a smaller growth rate would not be created either efficient fea-
ture maps. At the same time, when the growth rate and layer
count are high, the hardware resources needed to execute the
experiment might exceed the actual hardware capacity. For
every dimension, the particular range of the experiment can
be modeled. The primary population is produced randomly
based on the dimensional range. A random value is generated
between the primary dimension and the end dimension. The
entire primary population with fixed size is produced through
the individual generation procedure, repeating until the size
of the population is satisfactory.

4) OBJECTIVE EVALUATION
In MOCNN objective evaluation, when the proposed
MOCNN simultaneously optimizes classification accuracy,
it is estimated and returned as individual objectives. The
training dataset is divided into two segments, the test part and
the training part, deriving the classification accuracy prior to
individual training using a DenseNet with certain hyperpa-
rameters, and using the technique of backpropagation. In the
training part, the individual is trained and examined through
the test part with an adaptive learning rate known as the Adam
optimization. The default environmental setup consists of two
exponential decay rates, β1 = 0.9 and β2 = 0.999; the learn-
ing rate or step size α = 0.001; and a constant, ε = 10E − 8,
indicating a very small number, which prevents any division
by zero in the implementation. The optimization goal of the
projected MOCNN is a classification accuracy enhancement;
FLOPs are estimated for each individual according to com-
putational cost, which becomes the next goal, so that the
proposed MOCNN can attempt to reduce the FLOP counts.

Since CNN training time is high compared to estimating
FLOPs, two techniques can be used to minimize the compu-
tational cost of deriving the classification accuracy. To min-
imize the training process epochs, a terminating condition
is executed when there is no improvement in accuracy in
about10 epochs. This minimizes the training time.

Searching CNN frameworks is efficient because the com-
plexity of various individuals might vary significantly. Dif-
ferent numbers of epochs may be needed to fully train the
various individuals. For instance, the CNN framework might
be simpler with one or two layers with a small feature map
count; in this case, a small number of epochs is required for
CNN training. Or the CNN frameworkmight be a composite a
huge feature map count and hundreds of layers in every layer,
and more epochs would be needed to train the complicated

VOLUME 8, 2020 135387



A. Rajagopal et al.: DL Model Based on MOPSO for Scene Classification in UAVs

FIGURE 3. The infrastructure used to boost the experiment.

CNN entirely. For training CNNS with different levels of
complexity, it is difficult to assign a fixed number of epochs
needed through objective evaluation.

The proposed MOCNN sets epoch counts that are high
enough to entirely train the highly composite CNNs in the
search space, and uses the condition of early termination to
terminate the training process to reduce computational costs.
In every generation, each individual is examined through the
evaluation of objectives, and many CNNs are examined over
the entire evolution process. Between that, it might represent
the individuals as the similar frameworks of CNN trained
duplicate and examine. In order to prevent the similar CNNs
from duplicate training, for every individual, the derived
classification accuracy can be saved in the memory prior to
the completion of the program and loaded at the beginning of
the program. Prior to individual training in objective evalua-
tion, an individual search of saved classification accuracy is
carried out initially, and training is done if the search yields
no results. Adam optimization is selected as a technique of

backpropagation, and the entire training dataset is used for
CNN evaluation.

C. INFRASTRUCTURE USED TO BOOSTTHE MOCNN
The evaluation of the objective is a bottleneck for the pro-
posed MOCNN technique, and deriving the classification
accuracy through evaluating and training the individual is also
a bottleneck. A simple and general objective evaluation can
be executed using one GPU card for every individual. One
technique to enhance the CNN training performance is to
influence the functionality of multi-GPU through the widely
used method of CNN training over multiple GPUs to increase
the training speed. We propose a structure for reducing the
time cost of the proposed MOCNN, shown in Figure 3,
which can influence all accessible GPU cards over numerous
machines to perform subsequent objective evaluations of the
individual batch. The relevant Python library is built and
available as open source. The framework contains a server
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FIGURE 4. Sample images from the UCM dataset.

group executing that is derived at framework top with three
boxes that are machines, wherever the two GPU cards are
derived over every box.

