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ABSTRACT Chronic diseases have seriously affected human activities, especially in many developing
countries and underdeveloped countries. The long duration of chronic diseases and the high cost of medical
care have placed a huge economic burden on society and families. Meanwhile, chronic patients tend to have
a variety of complications over time. So, it is difficult for doctors to find effective diagnosis and appropriate
treatment. Machine learning techniques can integrate their heterogeneous data of various body indicators.
Meanwhile, for chronic patients, multi-label learning methods can be used to help doctors identify the
types of the chronic diseases. This paper proposes a novel multi-label neural network method (ML-NN)
to predict the chronic diseases combining neural network and multi-label learning technology based on
cross entropy lost function and backward propagation algorithm. Compared with 14 traditional multi-label
learning methods on 10 chronic diseases and 19733 patients, the proposed method achieved a consistently
best in 5 performance measurements. The results demonstrate the proposed method can effectively predict

chronic diseases and assist doctors to diagnose and treat patients.

INDEX TERMS Chronic diseases prediction, multi-label learning, neural network.

I. INTRODUCTION
Chronic diseases are also known as noncommunicable dis-
eases (NCDs), which are distinguished by a long duration
and slow development. Chronic diseases usually include car-
diovascular diseases (such as hypertension, coronary heart
disease, and stroke), chronic respiratory diseases, and dia-
betes [1]. The long duration of chronic diseases and the high
cost of medical care have placed a huge economic burden on
society and families [2]. At present, the situation of preven-
tion and treatment of chronic diseases in all countries is still
severe, especially in low- and middle-income countries [3].
The burden of diseases caused by chronic diseases accounts
a large proportion of the total diseases, and the number of
deaths caused by chronic diseases is gradually increasing [4].
Because chronic diseases with complex causes often
develop into complications, it is difficult for doctors to find
appropriate treatment. Although continuous monitoring of
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patients using modern advanced medical technologies and
devices (e.g., wearable medicine, mobile health [5], etc.) can
obtain a large amount of patient-related data, these data is
often heterogeneous, such as laboratory test values, physi-
cal values, or electrocardiograms [6]. Doctors need to use
data mining or machine learning tools to summarize and
analyze these complex data to assist them to make optimal
decisions [7].

A. RELATED WORK

It is very common that the research object has multi-label
feature in the field of biomedicine, such as protein subcellular
localization [8]-[12], bioenzyme function [13], [14], mem-
brane protein function [15], [16], protein function predic-
tion [17], [18] etc. As the course of chronic diseases increases,
other diseases are often caused. Therefore, chronic patients
often have the characteristics of multiple diseases. So, mul-
tiple complications of chronic patients also can be modeled
analytically using multi-label learning algorithms [19], [20].
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To solve these problems, the researchers have proposed
many multi-label learning algorithms [21], especially in the
field of images and text [22]-[24]. Usually these methods
can be divided into two categories: problem transformation
methods and algorithm adaptation methods [25]. The prob-
lem transformation method commonly uses data to adapt to
the algorithm, which directly calls or combines the exist-
ing classification algorithm without changing it. The typi-
cal representatives of problem transformation methods have
Binary Relevance (BR) [26], Classifier Chains (CC) [27],
Label Powerset (LP) [28], Hierarchy Of Multi-label Learners
(HOMER) [29], and Random k-label sets (RAKEL) [30].
BR method uses one-to-all binary classification strategy to
realize the multi-label classification. CC has an extension to
amend the drawback of BR method which does not consider
the correlation between the labels. LP methods transform the
multi-label problem into a single-class classification problem
by considering all the possible combinations. HOMER is a
labels-set tree structure built by clustering algorithm. RAKEL
improves the computational efficiency of LP by decomposing
the original labels set into k smaller random subsets.

Whereas, the algorithm adaptation method is to directly
process multi-label data after extending the existing learn-
ing algorithm. Typical representatives have Multi-Label
k-Nearest Neighbor (ML-kNN) [31], Multi-Label Decision
Tree (ML-DT) [32], Ranking Support Vector Machine (Rank-
SVM) [33] and Backpropagation for Multi-Label Learning
(BP-MLL) [34].

