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ABSTRACT Visual navigation (vNavigation) is a key and fundamental technology for artificial agents’
interaction with the environment to achieve advanced behaviors. Visual navigation for artificial agents with
deep reinforcement learning (DRL) is a new research hotspot in artificial intelligence and robotics that
incorporates the decision making of DRL into visual navigation. Visual navigation via DRL, an end-to-end
method, directly receives the high-dimensional images and generates an optimal navigation policy. In this
paper, we first present an overview on reinforcement learning (RL), deep learning (DL) and deep reinforce-
ment learning (DRL). Then, we systematically describe five main categories of visual DRL navigation: direct
DRL vNavigation, hierarchical DRL vNavigation, multi-task DRL vNavigation, memory-inference DRL
vNavigation and vision-language DRL vNavigation. These visual DRL navigation algorithms are reviewed
in detail. Finally, we discuss the challenges and some possible opportunities to visual DRL navigation for

artificial agents.

INDEX TERMS Survey, visual navigation, artificial agents, deep reinforcement learning.

I. INTRODUCTION
Artificial agents refer to software or hardware entities that can
perform actions in an environment independently, and include
virtual robots (such as characters in games and entities in
virtual environments) and real robots (such as service robots,
industrial robots, and unmanned vehicles). Navigation is a
key technology for artificial agents to adapt to an environment
and is the precondition for other advanced behaviors.
Traditional navigation algorithms, map-based methods,
include simultaneous localization and mapping (SLAM) [1]
and path planning [2], [3]. SLAM research can be divided
into two main categories [4]: laser SLAM and visual SLAM.
Laser SLAM is a SLAM system based on a laser sensor that
uses a laser to scan obstacles in the plane to build aMur-Artal
2D raster map. Although laser SLAM has achieved some
success in recent years, the high price of laser sensors hinders
the practical application of laser SLAM, and the efficiency
of laser SLAM is susceptible to the poor weather conditions,
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such as rain and snow. Visual SLAM is a SLAM system
based on a visual sensor (camera). A visual sensor is used
to obtain environmental images, and a multi-view geometric
algorithm [5] is used to construct environmental maps. Com-
pared with laser sensors, visual sensors have the advantage of
low cost and retention of semantic information about the envi-
ronment. In addition, some visual SLAM algorithms have
been developed by researchers. Klein and Murray [6] pro-
posed parallel tracking and mapping (PTAM), which divides
tracking and mapping into two separate tasks and processes
in parallel threads. One thread addresses the task of tracking
erratic hand-held motion, while the other produces a 3D map
of point features from previously observed video frames.
Mur-Artal et al. [7] proposed ORB-SLAM for expanding
the versatility of PTAM to environments that are intractable
for that system. Both PTAM and ORB-SLAM are based on
feature extraction, but the feature method cannot process
texture images well. To address this issue, Engel ef al. [8]
proposed LSD-SLAM which is a direct (feature-less) visual
SLAM algorithm, and LSD-SLAM enables the construc-
tion of large-scale and consistent maps of the environment.
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FIGURE 1. The overall architecture of this paper. We first present preliminary including RL, DL and DRL in Section I, and
introduce three main DRL methods in Section 11.C. Then, we review five DRL vNavigation methods in Section Ill. Finally,
the challenges and opportunities for DRL vNavigation are discussed in Section IV.

Furthermore, Engel et al. [9] improved the robustness and
computation speed of LSD-SLAM, and proposed direct
sparse odometry (DSO). However, common disadvantages
of these visual SLAM include low robustness to fast cam-
era motion, illumination transformation, strong rotation and
texture feature missing [4].

Traditional laser and visual SLAM are also model-based,
and both should accurately model the environment. Never-
theless, it is difficult to model the environments effectively
for some dynamic and complex scenes, which seriously
affects the model-based navigation performance. In addi-
tion, the functional modularization of traditional navigation
prevents their widespread applications. One prominent issue
is their susceptibility to sensor noises accumulation that
propagates down the pipeline from the mapping, localiza-
tion to path planning, leading these algorithms with less
robust performance. More importantly, they require exten-
sive case-specific scenario-driven manual-engineering, mak-
ing traditional navigation difficult to integrate with other
downstream artificial intelligent tasks that have achieved
superior performance with the learning methods, such as
visual recognition, question answering, and other advanced
intelligent tasks [10].

In recent years, the success of AlphaGo [11], [12] has
promoted the rapid development of deep reinforcement
learning [13]-[16]. DRL methods are end-to-end methods,
in which all of the network parameters are trained jointly to
avoid the accumulative error caused by the modularization
of traditional navigation, and infer navigation policy directly
from the visual images of the surrounding environment;
they require little manual-engineering and serve as a foun-
dation for novel Al-driven visual navigation tasks. In addi-
tion, visual navigation via DRL method is easy to integrate
with downstream Al tasks to perform more advanced tasks.
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Therefore, an increasing number of researchers have devoted
their time and effort to visual navigation with deep reinforce-
ment learning.

Multiple surveys on visual navigation [4], [17], [18] have
been published, and some surveys review a wide range
of models and applications for DRL [19], [20]. Although
these two types of reviews may cover parts of visual DRL
navigation, the contents of visual DRL navigation are not
comprehensive and systematic. In addition, novel research
achievements and new challenges for visual DRL naviga-
tion have emerged. Therefore, a comprehensive review of
the progress and lessons learned from state-of-the-art visual
navigation algorithms based on DRL is necessary.

Thus, in this paper, we provide a comprehensive and
systematic review of visual navigation based on deep rein-
forcement learning. A thorough investigation of the method-
ological evolution, issues, challenges and future potential
opportunities for visual DRL navigation is discussed, which
can timely facilitate practitioners and researchers in deploy-
ing, improving, and/or extending many of the current achieve-
ments in a timely manner.

The remainder of this paper is organized as follows:
In Section II, we first review RL including value-based
methods, policy-based methods and actor-critic methods.
Then, the developments of deep learning, which con-
tain convolutional neural networks (CNNs) and gener-
ative adversarial nets (GANSs), are introduced. Finally,
we review the representative DRL algorithms. Then,
in Section III, different types of DRL vNavigation
methods are described in detail. In Section IV, we discuss
challenges existed in DRL vNavigation, and propose some
possible opportunities. Finally, the conclusions are presented
in Section V. The overall architecture of this paper is shown
in Fig. 1.
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Il. DEEP REINFORCEMENT LEARNING

We consider the standard reinforcement learning setting
where an artificial agent interacts with an environment over
a number of discrete time steps [21]. At each time step,
the agent receives a state from the environment and produces
an action according to its learned policy. In return, the envi-
ronment gives the agent the next state and the reward. The
goal of reinforcement learning is to maximize the accumu-
lated reward, which is a discounted sum of rewards. Fig. 2
is a schematic diagram of reinforcement learning. With the
rapid development of deep learning [22], [23], DeepMind
combines deep learning with reinforcement learning, and
proposes deep reinforcement learning [13].