A socket server is running on every GPU card to manage
the requests and listen the client. A CNN that needs to be
examined might be moved to the server from the client, and
the training is done by the server that examines the CNN.
Then the classification accuracy is returned to the client.
There are two reasons to use one GPU card in spite of using a
full box as a socket server. As the practical framework proba-
bly has hardware boxes with different numbers of GPU cards
installed, when the full box is being used as a socket server,
every socket server has a different capacity from every other.
The computational cost of individual training is probably the
same when the proposed MOCNN and the individual batch
are similar to the socket server count that might be transmitted
to the server clusters for evaluation of the objective.

The client wants to gather the outcomes of batch evaluation
while all the individuals within the batch are evaluated to

maintain the order of the individual evaluation results so that
it is the same as transmission. It is important to manage the
socket server’s capacity to minimize its idle time. While the
client is still waiting for the batch evaluation to be finished,
a few higher-capacity socket servers might finish earlier.
The efficiency of the multi-GPU mode is based on certain
structures, and a few structures cannot attain the multiple
GPU optimal usage, mostly because resources need to be
distributed securely through numerous program threads while
examined with one thread. If every GPU card is used as a
socket server, shared resource handling is not a problem;
hence, the GPU is used efficiently. In the middle of the
structure, there is a server cluster manager; for instance, a
server proxy that handles the objective evaluation concur-
rency through the socket server cluster.

All the CNNs receive the proxy server, which must be
examined and saved as the CNN pool. In the cluster, all
the socket servers find the availability of the server proxy.
It depends on the number of available servers, and it derives
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FIGURE 5. Sample images from the WHU-RS dataset.

the unevaluated CNN batches, in which it is similar to the
server availability and shared every CNN within the batch
simultaneously to the socket servers available. For the whole
CNN, the proxy server waits to gather the evaluation out-
comes that might be joined with the CNNs. Through the
repetition of the steps, the entire CNNs offer the classification
accuracy joined to it and the evaluated CNNs are returned to
the client.

To influence the use of multiple GPU cards on numerous
machines, a technique that has an objective evaluation of
CNN counts might function as a client. Many concurrent
operations are managed through the server cluster and proxy.
The client usage is direct, and all the CNNs need to be
sent to the server proxy and wait for the response from the
server proxy. The full EC technique executes as a client
that is a major part of the program. In the entire popula-
tion, individuals are sent to the server proxy at the start of
every generation. The major program using the EC technique
may continue when the evaluated individuals are returning
from the server proxy. The proposed technique is executed
in a similar way to executing on a distinct machine, and

adjustments are transmitted to the individuals through the
objective evaluation server proxy in spite of CNN evaluation
through itself.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section investigates the significant characteristics of the
proposed method using a set of two datasets. The proposed
method is implemented using the Python programming lan-
guage in a PC Intel(R) Core (TM) i7-7500 CPU at 2.70GHz,
with 8GB and 1TB HDD. Different tests have been carried
out. In addition, a comparative study with the existing models
was also made.

A. DATASET
The presented model was tested on two open access datasets,
the UC Merced (UCM) Land Use Dataset and the WHU-RS
Dataset. The details are provided in Table 1.

1) UCM DATASET [7]
The data have been gathered manually from large
aerial orthoimagery consisting of 21 different types of
scenes. Every class contains 100 images of varying sizes
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TABLE 1. Dataset details.

of 256 × 256 pixels, and the pixel resolution is around
one foot. Figure 4 shows sample images from the UCM
dataset. Note that the UCM dataset exhibits very small inter-
class diversity between some classes, which contain identical
objects or identical textural patterns. This makes this dataset
more challenging.

2) WHU-RS DATASET [27]
The data are gathered from Google Earth (Google Inc.),
an open access dataset containing 950 imageswith a pixel size
of 600 × 600 pixels, uniformly distributed among 19 scene
classes. A few sample images are presented in Figure 5.
An obvious difference in brightness, scalability and resolu-
tion creates a harsher platform than the UCM dataset.