B. CONTRIBUTION

Medical data on diseases are often complex and multi-source.
The diversified data sources often cannot guarantee the inde-
pendent and identical distribution of data. Thus, the neural
network method can learn the true characteristics of com-
plex data more than traditional machine learning classifica-
tion methods. Currently, neural networks have become the
most popular machine learning technologies, which have
outstanding advantages in hierarchical feature description
and complex function mapping [35]. Using neural network
architecture to solve the multi-label learning problem has
natural advantages. The contributions of this work can be

summarized as follows:
(1) A novel multi-label neural network method (ML-NN)

is proposed combining neural network and multi-label
learning technology. Neural network itself is a
multiple-input multiple-output system [36, 37] which
is ideal for multi-label learning problem.

(2) The model shows strong recklessness and can search
for optimal solutions at high speed. In this study, the
knowledge background of multi-source data is unclear
and the reasoning rules are unclear. The neural network
has the functions of self-learning, fault tolerance and
associative memory. It does not impose any restrictions
on the input and residual distribution, and has the abil-
ity to learn and construct nonlinear complex correlation
of this chronic disease dataset.
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(3) The activation function designed based on cross
entropy lost function and backward propagation algo-
rithm has two obvious advantages: it captures the
non-linear correlation between the inputs. And it helps
transform the input into a more useful output. Then,
it can quickly and accurately give the diagnosis of the
patient’s disease.

(4) Meanwhile, a detailed comparative analysis also
showed the advantage of our method compared with
many common multi-label learning algorithms. Exper-
iments established that the proposed method could
achieve better prediction accuracy and operating effi-
ciency, so as to better assist doctors in the effective
diagnosis and treatment for chronic disease patients.
Therefore, the multi-label neural network method we
designed can better solve the multi-source data problem
of chronic diseases.

C. STRUCTURE

The rest of the paper is organized as follows. Section II
describes a comprehensible process of data analysis and
processing. In this Section, a multi-label neural network
method is proposed to solve the problem of chronic dis-
eases. In Section III, the experimental results of different
multi-label methods are analyzed and compared. The exper-
imental results confirmed the advantage of our method.
Finally, in Section IV, some brief conclusions and open prob-
lems are drawn.

Il. MATERIALS AND METHODS

A. DATASET

The initial disease dataset in this study were derived from
MIMIC-II, published by Beth Israel Deaconess Medical Cen-
ter (BIDMC) [38]. MIMIC is a public database that was began
to collect patient information in 2001 and continued for seven
years. The original database contains approximately 33,000
patients. Among them, the clinical data includes laboratory
tests and medical records. Each patient’s medical record
generally includes a number of results from heterogeneous
examinations, such as body fluid examinations, physiological
measurements and rigorous scores of some vital functions.

B. FEATURE EXTRACTION AND STANDARDIZATION

After the chronic disease dataset was integrated and
created, a series of operation are processed such as miss-
ing attribute values, features extraction and standardization.
This paper mainly analyzes and compares with some com-
mon multi-label classification algorithms after preprocess-
ing the raw dataset, including record extraction and missing
value processing. The adult population (above 16 years
old) after removing newborns and children contains about
24,000 patients. And then, after removing individuals without
chronic diseases, 19733 patients were finally obtained. Their
average age was 67 years. And the proportion of men and
women was 56% and 44%, respectively [19].
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Laboratory records and medical history records are clas-
sified according to different measured values. For numerical
variables such as biochemical criterion, blood pressure and
temperature, they are a part of the feature vector if they appear
only one time. Otherwise, the features are represented by
their mean, median, standard etc. if they appear more than
once. For categorical variables, their features are coded as
binarization if there is only one observation. If a variable
has multiple observations, it is discretized into a mutex class.
Each class is characterized by its frequency of occurrence.