Environment

State Reward | Action

Agent

FIGURE 2. Schematic diagram of reinforcement learning. At each time
step, an agent receives a state from its environment, and outputs an
action. One time step later, the environment gives a next state and a
reward to the agent.

In this section, we introduce the key formalism used
in RL, and the three main RL algorithms which contains
value function method, policy search method and actor-critic
method. Next, we briefly review DL, such as CNNs and
GANSs. Then we introduce several main DRL algorithms:
deep Q learning (DQN), deep deterministic policy gradi-
ent (DDPG), asynchronous advantage actor-critic (A3C),
trust region policy optimization (TRPO) and proximal policy
optimization (PPO).

A. REINFORCEMENT LEARNING

By interacting with the environment, RL agents ultimately
learn the mapping relationship between an environmental
state and an action, which is called policy. The reinforce-
ment learning is a markov decision process (MDP), and the
MDP can be defined as a quaternion [21]:

(S,A,R, P) ()

where S represents the state information of the environment;
s; € § is the agent’s state at time 7; a; € A is the action that
the agent can execute; R is the reward function that represents
the reward value obtained by the agent at time ¢; P is the state
transition probability distribution function that represents the
probability of taking action a;, from state s; to the next
state s;41.
The MDP has the following characteristics:

Sty Ap, 1) =P(sey1, 118, ar)

@

P(siq1, reg1ls1, ar, r, -
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This equation indicates that the next state s;4 is only related
to the current state s;, not to the previous states.

In reinforcement learning, artificial agents aim to maxi-
mize cumulative rewards, which can be expressed as:

o0
Ri=ri+yr+vina+...=) vrnun )
k=0

where the discount factor y € [0, 1] reflects the importance
of current feedback decreases over time.
The value function V7 (s) is defined as follows:

oo
Vi (s) = ExlRi|S; = s1 = Ex[Y_ v*reqaqalSi =51 (4)
k=0
Vy represents the expected return from state s and follow-
ing 7 thereafter. As shown in Fig. 3, the maximum reward
corresponding to V() is the optimal value function V'

VY = max Ex[R;|S; = s] 5)
St ye(s) o2t Qu(s,a)
max /NH
a; St+1
St+1 At+1

FIGURE 3. The optimal value function V}(s) corresponds to the Vy (s) with
the maximum reward, and the optimal action-value function Qi (s, a)
corresponds to the Q; (s, a) with the maximum reward.

The action-value function Q (s, a) is defined as follows:
Or(s,a) = Ex[R|S; = 5,Ar = a]

o0
= Ec[Y_v'rqlSi =54, =a  (6)
k=0

0Ox (s, a) represents the expected return starting from s and
taking the action a under policy w. As shown in Fig. 3,
the maximum reward corresponding to QO (s, @) is the optimal
action-value function Q% (s, a) as follows:

Qi (s,a) = max E; [R;|S; = 5, A; = a] @)

Reinforcement learning can be divided into three cat-
egories: value-based methods, policy-based methods and
actor-critic methods. Actor-critic methods [24] are hybrid
methods of value-based and policy-based algorithms.
The classical algorithms of the value-based method and
the policy-based method are Q-learning [25] and policy
gradient [26], respectively.

1) VALUE-BASED METHODS

Value-based methods are to estimate the value (expected
return) of being in a given state, and the optimal policy corre-
sponds to the action with the optimal action-value function.
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Q-learning is one of the most-used RL algorithms, and it
updates Q through the Bellman formula:

Qit+1(s, a) = Ex[Ry + y max Qi(st+1, ar+1)
ISy =s,A; = al (8)

where Q; converges gradually to the optimal action-value
function QF when i — oo, and the optimal policy is
obtained:

7* = arg max Q*(s, a) )
acA

Traditional RL Q-learning is widely used and updates as
follows:

O@S1,Ar) = O, Ap) +alrp +y max O(Si11,a)
—-Q0(@S,Ap] (10)

where « is the learning rate that reduces the impact of esti-
mation errors. Unlike the Bellman formula, Q-learning does
not directly assign the estimated Q value to the new Q value,
but gradually approximates the target Q value. However,
Q-learning is a table-based reinforcement learning in which
the state space S; and action space A; must be finite sets.
However, in the real situation, the sets of S; or A; are large
or continuous sets, which table-based reinforcement learning
cannot process. Therefore, function approximation must be
used to express Q(Sy, A;), and the neural networks have good
non-linear fitting characteristics. Fig. 4 shows the nonlinear
fitting of neural network in which the neural networks replace
the Q table.

State
Q Table -»|  State
Action
o0
State ® o\e — Qvaluel
o) o}
o 0
® °®
Action ® : : Qualue_2

FIGURE 4. Nonlinear fitting of neural networks. Neural networks have
good non-linear fitting characteristics in place of Q table.

2) POLICY-BASED METHODS
Different from the indirect policy computation of value-based
methods, policy-based methods directly search for an opti-
mal policy. Policy gradient is the most-used approach of
policy-based methods, which computes an estimator of
the agent’s policy gradient by a stochastic gradient ascent
algorithm.

Let m(als; ) be a policy with parameters 6, which is
updated by performing gradient ascent on the
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expectation E[R]. Policy gradient algorithms adjust the pol-
icy by updating parameters 0 in the direction as follows [27]:

& = . [Vplogm(ar|si; O)R,] (11)

In equation(11), g is an unbiased estimate of VyE[R;], and
it is possible to reduce the variance of this estimate while
keeping it unbiased. To achieve this objective, Williams [27]
subtracted a learned function called baseline b;(s;) from the
return, and the resulting gradient estimator took the following
form [27]:

870 =W, [Valogm (aslsi: O)(R, — by(s)))] (12)
where §P G is also an unbiased estimate of V4 E[R,].

3) ACTOR-CRITIC METHODS

Actor-critic (AC) methods are hybrid approaches that com-
bine the advantages of policy-based and value-based meth-
ods. The AC architecture is shown in Fig. 5. The actor, which
is a policy network, is to choose an action. The critic, which
is a value network, is used to evaluate the advantage of the
action maded by the actor.

Environment |«

Reward
State
v
> Critic Action
| TD error
Agent
> Actor

FIGURE 5. The architecture of AC. The actor is to choose an action, and
the critic is to evaluate the advantage of the action chosen by the actor.

Equation(13) is called the actor-critic method in which the
actor is a reference to the learned policy 7 and the critic refers
to the baseline b; [21], [28].

Concerning the gradient estimator in equation(12), there
exists an equation b;(s;) ~ V7(s), and R, — b(s;) can
be seen as an estimate of the advantage of action a; under
state s;. As the numerical value of Q" (s, a) equals the value
of R;, the advantage function can be rewritten as A(ay, s;) =
QO(sz, st) — V(sy). Thus, the gradient estimator in equation(12)
can be rewritten as follows:

§PC = B, [Vglogm (as|si; 0)(QCss, s1) — V(s)))]
= EZ[V91087T(at|St; 0)A;] (13)
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B. DEEP LEARNING

In the 1880s, Hinton et al. [29] first introduced error
backpropagation into multi-layer neural network training,
which is the foundation for the later widespread usage of
back propagation in deep learning. In 2006, Hinton and
Salakhutdinov [30] formally proposed the concept of deep
learning in which the unsupervised learning method is used
to train the algorithm layer by layer and then the supervised
backpropagation algorithm is used for tuning.