B. RESULTS ANALYSIS
Compared to the various pre-trained CNN models [15],
the proposed method performs as shown in Figure 6. The
attained higher classifier accuracy indicates the effective
capability of classifying pre-trained CNNs towards scene
datasets. Two datasets were used, UCM and WHU-RS.
For the UCM dataset, PlacesNet had a lower accuracy rate
of 91.44%. The VGG-VD networks came short of desired
outcome, obtaining 93.15% for VGG-VD19 and 94.07% for
VGG-VD16. This is despite the fact that these networks have
many layers and perform well with numerous natural image
classification standards compared to shallow CNN models.
The other methods, like VGG-M, VGG-F, CaffeNet, and
AlexNet, performed well whereas the VGG-S performed bet-
ter, attaining 94.60%. However, the proposedmethod attained
the highest accuracy of 95.32%.

For the WHU-RS dataset, PlacesNet had a lower accuracy
rate of 91.73%, as shown in Figure 7. The VGG-VD net-
works did not attain the desired outcomes, obtaining 94.36%
for VGG-VD19 and 94.35% for VGG-VD16. The other
methods, like VGG-M, VGG-F, CaffeNet, and AlexNet, per-
formed poorly. VGG-S performed better, attaining 95.46%.
The proposed method had the highest accuracy of 96.84%.

PlacesNet failed to outperform AlexNet with natural scene
datasets, performs the worst, mainly compared to AlexNet,
when textural and structural patterns within scenes are very
different from the actual scenes.

In the UCM dataset, the computation time of CNN features
was examined with every pre-trained CNNmethod, as shown
in Figure 8. CaffeNet, PlacesNet, AlexNet, and VGG-F took
more or less the same computation time because their frame-
works are similar. Their computation time was 90 seconds.
VGG-VD19 and VGG-VD16 took more computation time
than the other models, as they have a large number of layers.
Their computation time was 500 seconds and 410 seconds,
respectively. VGG-S and VGG-F did not perform impres-
sively. The proposedmethod had the lowest computation time
of 80 seconds.

Table 2 presents the results and classification accuracy
attained with different other recently proposed standard tech-
niques with the UCM dataset. GoogLeNet+Fine-tune adjusts
the pre-trained CNN using the target dataset and derives
CNN activations directly through image feeding, with no
modification, in pre-trained CNN parameters. Our method
performed considerably better with the WHU-RS dataset.
For both public benchmark datasets, superior classification
results were obtained.

TABLE 2. Comparative accuracy analysis with various models.

The SCKmethod had a poor accuracy of 72.52%.SPM and
SPCK++ were the next worst performers, with respectively
74% and 77.38%. SG+UFL and CCM-BOVW both had an
accuracy of 86.64%, whereas DenseNet had an accuracy
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FIGURE 6. Comparative accuracy analysis of different CNN models using
the UCM dataset.

FIGURE 7. Comparative accuracy analysis of different CNN models using
the WHU-RS dataset.

FIGURE 8. Comparative computation time analysis of different CNN
models.

of 89.21%. Dirichlet, CaffeNet, and VLAT had accuracies
of 92.8%, 93.42%, and 94.3%, respectively. Other meth-
ods did not perform impressively. GoogLeNet+Fine-tune
performed better than the other methods, with an accuracy

of 97.1%. However, the proposed method performed best of
all, with an accuracy of 97.88%.

These results showed that the proposed model yields
superior classification using the datasets considered.
The proposed model has the lowest computation time,
at 80 seconds, and the highest classification accuracy
with the given datasets. As expected, the proposed model
outperforms all the other techniques. Our technique is
very straightforward, using a simple linear classifier to
test and train, and extracts the features from convolu-
tional or fully connected layers of pre-trained CNN. The
proposed technique is much more accurate than the other
recently proposed methods, even with a small training sample
count.