Finally, 10 chronic diseases and 76 attributes were obtained
including 39 quantitative attributes (Table S I) and 37 cat-
egory attributes (Table S II). The names of these chronic
diseases were defined after considering the medical relevance
of the dataset, the characteristics of the data and the hierarchy
of the International Classification of Diseases, 9th Revision
(ICD-9) coding system. In order to avoid too many missing
values, only those items that are included in at least 80%
of the patients are selected in the laboratory tests and med-
ical records [39]. The information of the chronic diseases is
shown in Table 1. 310 features extracted from 76 attributes
were standardized by z-score.

TABLE 1. Distribution of labels of 19,773 patients with chronic diseases
extracted in MIMIC-11 database.

Disease categories Number of  Percent ICD-9
patients (%) codes
Hypertensive disease 12309 62.3 [401-405]
Fluid electrolyte disease 6177 31.2 276
Diabetes mellitus 6056 30.6 [249-250]
Lipoid metabolism 5965 30.2 272
disease
Kidney disease 5828 29.5 [580-589]
COPD 4253 21.5 [490-496]
Thyroid disease 2246 11.4 [240-246]
Hypotension 1962 9.9 458
Liver disease 1088 55 571
Thrombosis 931 4.7 [451-453]

C. MULTI-LABEL CLASSIFIERS

For the two categories of multi-label classification methods,
the compared multi-label learning algorithms include BR,
HOMER, CC, RAKEL, ML-kNN, and AdaBoostMH [40].
Among them, AdaBoostMH is the multi-label adaptation
of AdaBoost which belongs to problem adaptation method.
ML-KNN is the multi-label adaptation of kNN. Other meth-
ods such as BR, HOMER, CC, and RAKEL belong to the
problem-transformed label learning algorithm, which need to
call a single label learning algorithm, such as SVM (Support
Vector Machine), J48 (an implementation of a decision tree
algorithm), and NB (Naive Bayes). SVM with an RBF kernel
needs optimize two parameters: the coefficient of kernel and
the penalty of the error term. J48 can easily explain the
rules of classification and scale to large dataset. J48 also
needs optimize two parameters: the confidence threshold
for pruning and the minimum number of instances per leaf.
NB has a simple structure and a surprising classification
performance. HOMER needs one parameter to define the
number of clusters for the k-means. RAKEL needs optimize
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two parameters: the number of models in the ensemble and
the size of the subset of labels in each model of the ensem-
ble. ML-kNN has two parameters including the number of
neighbors and a smooth parameter. Therefore, there are 14
kinds of multi-label learning algorithms to be compared here.
The parameters of these algorithms are optimized by grid
search. The parameter tuning settings of various algorithms
are consistent with the literature [19].
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FIGURE 1. Chronic diseases prediction model based on multi-label neural
network.

D. MULTI-LABEL NEURAL NETWORK METHOD

Here we demonstrate that a multi-label neural network
method (ML-NN) featuring a multi-label cost function and
the rectified linear unit (ReLU) activation function performs
efficiently and accurately on multi-label disease diagnosis
(Figure 1). After preprocessing and feature extraction of
multi-source data, two-dimensional vector form is generated
as the samples and features. Then the samples are divided
into training, verification and test datasets. The proposed
multi-label neural network method is used to train and con-
struct the model with the first two datasets respectively. At the
same time, the model is evaluated using the test dataset by
several common evaluation indexes compared with a few
multi-label learning algorithms.

In our multi-label neural network, all the hidden layers use
the ReLU activation function [41], and the output layer uses
the Sigmoid activation function because what people usually
want to know is the probability of getting a particular type of
disease. The cost function of neural network for single label
classification cannot be used for multi-label learning, because
the output class labels are not mutually exclusive to each
other. So, we employ Multi-Label Cross Entropy (MLCE) as
the cost function of the neural network.