Lecun and Bottou [31] first trained convolutional neu-
ral networks to successfully recognize handwritten digits
by error backpropagation. In 2012, Alex et al. entered
a submission [32] that reduced the recognition error rate
to 16%. The model combined several critical components that
would become mainstays in deep learning models. In 2014,
Simonyan and Zisserman [33] proposed a very deep convolu-
tional network called VGGNet, which increased the depth of
the neural network with more convolutional layers. VGGNet
uses very small receptive fields (3 x 3 convolutional fil-
ter) to increase the weight layers, and more layers lead to
improved performance. In the same year, Szegedy et al. [34]
proposed GoogLeNet, which broadened the network struc-
ture and introduced an inception module. The inception
module allows a network to learn input data better while
further increasing the depth and width of the neural net-
work. It can be found from the previous CNNs models that
increasing the depth and width of the neural network can
improve the network performance. However, simply increas-
ing the depth will lead to vanishing or exploding gradients.
To address this issue, He et al. [35] proposed a residual
network called ResNet, which is mainly composed of resid-
ual learning blocks. The aim of the residual blocks is to
solve the side effects (degradation) caused by the increasing
network depth; thus, network performance can be improved
with increasing network depth. Nevertheless, ResNet explic-
itly preserves information through additive identity transfor-
mations because many layers may contribute very little or
no information. In particular, Huang et al. [36] proposed
DenseNet to solve the vanishing of input data or gradients
when they pass through the many layers to the end/beginning
of a deep network. DenseNet is mainly composed of dense
blocks, which create short paths from early layers to later
layers. Since 2017, researchers have focused on how to design
lightweight networks for resource-limited systems. Classical
resource-limited CNNs architectures such as MobileNet [37]
and ShuffleNet [38] are highly applicable for mobile devices.

The generative model is another important branch of deep
learning. Given the training data, the goal of the generative
model is to generate new samples that have a similar distri-
bution to the training data. In 2014, Ian Goodfellow proposed
generative adversarial nets [39], which have two components,
including a generator G and a discriminator D. The generator
G generates sample close to real sample of the input training
data from random sampling noise to fool the discrimina-
tor, and the discriminator D estimates the probability that
a sample came from the input training data rather than the
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generator. The training procedure for G is to maximize the
probability of D making an incorrect discrimination. In recent
years, GANs have drawn great attention, and many improved
GAN methods have been developed. Radford er al. [40]
proposed deep convolutional generative adversarial networks
(DCGANS), in which CNNs are used to replace the multilayer
perceptron in the original GAN. Mirza and Osindero [41]
solved the problem of excessive free training in large or high
pixel images by adding some conditional constraints to G and
D in GAN, and this GAN is called conditional GAN (CGAN).
Chen et al. [42] utilized mutual information to propose Info-
GAN, which makes the process of generation and discrimina-
tion more controllable, and the generated results can be more
easily interpreted. Zhu et al. [43] proposed CycleGAN based
on the idea of cyclic consistency, which learns to translate
an image from a source domain to a target domain in the
absence of paired examples. Che e al. [44] proposed the
wasserstein GAN (WGAN), which changes distance metrics
into earth-mover (EM) distances to avoid training instability
and sensitivity to hyperparameter of GANs. Moreover, many
GAN variants have been developed in recent years, such as
BiGAN [45], VAE-GAN [46], f-GAN [47], EBGAN [48],
unrolled GAN [49], and other models [50]-[52].

Deep CNNss are representation-learning methods [22] with
multiple levels of representation based on error backpropaga-
tion, obtained by composing simple but non-linear modules
that each transform the representation at one level (starting
with the raw input) into a representation at a higher and
more abstract level. With the composition of enough such
transformations, very complex features of environments can
be learned in a general-purpose learning procedure for arti-
ficial agents to make navigation policy. The applicability of
traditional reinforcement learning has previously been lim-
ited to domains [13] in which useful features can be hand-
crafted, or to domains with fully observed, low-dimensional
state spaces. To solve the issues, reinforcement learning is
integrated with deep CNNs to constitute deep reinforcement
learning.

In general, GANS is one type of deep reinforcement learn-
ing algorithms. GANs can be viewed as actor-critic methods,
in which the generator of GAN is equivalent to the actor
of AC, the discriminator is equivalent to the critic. Consider
an MDP where the actions set every pixel in an image [53],
the environment randomly chooses either to show the state’s
image that the actor generates, or show a real image that the
generator outputs. The reward from the environment would
be 1 if the environment chose the real image and O if not.
This MDP is stateless as the state’s image generated by the
actor does not affect future states.

C. MAIN ALGORITHMS OF DEEP REINFORCEMENT
LEARNING

1) DEEP Q-NETWORK (DQN)

Mnih et al. [13] proposed DQN, which pioneers the com-
bination of a deep convolution network and traditional
reinforcement learning. Q-learning succeeds in directly
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learning control policy from high-dimensional input and
achieves results beyond the human level in a variety of Atari
games. Compared with Q-learning, DQN mainly makes three
improvements: using a deep convolution network to approx-
imate the value function, using experience playback in the
training process and setting up a separate target network to
deal with time difference (TD) errors. Detailed improvements
of the DQN are shown as follows:

(1) DQN replaces the Q table in Q-learning with a deep
convolution network to approximate Q value, which solves
the problem that Q-learning cannot be applied to S; or A,
with large or continuous sets. Specifically, Q(s, a|6;) repre-
sents the output of the DQN network, and the update value
function essentially updates the parameters of the network.
As shown in Fig. 6, the network structure of DQN includes
three convolution layers and two full connection layers.

y
}/~/~ é
Q(s,a,0)

Conv Conv

FIGURE 6. The architecture of DQN. DQN, which includes three
convolution layers (Conv) and two full connection layers (FC), learns
control policy directly from high-dimensional images.

(2) DOQN uses experience replay [54], [55] in the train-
ing process. The agent interacts with the environment,
obtains the interactive data at each time step and stores
the data in an experience pool. During the training pro-
cess, the agent collects the training data by uniform random
sampling, and updates the network parameters by the error
back-propagation algorithm. Experience replay breaks the
correlation of the data, which improves the agent’s conver-
gence and stable performance.

(3) DQN sets up a separate target network to handle
TD errors. The parameter update of the Q-learning network
can be written as follows:

041 = 0 + alriy +y max Q41,3 0)

a

— Oss, ai; OIVO(sr, a3 0) - (14)
where r;41 + y maxy Q(s;11,d’; 0) is the target Q value
of TD.