V. CONCLUSION
This paper presents a newmulti-objective optimizationmodel
for evolving state-of-the-art deep CNNs for scene classifi-
cation, generating non-dominant solutions developed in an
automated way at the Pareto front. The proposed method
initially allows the UAV to capture videos. Then the videos
are divided into a set of frames. Then preprocessing of the
video frames is done to allow further processing. Afterward,
the training part takes place using OMOPSO with a CNN.
Once the training process is completed, a model is derived.
During the testing phase, the proposed CNN-based model is
run, and the provided input image undergoes effective scene
classification. A set of two benchmark datasets was used
to test the performance of the scene classification model,
and a detailed study has been made, comparing the model
to other well-known models. The proposed method has the
lowest computation time (80 seconds) and the highest accu-
racy (97.88%) compared to all the other methods. The sim-
ulation results show that the proposed model is effective.
In the future, this work can be further improved through
hyperparameter-tuning models to reduce computation time
even more.

ACKNOWLEDGMENT
Partial work of Dr. Gyanendra Prasad Joshi was supported by
Sejong University new faculty research funds.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

REFERENCES
[1] A. Darwish, A. E. Hassanien, and S. Das, ‘‘A survey of swarm and

evolutionary computing approaches for deep learning,’’ Artif. Intell. Rev.,
vol. 53, no. 3, pp. 1767–1812, Mar. 2020.

[2] Z.Wu,W. Quan, and T. Zhang, ‘‘Resource allocation in UAV-aided vehicle
localization frameworks,’’ in Proc. IEEE/CIC Int. Conf. Commun. Work-
shops China, Aug. 2019, pp. 98–103.

[3] F. De Smedt, D. Hulens, and T. Goedeme. On-Board Real-Time
Tracking of Pedestrians on a UAV. Accessed: Apr. 14, 2020.
[Online]. Available: https://www.cv-foundation.org/openaccess/content
_cvpr_workshops_2015/W12/html/Smedt_On-Board_Real-
Time_Tracking_2015_CVPR_paper.html

135392 VOLUME 8, 2020



A. Rajagopal et al.: DL Model Based on MOPSO for Scene Classification in UAVs

[4] S. Kapania, D. Saini, S. Goyal, N. Thakur, R. Jain, and P. Nagrath,
‘‘Multi object tracking with UAVs using deep SORT and YOLOv3 reti-
naNet detection framework,’’ in Proc. st ACM Workshop Autonomous
Intell. Mobile Syst., Bangalore, India, Jan. 2020, pp. 1–6, doi: 10.1145/
3377283.3377284.

[5] R. K. Dewangan, A. Shukla, and W. W. Godfrey, ‘‘Three dimensional path
planning using grey wolf optimizer for UAVs,’’ Int. J. Speech Technol.,
vol. 49, no. 6, pp. 2201–2217, Jun. 2019.

[6] L. Bampis andA. Gasteratos, ‘‘Revisiting the Bag-of-Visual-Wordsmodel:
A hierarchical localization architecture for mobile systems,’’ Robot. Auto.
Syst., vol. 113, pp. 104–119, Mar. 2019.

[7] Y. Yu, Y. Yuan, H. Guan, D. Li, and T. Gu, ‘‘Aeroplane detection
from high-resolution remotely sensed imagery using bag-of-visual-words
based Hough forests,’’ Int. J. Remote Sens., vol. 41, no. 1, pp. 114–131,
2020.

[8] L.-J. Zhao, P. Tang, and L.-Z. Huo, ‘‘Land-use scene classification using
a concentric circle-structured multiscale Bag-of-Visual-Words model,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 12,
pp. 4620–4631, Dec. 2014.

[9] S. Chen and Y. Tian, ‘‘Pyramid of spatial relatons for scene-level land
use classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4,
pp. 1947–1957, Apr. 2015.

[10] T. Ojala, M. Pietikainen, and T. Maenpaa, ‘‘Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002,
doi: 10.1109/TPAMI.2002.1017623.

[11] G. Liu, G.-S. Xia, W. Yang, and L. Zhang, ‘‘Texture analysis with
shape co-occurrence patterns,’’ in Proc. 22nd Int. Conf. Pattern Recognit.,
Aug. 2014, pp. 1627–1632.