Suppose a training dataset D = (x1, y(D) . (x(m™) ym)),
m is the number of training samples, x¥) is the i-th sample,
the class label assignment of x may be represented as a c-

dimensional binary vector y?) = [y(ll), yg), ceey yg)], where
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y(i) = 1 if the sample has the j-th label, and y(-i) = 0 if not.
If all the weight parameters in the network are indicated as
(W,b), then MLCE can be represented as:

J W, b D)
LTt () o)
+)\Z”W1“F7 (M

=1

where ¢ is the number of possible disease labels, P =
[p(ll), p(zl), <, ] is the actual output of sample x®, W, (I =
1,...,L—1) are the connection weights between layers, L is
the depth of a network, A is the weight decay parameter of
regularization term, and F indicates Frobenius Norm [42].
Based on error back propagation algorithm [43], we can
get the optimal parameters to make the multi-label neural
network fit the training dataset very well. The regularization
term is used to avoid over-fitting.

Specifically, given a training sample (X, y), the parameters
in the network can be updated by the following error back-
propagation procedure:

I. Calculate the activation values of all layers by forward

propagation.
II. For the output layer, the error is
SL=p—y, 2
II. For the hidden layer when/ =L —1,L—2,...,2, the
error is
o = (Wl ar1) f @) ©)

where z; is the input of the layer /, f is the activation
function, and - is the element-wise product.
IV. Calculate the partial derivatives as below

Vi (W, b; x,y) = 811 (an)' “)
Vod (W, b; x,y) = 8141, (5)

where a; is the activation of layer [.

SinceJ (W, b)y=—L S J (W, b; x, y)+2 X1 W12,
it is easy to get the batch gradients Vy;J (W, b) and
Vpd (W, b) (I = 1,...,L — 1), and then the
model parameters are optimized by the gradient descent
algorithm.

E. PERFORMANCE EVALUATION

Assume that x = RI, A = {h,b,....L},S ={(x;, y)li =
1,2, ..., m'} respectively represents a d-dimensional sample
space, a finite label set, and a test set consisting of m’ multi-
label samples, where x; € x is a feature vector in the sample
space and y; € A is the set of labels associated with the
sample. The classifier i(e) can predict the set i(x) € A which
x may have. f(e, o) is a output function of the multi-label
learner, where r(x, [) represents the sorted value of label [.
The following evaluation indicators can be used to measure
the performance of the multi-label learner [21].
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o Hamming Loss

1 " h(x) Ay;
HammingLoss = — Zm M (6)
m c

where A represents the symmetric difference between two
sets, and | e| is used to find the potential of the set (the number
of elements). Hamming Loss indicates the percentage of all
predictors that are wrong. The smaller the Hamming Loss,
the better. The optimal value is 0.

e One-error

1 m'
OneError = —; Y Idargmaxcp f (i, D1 ¢y, (7)

One-error represents the proportion of samples in which
the label corresponding to the top-rank output value of all
samples does not belong to the relevant label set.

o Coverage

1 m
Coverage = povs Zi:l maxjeyr(xi, 1) — 1, ®)

If depth is used to represent the maximum sorted value of
all relevant labels for a sample, Coverage is the average depth
of all samples.

« Ranking Loss

RankingLoss
1 m 1
_WFE;ﬁuwmm
x {@. O i D) < f i 1), A1) € yi x Fi}|. 9)

where y; is the complement of y;, that is, the set of irrelevant
labels for sample x;. Ranking Loss is the average ranking loss
of all samples. For a single sample, its ranking loss is the
percentage of ranking errors (the output value of the relevant
label is less than the output of the unrelated label) among all
the pairs of related labels and unrelated labels.

« Average Precision

AveragePrecision

O

[ VrGi,, 1) <r(x, D)., U €yl
r(xi, 1)

)

Z[E}l

i=1]y,]|
(10)

Average Precision evaluates the average fraction of rele-
vant labels ranked higher than a particular label / € ;.

Ill. RESULTS AND DISCUSSION
Just like the data preprocessing in [19], the experimen-
tal dataset was randomly divided equally into three sub-
sets according to the standard machine learning algorithm,
in which the training set was used for model learning, the
verification set for parameter adjustment and model selection,
and the test set for results comparison between models [44].
Meanwhile, the results of all methods are obtained after
parameter optimization.

Similar to other neural network models, hyperparameters
have a great impact on the performance of the proposed
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TABLE 2. Performance comparison of different multi-label learning algorithms in independent test set.