To reduce the TD error, DQN sets up a separate target
network whose network parameters are expressed as 6 . The
parameter update of the DQN can be written as follows:

Or+1 =0 +alrp +y max O(si41, a;07)

a

— O(st, a; )IVOQ(s, ar; 8)  (15)
where the target network is set separately to keep the target Q

value stable for a period of time, and decreases the correlation
between the target Q value and the current Q value.
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2) DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

While DQN solves problems with high-dimensional obser-
vation spaces, it can only handle low-dimensional and dis-
crete action spaces. Lillicrap et al. [14] extended DQN [13]
and DPG [56] to propose deep deterministic policy gradient
(DDPG) algorithm in continuous domains. DDPG is based on
AC and includes four neural networks: current critic network
0(s, a|#2), current actor networks ju(s|6%), target critic net-
work Q'(s, a|62) and target actor network 1/(s|6*), where
62, 0, 62" and 6* are the weights of each corresponding
network. The target critic network Q' and the target actor
network u’ are a copy of the current critic network Q and
the current actor network w. The current critic network Q is
updated by minimizing the loss function:

L) = E [y — OCsr, ar169))°] (16)
where

vi = r(s, ar) + v Q' (s1, 1 (s14110H162) (17

The current actor network p is updated by the following
gradient function:

Vou i 2 By [VaO(s, al09)|s=s, ampuis) Vor 11(510")|s=s, ]
(18)

3) ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC (A3C)
Mnih et al. [15] further proposed asynchronous advantages
actor-critic (A3C). The architecture of A3C is shown in Fig. 7.
The A3C algorithm uses the actor-critic framework and intro-
duces asynchronous training and advantage function, which
accelerates the training speed of the algorithm in parallel
threads. The actor network outputs actions, and critic network
evaluates the action selections.

A3C does not need experience replay, and its asynchronous
training guarantees the diversity of exploration and exploita-
tion. The agent in each thread interacts with the environment
in parallel, which reduces the correlation of training samples
and improves the agent’s learning speed.

When action function Q(a;, s;) > 0, the policy gradient
will be greater than or equal to zero and the probability of
each action will increase, which results in a large policy’s
variance and slows down the learning speed of the agent.
To address this issue, A3C introduces advantage function
A(as, s;) = Qay, s;) — V(s;), and A(ay, s;) estimates the
advantage of an action a; in state s;. If A(a;, s;) > 0, the prob-
ability of the action a; increases; otherwise, the probability of
a, decreases.

As entropy can measure the uncertainty of probability
distribution, the policy’s entropy is incorporated into A3C,
and a larger entropy can prevent A3C from converging to a
suboptimal policy. Therefore, the policy gradient update for
A3C is defined as follows:

do <« dO + Vylogm(ailsi; 0" )R — V(si; 0)))
+ BVorH(m(s1;0"))
do, < db, + (R — V(s;; 9{,))/89& (19)
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Global Network
m(s) V(s)
Network
Intput(s)
N/ N/ N/ N/
t t too
Worker 1 Worker 2 Worker 3 Worker n
Env1 Env 2 Env 3 Envn

FIGURE 7. The architecture of A3C. Each AC worker is trained in parallel
threads to get gradients, and the gradients are applied to global network
for parameter update.

where 6 and 6, are the global parameters regarding to the
action estimation and value estimation, respectively. 8’ and
9, are the local parameters regarding to the action estimation
and value estimation, respectively.

4) PROXIMAL POLICY Optimization(PPO)
When a DRL agent interacts with its environment, the state
sequences of each interaction change a lot, leading to fluc-
tuations in rewards. Therefore, DRL algorithms (such as
DQN and A3C) have unstable fluctuations during training.
Researchers wonder whether they can find a method to reduce
such fluctuations while maintaining a steady improvement in
policy. Schulman et al. [57] found a calculation method to
measure the advantages and disadvantages of a policy and
proposed the trust region policy optimization (TRPO) [57],
which guarantees monotonic policy improvement after each
round of parameter update. The objective function of
TRPO is defined as follows:

mo(arlss) Az]

70,54 (@r15t)
B [KL[709,54 ls0), o Glsll < 6 (20)

max I@,[
0

where 6 and 6,4 are the parameters of the new policy and old
policy, respectively. § is the hyperparameter that determines
the confidence interval. ét is an estimation of the advantage
function at time ¢ and [E; is the expectation indicating the
empirical average over a finite batch of samples.

In Equation(20), the constraint § of the TRPO is difficult
to determine. Generally, the approximation of § is calculated
by a second order gradient. However, the computation will
be large when the variable dimension of the objective func-
tion is high. To simplify the calculation process of TRPO,
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Schulman et al. [16] proposed the proximal policy optimiza-
tion (PPO) algorithm by calculating the first derivative to
approximate §. The PPO algorithm replaces the constraint in
TRPO with the truncated objective function:

LEUP @) = B, [min(r;(0)A;, clip(r:(0), 1—€, 1 + €)A,)]
21

7o (arst)

where r; = gy Gl

and € is the superparameter.

Ill. VISUAL NAVIGATION OF DEEP REINFORCEMENT
LEARNING

In recent years, an increasing number of researchers have
applied deep reinforcement learning to the field of visual nav-
igation for artificial agents, including navigation, positioning,
mapping, and path planning. In addition to the direct appli-
cation of deep reinforcement learning in visual navigation,
many scholars have proposed various types of DRL vNavi-
gation algorithms according to the characteristics of the nav-
igation tasks. In this section, we focus on five types of DRL
vNavigation that have been commonly applied in artificial
agents, and the five types include direct DRL vNavigation,
hierarchical DRL vNavigation, multi-task DRL vNavigation,
memory-inference DRL vNavigation, and vision-language
DRL vNavigation.

A. DIRECT DRL vNavigation

Some researchers directly utilize DRL algorithms in visual
navigation, where an artificial agent moves in an environment
to find the goal object for rewards. During the interaction
process, the agent can learn how to navigate in these envi-
ronments with sparse rewards; visual navigational agents
in some works [58], [59] use auxiliary tasks in training.
Mirowski et al. [58] directly applied A3C to visual nav-
igation in a 3D environment DeepMind Lab [60]. Learn-
ing environment models as auxiliary tasks could improve
RL agents [61], [62]; hence, the authors integrated auxiliary
information, such as image depth and loop closure into the
A3C network leading the agents’ navigation to perform bet-
ter. In detail, image depth information is conducive for the
agent to avoid obstacles, and the closed-loop detection can be
used for efficient exploration and spatial reasoning. Similar
to [58], Jaderberg et al. [59] also incorporated A3C with
different auxiliary tasks, and the tasks included pixel control
and reward prediction. In particular, pixel control maximizes
the change in the pixel intensity of different regions of the
input, and the reward prediction is trained on reward biased
sequences to remove the perceptual sparsity of the rewards.
In essence, the function of auxiliary tasks is equivalent to
adding environmental constraints to artificial agents, and it
increases the efficiency of reward acquisition to improve the
navigation performance in environments with sparse rewards.
The advantage of the auxiliary task method is that special
auxiliary tasks can be added for different navigation envi-
ronments to enhance the agent’s performance, but its obvi-
ous disadvantage is that the auxiliary task selection mainly
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depends on manual experience or large numbers of parameter
adjustments.