[12] A. Coates, A. Ng, and H. Lee, ‘‘An analysis of single-layer networks in
unsupervised feature learning,’’ inProc. 14th Int. Conf. Artif. Intell. Statist.,
2011, pp. 215–223.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), 2012, pp. 1097–1105.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[15] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, ‘‘Transferring deep convolutional
neural networks for the scene classification of high-resolution remote sens-
ing imagery,’’ Remote Sens., vol. 7, no. 11, pp. 14680–14707, Nov. 2015,
doi: 10.3390/rs71114680.

[16] O. Ghorbanzadeh, T. Blaschke, K. Gholamnia, S. Meena, D. Tiede, and
J. Aryal, ‘‘Evaluation of different machine learning methods and deep-
learning convolutional neural networks for landslide detection,’’ Remote
Sens., vol. 11, no. 2, p. 196, Jan. 2019.

[17] A. Carrio, C. Sampedro, A. Rodriguez-Ramos, and P. Campoy.
(Aug. 2017). A Review of Deep Learning Methods and Applications for
Unmanned Aerial Vehicles. Accessed: Jun. 20, 2020. [Online]. Available:
https://www.hindawi.com/journals/js/2017/3296874/

[18] F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, ‘‘Quantifying uncer-
tainty in Internet of medical things and big-data services using intel-
ligence and deep learning,’’ IEEE Access, vol. 7, pp. 115749–115759,
2019.

[19] L. Ye, L. Wang, Y. Sun, R. Zhu, and Y. Wei, ‘‘Aerial scene classification
via an ensemble extreme learning machine classifier based on discrimina-
tive hybrid convolutional neural networks features,’’ Int. J. Remote Sens.,
vol. 40, no. 7, pp. 2759–2783, Apr. 2019.

[20] G. Cheng, J. Han, P. Zhou, and L. Guo, ‘‘Multi-class geospatial object
detection and geographic image classification based on collection of part
detectors,’’ ISPRS J. Photogramm. Remote Sens., vol. 98, pp. 119–132,
Dec. 2014.

[21] A. M. Cheriyadat, ‘‘Unsupervised feature learning for aerial scene classi-
fication,’’ IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439–451,
Jan. 2014.

[22] F. Zhang, B. Du, and L. Zhang, ‘‘Saliency-guided unsupervised feature
learning for scene classification,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 4, pp. 2175–2184, Apr. 2015.

[23] M. Cimpoi, S. Maji, and A. Vedaldi, ‘‘Deep filter banks for texture
recognition and segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3828–3836.

[24] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, ‘‘Land
use classification in remote sensing images by convolutional neural
networks,’’ 2015, arXiv:1508.00092. [Online]. Available: http://arxiv.
org/abs/1508.00092

[25] O. A. B. Penatti, K. Nogueira, and J. A. dos Santos, ‘‘Do deep features
generalize from everyday objects to remote sensing and aerial scenes
domains?’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2015, pp. 44–51, doi: 10.1109/CVPRW.2015.7301382.

[26] H. Yu, Y.Wang, and S. Xiao, ‘‘Multi-objective particle swarm optimization
based on cooperative hybrid strategy,’’ Int. J. Speech Technol., vol. 50,
no. 1, pp. 256–269, Jan. 2020.

[27] J. Hu, T. Jiang, X. Tong, G.-S. Xia, and L. Zhang, ‘‘A benchmark for
scene classification of high spatial resolution remote sensing imagery,’’
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015,
pp. 5003–5006, doi: 10.1109/IGARSS.2015.7326956.

[28] S. Lazebnik, C. Schmid, and J. Ponce, ‘‘Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Oct. 2006,
pp. 2169–2178.

[29] Y. Yang and S. Newsam, ‘‘Spatial pyramid co-occurrence for image clas-
sification,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011, pp. 1465–1472,
doi: 10.1109/ICCV.2011.6126403.