Method /Metric Hamming loss (%)|  Ranking loss (%)  Average precision (%)1 One-error (%)} Coverage|
BR-SVM 16.94+0.12 34.47+0.64 61.85+0.56 35.17+0.67 5.35+0.05
HOMER-SVM 16.97+0.11 34.18+0.61 62.01+0.56 35.34+0.74 5.3340.05
CC-SVM 17.01+0.14 33.67+0.70 62.58+0.59 35.11+0.80 5.2840.06
RAKEL-SVM 17.18+0.07 27.08+0.45 68.32+0.54 30.68+0.81 4.72+0.04
BR-J48 17.63+0.13 17.70+0.31 72.23+0.55 31.15+0.70 3.50+0.01
HOMER-J48 17.75+0.17 33.06+1.05 62.45+0.89 34.74+0.87 5.31+0.10
CC-J48 17.83+0.15 17.76+0.40 72.14+0.79 31.48+1.32 3.50+0.02
RAKEL-J48 18.17+0.09 25.88+1.32 68.53+0.99 32.28+0.66 4.57+0.13
ML-kNN 18.91+0.16 18.10+0.17 71.37+0.22 32.05+0.36 3.52+0.02
AdaBoostMH 21.23+0.09 32.81+0.13 57.65+0.19 37.75+0.29 4.89+0.01
HOMER-NB 21.78+0.30 34.76+0.47 57.61+0.99 44.35+2.89 5.2940.03
RAKEL-NB 24.88+0.40 25.63+0.39 64.07+0.76 45.93+2.19 4.37+0.03
BR-NB 28.40+0.34 27.62+0.50 60.32+0.70 54.80+1.37 4.42+0.03
CC-NB 28.61+0.36 27.92+0.51 59.96+0.71 55.55+1.40 4.44+0.03
Random 49.89+0.19 49.99+0.43 40.13+0.40 76.03+0.54 6.30+0.03
ML-NN 16.59+0.09 14.30+0.27 76.25+0.46 26.74+0.73 3.12+0.01
Best result is shown in bold. | : the lower the better. 1 : the higher the better.
TABLE 3. Performance comparison of neural networks with different hidden layers in ML-NN model.

Layers Hamming loss (%)] Ranking loss (%)] Average precision (%)1 One-error (%) ] Coverage|

2 16.59+0.09 14.30+0.27 76.25+0.46 26.74+0.73 3.12+0.01

3 16.63+0.08 14.40+0.11 76.08+0.34 27.10+0.66 3.15+0.01

4 16.59+0.08 14.31+0.25 76.26+0.43 26.74+0.67 3.12+0.02

5 16.93+0.07 14.93+0.18 75.61+0.39 27.41£0.68 3.20+0.02

6 17.21+0.09 15.39+0.13 75.24+0.25 27.64+0.45 3.25+0.01

Best result is shown in bold. | : the lower the better. 1 : the higher the better.

multi- label neural network (ML-NN), such as loss function,
learning rate, regularization weight, the number of hidden
layers and nodes, etc. [45] The experimental network consists
of two hidden layers with 100 nodes in each layer. The learn-
ing rate, the regularization weight, and the maximum number
of iterations is set to 0.01, 0.001 and 1000 respectively.

The experimental results of the optimal models of various
multi-label learning algorithms are shown in Table 2 for the
test dataset. From the results, decision trees can generally
achieve good classification performance. For the methods
based on SVM classification, their indexes of hamming loss
are better, but the indexes of ranking loss are worse. ML-kNN
has poor scalability and performance comparable to deci-
sion trees. AdaBoostMH cannot obtain competitive results
because its optimized objective is mainly the hamming loss
rather than the ranking loss. For this multi-source dataset,
there are many correlations between features. So, the clas-
sification effect of NB method is not significant. A random
multi-label classification method is experimented to know the
upper and lower bounds of classification. For the transforma-
tion method CC, its effect of classification is not improved
significantly compared with the BR method. HOMER also
does not obtain an obvious improvement compared with other
methods except for NB as the basic classifier. RAKEL with
an SVM classifier obtains good performance with respect to
other methods especially in average precision and ranking
loss metrics.