To avoid the disadvantages of the auxiliary task method,
Zhu et al. [63] fed the target images into actor-critic neural
networks in addition to the environmental observations. The
model learns a policy that jointly embeds the target and the
current state; thus, there is no need to retrain the naviga-
tion model for new targets. Banino et al. [64] set out to
leverage the computational functions of grid cells to develop
an A3C agent with mammalian-like navigational abilities.
These grid-like representations provide an effective basis for
flexible navigation in challenging novel environments.

In addition to the mentioned direct use of DRL in visual
navigation, some scholars use DRL to solve a single task in
navigation according to their different requirements, such as
localization, mapping and path planning problems.

In terms of localization, Chaplot et al. [65] proposed
active neural localization (ANL), and ANL utilizes the
bayesian filtering localization algorithm and A3C to mini-
mize the number of steps needed for accurate localization.
However, ANL [65] bases an assumption that the transi-
tion functions in ANL are deterministic, which does not
apply well to real robot. Therefore, Gottipati et al. [66]
proposed a hierarchical likelihood estimation approach which
decouples the resolution of the likelihood resolution from
the distance that the robot travels, and used advantage
actor-critic (A2C) to accomplish localization task for real
robot.

In terms of mapping, some researchers directly apply
DRL to resolve the mapping problems. Bhatti et al. [67]
used SLAM to reconstruct the environment in a 3D map
and utilized the FasterRCNN detector to obtain a semantic
map. In addition, the semantic map is integrated into the
DQN, which provides more abundant environmental infor-
mation for the agents’ decision making. Gupta et al. [68] pro-
posed cognitive mapping using value iteration networks [69].
The cognitive mapping module is responsible for storing
the environmental map in spatial memory, and the spatial
memory improves the planning ability of artificial agents
in partially observable environments. In addition to map
construction, researchers try to train artificial agents to read
environmental maps. For effective use of environment maps,
Brunner et al. [70] taught the A3C agent to read maps via
position cells and to search for the shortest path in unseen
mazes.

In terms of path planning, Tamar et al. [69] proposed
a differentiable path planning called value iteration net-
works (VIN) and embedded it into a convolutional neural
network as a DRL policy network. Hence, the VIN has dif-
ferentiable path planning ability. Despite its effectiveness,
VIN suffers from several disadvantages, including training
instability, random seed sensitivity, and other optimization
problems. To address these disadvantages, Lee et al. [71]
reconstructed the VIN as a recursive convolutional network,
which demonstrates that VIN couples the recurrent con-
volutions with an unconventional max-pooling activation.

VOLUME 8, 2020

The standard gated recurrent update equations potentially
alleviate the optimization issues that plague VIN.

B. HIERARCHICAL DRL vNavigation

In many dynamic and complex environments that have
high dimension state space, artificial agents via direct DRL
vNavigation would face dimensional disaster and would
be unable to perform effective navigation. To solve the
dimensional disaster, some researchers proposed a hier-
archical DRL vNavigation. Hierarchical DRL vNaviga-
tion decomposes visual navigation into subproblems and
solves each of them to generate a global navigation policy
based on the hierarchical RL principle [72]. We catego-
rize hierarchical DRL vNavigation into two types: hierarchi-
cal abstract machines (HAM) DRL vNavigation and option
DRL vNavigation.

1) HAM DRL vNavigation
In many scenarios, extrinsic rewards to the agent are very
sparse or absent altogether. As a result, artificial agents can-
not sufficiently explore the environment to learn the optimal
navigation policy. The goal of HAM DRL vNavigation is
to resolve this issue, and HAM DRL vNavigation learns
representations of hierarchical temporal abstraction in which
intrinsic rewards motivate agents to explore the environment.
In essence, HAM DRL vNavigation provides a subgoal to the
agent prior to making a decision and turns an environment
with sparse rewards into an environment with dense rewards.
The representative HAM DRL algorithm is the hierarchical
DQN (H-DQN) [73], which is based on temporal abstrac-
tion and intrinsic motivation. H-DQN sets the value function
by setting subgoals on different temporal scales. The value
function at the top level is used to determine the agent’s deci-
sion to obtain the subobjective of the next intrinsic reward,
while the value function at the bottom layer is used to deter-
mine the agent’s action to meet the top-level subobjective.
Fig. 8 shows the architecture of the hierarchical DQN [73].
Although H-DQN works well in scenarios with sparse
rewards, it relies on manually constructing subgoals a pri-
ori for tasks and utilizes intrinsic motivation. Furthermore,
approach to design proper subgoals and intrinsic motivation
is not clear and nontrivial, especially for dynamic and com-
plex environments. Therefore, Tessler et al. [74] applied the
knowledge of learning reusable skills to solve navigation
tasks in the 3D environment of Minecraft with a similar archi-
tecture to H-DQN [73], and the HAM DRL agent can selec-
tively transfer knowledge in the form of temporal abstractions
to solve a new navigation task. However, the two approaches
build an open-loop policy at the meta controller that waits
until the previous subtask is finished and are not able to
interrupt ongoing subtasks in principle. Hence, Oh et al. [75]
utilized a meta-controller to learn when to update the subtask,
and the meta-controller aims at the problem of reward delay.
The architecture can switch its subtask at any time to make
an artificial agent more efficient and flexible in learning
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FIGURE 8. The architecture of hierarchical DQN. Both the meta-controller
and controller use DQN. The meta-controller receives the states and
produces a policy over goals by maximizing expected future extrinsic
reward. The controller takes in the states and the current goal, and
produces a policy over actions to solve the predicted goal by maximizing
expected future intrinsic reward.

navigation for interrupting subtasks and for dealing with
delayed sequential decision problems.

Similar to reference [74], Nachum et al. [76] avoided
designing hand-crafted motivation or multiple tasks, and used
a generic reward for the navigation agent that is specified with
respect to the state space. Furthermore, Nachum et al. [77]
developed a suboptimality concept of representation, defined
in terms of the expected reward of the optimal hierarchical
policy using a representation that maps observation space
to goal space. This representation yields better navigation
performance compared to the approach in [76].

2) OPTION DRL vNavigation

Based on option RL [78], option DRL vNavigation abstracts
the navigation task into several options, which are added
to the original action set as special actions. Options can
be understood as a sequence of actions defined on a state
subspace, and the purpose is to accomplish a navigation
subgoal of following a certain policy. While options allow the
representation of knowledge about courses of action that take
place at different time scales, options are typically learned
using subgoals and ‘pseudorewards’, which are provided
explicitly. Hence, creating such options autonomously from
data has remained challenging. To avoid hand engineering in
option creation, Bacon et al. [79] derived stochastic policy
gradient theorems for options and proposed an option-critic
architecture to autonomously learn the intraoption policies
and termination functions, as well as the policy over options.
The option-critic architecture requires no additional rewards
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or subgoals to let the navigation agent find options for the
expected return maximization. In addition, Tiwari [80] extend
the option-critic architecture from a stochastic policy gradient
to a natural gradient for learning intraoption policies and
terminations, and this natural actor-critic agent also allows the
autodecomposition of navigation tasks in the form of options.
Compared to [79], work [81] utilizes feudal reinforcement
learning to further improve the performance of the top level
hierarchy called the Manager in controlling the lower level
hierarchy called the Worker. This visual navigation agent
outperforms the option-critic agent in the 3D environment
DeepMind Lab.