[30] F. Hu, G. Xia, Z. Wang, X. Huang, L. Zhang, and H. Sun, ‘‘Unsupervised
feature learning via spectral clustering of multidimensional patches for
remotely sensed scene classification,’’ IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 8, pp. 2015–2030, 2015.

[31] A. Avramoviá and V. Risojeviá, ‘‘Block-based semantic classification
of high-resolution multispectral aerial images,’’ Signal, Image Video
Process., vol. 10, no. 1, pp. 75–84, Jan. 2016, doi: 10.1007/s11760-014-
0704-x.

[32] T. Kobayashi, ‘‘Dirichlet-based histogram feature transform for image
classification,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 3278–3285, doi: 10.1109/CVPR.2014.413.

[33] R. Negrel, D. Picard, and P.-H. Gosselin, ‘‘Evaluation of second-order
visual features for land-use classification,’’ in Proc. 12th Int. Work-
shop Content-Based Multimedia Indexing (CBMI), Jun. 2014, pp. 1–5,
doi: 10.1109/CBMI.2014.6849835.

[34] K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C.-H. Chen, ‘‘Hyperparameter
tuning deep learning for diabetic retinopathy fundus image classification,’’
IEEE Access, vol. 8, pp. 118164–118173, 2020.

[35] A. Rajagopal, A. Ramachandran, K. Shankar, M. Khari, S. Jha, Y. Lee,
and G. P. Joshi, ‘‘Fine-tuned residual network-based features with latent
variable support vector machine-based optimal scene classification model
for unmanned aerial vehicles,’’ IEEE Access, vol. 8, pp. 118396–118404,
2020.

[36] I. V. Pustokhina, D. A. Pustokhin, D. Gupta, A. Khanna, K. Shankar, and
G. N. Nguyen, ‘‘An effective training scheme for deep neural network in
edge computing enabled Internet of medical things (IoMT) systems,’’ IEEE
Access, vol. 8, pp. 107112–107123, 2020.

[37] V. Porkodi, A. R. Singh, A. R. W. Sait, K. Shankar, E. Yang, C. Seo, and
G. P. Joshi, ‘‘Resource provisioning for Cyber–Physical–Social system in
Cloud-Fog-Edge computing using optimal flower pollination algorithm,’’
IEEE Access, vol. 8, pp. 105311–105319, 2020.

[38] I. V. Pustokhina, D. A. Pustokhin, J. J. P. C. Rodrigues, D. Gupta,
A. Khanna, K. Shankar, C. Seo, and G. P. Joshi, ‘‘Automatic vehicle
license plate recognition using optimal K-Means with convolutional neu-
ral network for intelligent transportation systems,’’ IEEE Access, vol. 8,
pp. 92907–92917, 2020.

VOLUME 8, 2020 135393

http://dx.doi.org/10.1145/3377283.3377284
http://dx.doi.org/10.1145/3377283.3377284
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/rs71114680
http://dx.doi.org/10.1109/CVPRW.2015.7301382
http://dx.doi.org/10.1109/IGARSS.2015.7326956
http://dx.doi.org/10.1109/ICCV.2011.6126403
http://dx.doi.org/10.1007/s11760-014-0704-x
http://dx.doi.org/10.1007/s11760-014-0704-x
http://dx.doi.org/10.1109/CVPR.2014.413
http://dx.doi.org/10.1109/CBMI.2014.6849835

	INTRODUCTION
	RELATED WORK
	THE PROPOSED METHOD
	PREPROCESSING
	PROPOSED IMAGE CLASSIFICATION ALGORITHM
	THE PSO ALGORITHM
	PARTICLE ENCODING STRATEGY
	POPULATION INITIALIZATION
	OBJECTIVE EVALUATION

	INFRASTRUCTURE USED TO BOOSTTHE MOCNN

	EXPERIMENTAL RESULTS AND DISCUSSION
	DATASET
	UCM DATASET [7]
	WHU-RS DATASET [27]

	RESULTS ANALYSIS

	CONCLUSION
	REFERENCES