Thus, the proposed multi-label neural network model
(ML-NN) in this paper is superior to traditional multi-label
learning algorithms in various indicators [19]. In terms of
average results, only Hamming loss has a slight (approx-
imately 2% decrease) advantage over the second-ranked
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algorithm BR-SVM. The advantages of other indicators are
obvious. The Ranking loss is approximately 19% lower than
the second-ranked algorithm BR-J48. One-error is reduced
by about 12% compared with the second-ranked algorithm
RAKEL-SVM. Coverage is about 11 percent lower than
second-place BR-J48. Average precision was about 6 percent
higher than the second-place CC-J48.

The amount of this dataset in this study is not very large,
so it is not suitable for the neural network method with deep
network layers. Since the dataset is relatively small, we have
tried several shallow neural network models. Performance
comparison of neural networks with different hidden layers
was shown in detail in Table 3. The results show that the
neural networks with two hidden layers, three hidden layers
and four hidden layers have almost the same classification
effect. As the number of network layers increases, the classifi-
cation effect becomes worse. Therefore, the two-layer neural
network is effective based on Occam’s razor principle [46].
In addition, the method proposed in this paper also has the
general disadvantages of neural network and its interpretabil-
ity needs to be improved.

Furthermore, this paper also compares the training time
(accurate to minutes) of various multi-label learning algo-
rithms, as shown in Table 4. The ML-NN is tested in per-
sonal computer (Intel Core i3@3.40GHz, 4GB RAM, Matlab
R2013b). And other methods refer to the test of Damien
Zufferey et al in the JAVA software package Mulan 1.4
environment (Intel Core i7@2.93GHz, 16GB RAM) [40].
Due to the large samples of chronic diseases, the methods
using SVM as the base classifier are very slow because of
the grid searches for optimal parameters, especially when
combined with the RAKEL method which adopts integrated
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TABLE 4. Comparison of training time for the different multi-label
learning algorithms.

Multi-label
learning algorithms

Training time
(h:hours, m:minutes)

BR-NB I m
CC-NB Im
HOMER-NB I'm
BR-J48 4m
CC-J48 4m
HOMER-J48 4m
AdaBoostMH 6 m
RAKEL-NB 7m
RAKEL-J48 15m
ML-KNN 35m
BR-SVM 3h32m
CC-SVM 3h33m
HOMER-SVM 4h1lm
RAKEL-SVM 28 h 13 m
ML-NN 7m

learning strategy. Among them, ML-kNN is a method based
on nearest neighbor search, which has poor scalability to the
data scale. So the running time of ML-kNN is relatively long.
The training time of other methods is at the level of minutes,
which is relatively fast. Although ML-NN uses a 4-layer
neural network structure, it only takes 7 minutes to train the
dataset after 1000 iterations because of the high efficiency of
the ReLLU activation function, which brings great convenience
for network optimization and hyperparameter adjustment.
As we all know, the operating efficiency of Matlab language
is generally not as high as that of Java language. Perhaps the
Java version of ML-NN will further reduce the training time.

IV. CONCLUSION

Chronic patients tend to have a variety of complications. For
these patients, multi-label learning can be used to identify
their complications. Comparative experiments on 10 chronic
diseases show that the proposed multi-label neural network
algorithm (ML-NN) in this paper is significantly better than
the traditional multi-label learning algorithms. Maybe this
dataset is relatively large and the neural network can fit it
well even if there are relevant features. What’s more, the
proposed method is also very competitive in running time,
which is mainly due to the efficiency of multi-label loss func-
tion. Therefore, the proposed method can effectively assist
doctors in the diagnosis and treatment of patients with chronic
diseases. In the future, the interpretability of neural networks
will be analyzed in order to make new discoveries and deepen
the understanding of chronic diseases.

APPENDIX
Table S I 39 quantitative attributes in chronic diseases dataset.
Table S I1 37 category attributes in chronic diseases dataset.
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