These above three works [79]-[81] can learn option DRL
vNavigation without giving additional reward for subgoals
and can fit in learning with different foundational DRL
methods. Nevertheless, these three works are learning on
two time scales, which means that the low-level hierarchy
should take control for a certain period. For more reactive
control of low-level actors, the work in [82] proposes a
hierarchical-deep deterministic policy gradient (h-DDPG) to
force both levels of the hierarch learning into the same scale.
Moreover, the lowest level of the hierarchy of h-DDPG can
learn general basic movement skills from basic navigation
tasks, and the basic movement skills that are non-task specific
can transfer to different environments. However, the cost of
h-DDPG includes the need to explicitly define rewards for
both levels of the hierarchy. Therefore, the learning in the
time scales and designing auxiliary rewards for option DRL
vNavigation are contradictory, and means of having both of
the advantages for artificial agents needs further study.

C. MULTI-TASK DRL vNavigation

Traditional DRL agents can navigate well in one domain but
will perform poorly in other unseen domains, which means
traditional DRL navigation lacks transferability. To address
the transferability issue, a multitask DRL agent is used to
acquire shared neural network parameters from related tasks,
and the parameters represent shared navigation knowledge.
Multitask DRL learning can improve data efficiency and
enhance navigation transferability for artificial agents.

1) DISTILLATION DRL vNavigation

The aim of distillation DRL is to find shared knowledge
across different tasks, which supports efficient transferability
in complex environments. Rusu et al. [83] utilized policy
distillation to conduct a knowledge transfer for the multitask
DRL, and Fig. 9 shows the architecture of the policy distilla-
tion. In Ms. Pacman, a game maze, first learned navigation
knowledge in each single domain is known as the teacher
policy, and then is transferred to a multitask policy known as
the student policy. In [83], the environment states of multiple
tasks are assumed to share the same data distribution; hence,
the convolutional filters are shared by all the tasks to retrieve
the transferable features from all tasks. However, the environ-
mental states and pixel-level inputs vary greatly in different
environments. Thus, sharing the convolutional filters among
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FIGURE 9. The architecture of policy distillation. The DQN agent (teacher)
periodically adds gameplay to the replay memory while the policy
network (student) is trained for policy distillation.

multiple tasks, in which the shared features contain some
key task-specific features, may lead to negative transfer for
some navigation tasks. To tackle the stated issue, Yin and
Pan [84] proposed a new policy distillation architecture where
the convolutional filters remain task-specific for each task,
and a set of fully connected layers with a shared output layer
are trained as the multitask policy network. Experimental
results show that the latter agent [84] navigates better than
the former agent [83] in Ms. Pacman. In addition, another
issue is the different reward schemes between multiple tasks
for distillation DRL vNavigation, which can easily lead to
one navigation task dominating the learning of a shared
model. To address the problem, work in [85] presented a
new distilled policy that captures the shared behavior across
different navigation tasks, and the new distilled policy is
used to guide task-specific policies via regularization using
a Kullback-Leibler (KL) divergence whose effect is akin to a
shaping reward.

2) PROGRESSIVE DRL vNavigation
While distillation offers one potential solution to an agent’s
visual navigation, it requires a reservoir of persistent training
data for all tasks, an assumption that leads to low sample
efficiency and may not always hold. Progressive DRL [86]
addresses the issue of distillation DRL vNavigation and can
selectively leverage prior knowledge with lateral connections
to previously learned features. In detail, Rusu et al. [86]
proposed progressive neural networks, which store and
extract useful navigation features through connected multiple
progressive networks. When constructing a multilayer neural
network to train a task, a layer of the neural network is fixed,
and the feature information stored in the upper layer can be
transferred to the next task. This progressive DRL vNaviga-
tion yields a more positive transfer from one environment to
others. Fig. 10 shows the architecture of progressive neural
networks [86].

Similar to the progressive neural network architecture [86],
Mirowski et al. [87] proposed a progressive multicity
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FIGURE 10. The architecture of progressive neural networks. The first two
columns on the left (dashed arrows) are trained on task 1 and task 2,
respectively. The grey boxes labelled a are the adapter layers. The third
column has access to all previously learned features for the final task.

architecture that can handle multiple tasks to obtain gen-
eral navigation capability. A multicity network trains artifi-
cial agents in many cities and then freezes the neural net-
work of specific paths and policy networks of many cities,
which enables the artificial agent to acquire new knowledge
while preserving prior navigation knowledge. In addition,
Schaul et al. [88] proposed universal value function approxi-
mators (UVFAs) to construct state and target representations
by decomposing multiple tasks and targets into matrices.
UVFAs can generalize navigation knowledge into unseen
domains with the same dynamics but different goals.

Their derivation of progressive DRL vNavigation has
the advantage that performance on all considered naviga-
tion tasks is preserved but requires an ever-growing set of
learned representations. In general, the navigation perfor-
mance becomes more transferable when the progressive net-
work modules increase. However, more progressive network
modules mean more training parameters, which increases the
training difficulty of the navigation agent. Therefore, meth-
ods to balance the number of progressive network modules
and training parameters should be considered.

D. MEMORY-INFERENCE DRL vNavigation
Memory can enhance the reasoning ability of artificial agents,
which is benefit to navigation performance improvement.
A common internal memory is LSTM [89]/GRU [90], whose
limited capacity restricts the agent’s navigation ability to
simple environments. Moreover, common internal memory
mixes together computation and memory capacity in the
network weights, and this property results in a large increase
in network parameters when the memory demands of a navi-
gation task increase. To avoid the network training difficulties
caused by large numbers of parameters, some researchers
have proposed external memory [13], [91]-[94].

Here, the combination of DRL and external memory is
introduced to improve visual navigation performance in
partially observable and large-scale environments.
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Unlike internal memory, external memory structures separate
computation from memory capacity, so that the number of
network parameters is not tied to the memory size. There-
fore, external memory has a large storage capacity while
maintaining low computation. Several main external memory
structures include replay buffer [13], memory networks [91],
episodic memory [92], neural turing machines (NTM) [93]/
differential neural computer (DNC) [94]. As external memory
has a large storage capacity, artificial agents with exter-
nal memory can store more environmental information and
extend their navigation ability to dynamic and complex envi-
ronments.

1) REPLAY BUFFER FOR DRL vNavigation

As shown in Fig. 11, the replay buffer [13] stores the
agent’s experiences e; = (8¢, s, s, Sy+1) at each time step.
In the training process, the replay buffer randomizes the
data, thereby removing the correlations in the observation
sequence and reducing the variance of the updates. In addi-
tion, each experience is potentially used in many weight
updates, and greatly improves data efficiency.

S§1,Q1,72, 52

Sp,02,13,83

S3,0a3,14, S4

St Ay Te+1, St+1

FIGURE 11. The architecture of replay buffer. Replay buffer stores agent's
experience e; = (s¢, a4, I, S¢ 1) at each time step.

Yin and Pan [84] proposed a new sampling framework
termed hierarchical prioritized experience replay to selec-
tively choose experiences from the replay memories of each
navigation domain to perform learning on the network. The
purpose of the hierarchical prioritized experience replay is
to enhance the benefit of prioritization by regularizing the
distribution of the sampled experiences from each naviga-
tion domain. With this prioritized replay, the overall learning
for the DRL vNavigation policy is accelerated significantly.
Besides taking advantage of the prioritization of replay mem-
ory in [84], some researchers store the world model in the
replay buffer for navigation to reduce real-world interactions.
Bruce et al. [95] proposed a visual robot navigation algorithm
based on interactive replay, in which a rough world model
is memorized from a single traversal of the environment.
With the world model in interactive replay, an artificial agent
interacts with the model to generate large numbers of diverse
trajectories for the learning to navigate while minimizing
the amount of real-world experience required by the robot.
In addition, many environments are sparse-reward and often
require large amounts of reward shaping. However, reward
shaping limits asymptotic policy performance by preventing
the policy from reaching new solutions. To address this issue,
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Eysenbach et al. [96] proposed an algorithm called search
on replay buffer (SoRB), where a weighted, directed graph
directly on top of the states is stored in SORB. In the directed
graph, each node corresponds to an observation and the edges
between the nodes have a weight equal to their predicted
distance. Using a graph search over this replay buffer, a navi-
gation task can be automatically decomposed into a sequence
of easier subgoals.

2) MEMORY NETWORKS FOR DRL vNavigation
The architecture of the memory networks is shown in Fig. 12.
The update process of memory networks is as follows [91]:

x — I(x) /> m;

HEEED

o > r

FIGURE 12. The architecture of memory networks. Memory networks
consist of a memory (an array of objects indexed by m;) and other
components: input feature map /, output feature map o and response r.

(1) x is converted to an internal feature representation /(x).

(2) Update memories m; according to m; = G(m;, I(x), m).

(3) Compute output features o according to o =
O(I(x), m).

(4) Decode output features o into the final output r = R(0).

Memory networks can reason with inference components
combined with a long-term memory component. To augment
the DRL with reasoning and memory ability, Oh et al. [97]
designed three novel DRL architectures based on mem-
ory networks: memory Q-network (MQN), recurrent mem-
ory Q-network (RMQN), and feedback recurrent memory
Q-network (FRMQN). These proposed architectures store
recent observations into their memory and retrieve relevant
memory based on the temporal context, which leads to the
DRL vNavigation agent with reasoning ability. Therefore,
memory-based agents can generalize their navigation abili-
ties to unseen or partially observable environments.

3) EPISODIC MEMORY FOR DRL vNavigation
Episodic memory [98] could provide detailed and tempo-
rally extended snapshots of the interdependency of actions
and outcomes from individual experiences, and this informa-
tion may be a reliable guide to decision-making precisely
in situations that classical DRL algorithms cannot handle.
Episodic memory may thus enable the artificial agents to [99]
(1) efficiently approximate value functions over complex
state spaces, (2) learn with very little data, and (3) bridge
long-term dependencies between actions and rewards.

The classical architecture of episodic memory is the differ-
entiable neural dictionary (DND) [92]. As shown in Fig. 13,
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FIGURE 13. The architecture of differentiable neural dictionary.
Differentiable neural dictionary has a memory module (key, value), where
key and value are dynamically sized arrays of vectors, each containing the
same number of vectors.

DND uses a semi-tabular representation of value, which
contains the environmental state representation of the value
function with slow change and the estimation of rapid update.

Some works utilize individual experiences retrieved from
episodic memory to construct a cognitive map of DRL nav-
igation. Tang ef al. [100] integrated the cognitive mapping
ability of the entorhinal cortex and the episodic memory
ability of the hippocampus. Through recalling travel expe-
riences in episodic memory, a map of the environment is
built for robots to complete more cognitive navigation tasks.
In work [101], episodic memory encodes the spatial temporal
relationship of events to overcome the perceptual aliasing
problem. And the proposed navigation model connects scenes
though episodic memory retrieval to construct a sensorimotor
map for robots. Moreover, some works reshape rewards by
storing the navigation agent’s curiosity into episodic memory
to form novel rewards, which makes sparse rewards dense.
Savinov et al. [102] computed the similarity between the
current observation and the observation in episodic memory
to generate new rewards. In VizDoom [103] and DeepMind
Lab [60], artificial agents can quickly learn navigation capa-
bilities, and generalize well to new environments even with
very sparse rewards.

4) DNC FOR DRL vNavigation

The architecture of the differentiable neural computer is
shown in Fig. 14. DNC [94] contains four modules: con-
troller, read heads, write heads and memory. The controller
is responsible for receiving input information, storing the
processed data in memory, and generating ouput. The read
heads read data from memory using content-based address-
ing or dynamic memory allocation. The read heads write
data into memory using content-based addressing or tempo-
ral memory linkage. Content-based addressing enables the
formation of associative data structures, dynamic memory
allocation provides the write head with unused locations,
and temporal memory linkages enable sequential retrieval of
input sequences. In addition, the memory is a N x M memory
matrix.

Some researchers have taken advantage of the large
memory space of DNC, and applied DNC to visual DRL
navigation. Parisotto and Salakhutdinov [104] mapped the
environmental information into the DNC for a neural map,
and the neural map stores the historical information of the
environment map so that the learned navigation ability can
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FIGURE 14. The architecture of differentiable neural computer. The
controller is to receive input from external data and produce output. The
read heads and write heads are used to read and write data into memory,
respectively. The memory is a N x M memory matrix.

be generalized to the previously unknown environments.
Khan et al. [105] constructed an environmental value map
with value iteration networks, and extended the path plan-
ning into large scale and partially observable environments.
Zhang et al. [106] stored the internal representation of the
environments into DNC, and embed the localization, motion
prediction and measurement update of SLAM into the deep
learning network through a soft attention mechanism. The
introduction of DNC enhances the robustness and adaptabil-
ity of the traditional SLAM method.

E. VISION-AND-LANGUAGE DRL vNavigation

In recent years, an increasing number of researchers have
paid attention to multi-modal information [107], which
provides more complete information for artificial agents’
decision making [108]-[110]. Specifically, the most stud-
ied multi-modal information is vision and natural language
fusion in the navigation field. Many researchers focus on
the task of vision-and-language navigation (VLN) which
requires artificial agents to interpret natural language instruc-
tions and to learn navigation in visual environments. Fig. 15
shows the architecture of vision-and-language navigation,
in which the fusion of language instruction and vision as
state inputs are fed into artificial agents for navigation pol-
icy. For example, an artificial agent is given a natural lan-
guage instruction such as “Walk forward though the door
and into the living room”, and the agent should follow this
language instruction to navigate from its current location to
the goal position. In addition, the agent must learn to relate
the language instructions with the visual information of envi-
ronment. In general, most VLN methods will be evaluated
on the Room-to-Room (R2R) [111] dataset which contains
open vocabulary and crowd-sourced navigation instructions
to guide the navigation agent to complete corresponding
actions and tasks in the simulated environment.

Fried et al. [112] treated the VLN task as a trajectory search
problem where a panoramic representation efficiently repre-
sents high-level actions and incorporates a visually grounded
speaker-follower model. Wang et al. [113] proposed a rein-
forced cross-modal matching (RCM) method for VLN that
enforces cross-modal grounding both locally and globally via
DRL. Based on RCM, the authors introduced self-supervised
imitation learning (SIL) to explore unseen environments by
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FIGURE 15. The architecture of vision-and-language navigation.
Vision-language navigation is the task where an agent with visual
perception navigates inside a real environment by following natural
language instructions.

imitating its past and good decisions. Both approaches [112],
[113] are evaluated on the R2R dataset, and they reuse
pretrained vision and language modules directly in the nav-
igation agent. To further enhance pretrained vision and lan-
guage representations into domain-adapted representations.
Huang et al. [114] defined two in-domain auxiliary tasks:
cross-modal alignment (CMA) and next visual scene (NVS).
With CMA and NVS, the VLN agent can learn visual and
textual representations that can be transferred between dif-
ferent environments. The mentioned VLN algorithms assume
that objects in the environment, such as offices or houses, can
be formulated into instructions. Different from these VLNS,
Devo et al. [115] focused on situations where objects in the
environment cannot be specified as a navigation path, and
considered 3D mazelike environments as the test bench which
are very large and offer very intricate structures. This new
VLN architecture can explicitly interpret the instructions and
understands the direction to take along the path to navigate
the environment without reference points.

IV. CURRENT CHALLENGES AND OPPORTUNITIES

In this section, we discuss the current challenges visual DRL
navigation faces, and propose some research directions as
opportunities that are widely open.

A. CURRENT CHALLENGES

In general, the environments are often complex, dynamic
and reward-sparse. Therefore, there are two main chal-
lenges that artificial agents face: data inefficiency and poor
generalization.

1) DATA INEFFICIENCY

As the inputs of the navigation agent are high-dimensional
images, the navigation agent needs a large number of inter-
actions within the environment when it learns to navigate
in an environment. The interaction number will increase
dramatically when the surrounding environment of the arti-
ficial agent becomes more complex and dynamic. In addi-
tion, sparse reward exacerbates the data inefficiency. The
data inefficiency challenge means that the training of visual
DRL navigation has poor convergence and the training time
is very long.
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2) POOR GENERALIZATION

Poor generalization is another issue of DRL vNavigation.
There are two types of generalization cases: (1) generaliza-
tion from one simulation environment to another simula-
tion environment and (2) generalization from a simulation
environment to a reality environment. In general, the reality
environment is more complex and dynamic, thus the latter
generalization is more difficult.

Most visual DRL navigation algorithms based on neural
network architectures utilize CNNs for feature extraction and
fully connected layers that map the features to a probabil-
ity distribution over navigation actions. Such visual DRL
navigation algorithms essentially train a reactive policy [69]
for selecting actions that yield satisfactory long-term conse-
quences in its training environment. Therefore, these DRL
navigation methods suffer from poor generalization. More-
over, the data distributions in different environments vary
greatly; hence, the navigation model trained in one maze is
difficult to transfer to other environments.

B. OPPORTUNITIES

How to solve the two above problems is the research hotspot
of visual DRL navigation. This paper lists the possible
research opportunities.

1) POLICY HIERARCHY

In many dynamic and complex environments that have
high-dimensional state space, artificial agents via direct
DRL vNavigation would face dimensional disaster and are
unable to perform effective navigation. To solve the dimen-
sional disaster, researchers can utilize the idea of policy
hierarchy [73], [76]. Policy hierarchy decomposes visual nav-
igation into subproblems which are relatively simple tasks for
artificial agents, and artificial agent solves each of them to
generate a global navigation policy [74], [79] based on the
hierarchical RL principle.

2) META LEARNING
In meta learning, the goal of the trained model is to quickly
learn a new task from a small amount of data. Finn et al. [116]
proposed a meta learning algorithm called model-agnostic
meta learning (MAML), which trains the model’s initial
parameters to maximize the performance on a new task.
In addition, MAML can update the parameters through one
or more gradient-step computations with a small amount
of data from that new task. Fig. 16 is the illustration of
gradient update for policy parameters with MAML meta
learning.

Meta learning is a few-shot data method, and it only needs
a small amount of data for generalization. MAML [116]
and its variants [117]-[119] can improve the data efficiency
and transferability of visual DRL navigation for artificial
agents. Therefore, incorporating visual navigation agents
with the idea of meta learning is helpful to improve the DRL
vNavigation performance.
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FIGURE 16. Illustration of gradient update for policy parameters with
MAML meta learning algorithm [116], which optimizes for a
representation ¢ that can quickly adapt to new tasks.

3) MEMORY

As humans beings, we draw on our previous experience in
similar conditions from memory, when we navigate through
novel environments. We can reason though the free-space,
obstacles and topology of an environment with common
sense rules and heuristics for navigation [68], which are based
on memory.

Memory can enhance the reasoning ability [97], [101] of
visual navigation model. Thus, it’s helpful to store navigation
experiences in memory architectures and augment artificial
agents with memory functions. Memory enhances data effi-
ciency and generalization of artificial agents in dynamic and
complex environments.

4) MULTI-MODAL FUSION

Multi-modal fusion, such as speech, natural language and
some other model information (such as laser radar and Inertial
measurement unit), can sense sufficient environmental infor-
mation [107] for artificial agents. Developing an effective
multi-model fusion method enhances the data efficiency of
environment, which improves the perception [120] of arti-
ficial agents to cope with dynamic and complex environ-
ments. Therefore, a visual DRL navigation agent with a
multi-modal sense can learn a better policy [121]. Based on
multi-modal information, an artificial agent has good adapt-
ability to dynamic and complex environments, which helps to
improve the generalization of navigation model.

V. CONCLUSION

Visual navigation is the foundational technology for artificial
agents and is widely used in various fields, such as electronic
games, unmanned vehicles and robotics. Visual navigation
methods based on deep reinforcement learning draw much
attention from researchers. This paper has provided a com-
prehensive and systematic review of visual DRL navigation
including its developments and frontier algorithms. In addi-
tion, the current challenges and opportunities for visual DRL
navigation are discussed. We hope that this survey paper will
benefit researchers in the visual navigation community.
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