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ABSTRACT Many complicated road intersections are seen while driving. In some, blind spots make it
difficult for drivers or automated vehicles to discern moving objects coming from certain directions, possibly
confusing drivers or autonomous vehicles wishing to cross or to turn at the intersection. To address this
problem, we investigate detection and tracking of all moving objects at an intersection using a single
360-degree-view camera (3DVC). Through experiments, we develop methods allowing a 3DVC to capture
the entirety of a four-way intersection when installed at one corner. This paper also presents image processing
algorithms for detecting and tracking moving objects at intersections by processing images from the installed
3DVC. Experiments under varied conditions demonstrate that the proposed detection algorithm has a very
high detection rate. We also confirm the tracking ability for moving objects detected using the proposed
algorithm.

INDEX TERMS 360-degree camera (omnidirectional camera), driver assistance, autonomous driving,

moving object detection and tracking, image conversion.

I. INTRODUCTION

Traffic accidents are reported around the world daily. In many
countries, the majority of accidents occur at road inter-
sections. Objects such as pedestrians, vehicles, cyclists,
and wheelchairs move differently at intersections, and this
complexity can confuse drivers trying to comprehend the
intersection while driving through it or turning. If drivers
can understand the conditions of an intersection—including
its blind spots—a few seconds before arriving there, they
can better handle their vehicle while traversing the inter-
section. In the case of automated driving, moving objects
in blind spots of intersections are particularly confusing
for automation systems without proper understanding of
objects approaching from different directions. Such sit-
uations can cause traffic accidents in both manual and
autonomous driving. Automatic detection of moving objects
and real-time transfer of moving object information to
vehicles are extremely important for solving such inter-
section traffic problems. In this study, we apply use of a
360-degree-view camera (3DVC) to tackle the problem of

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh

135652

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

detecting moving objects at intersections. We experimentally
verified that installing a 3DVC at an intersection corner can
capture the entire intersection area, as described in the next
section. In this paper, we mainly focus on the detection and
tracking of vehicles, pedestrians, cyclists, wheelchairs and
other moving objects at intersections by processing images
from a 3DVC installed at an intersection corner. This study
targeted detection of moving objects within 30 m from the
camera because we experimentally confirmed that detection
of moving objects within this range is sufficient to support
drivers a few (2-5) seconds before arriving at the intersec-
tion by informing them of moving object distributions there.
Furthermore, we believe this detection range is sufficient
to achieve turning in the case of automated driving, since
the movement of autonomous vehicles is nearly identical to
manual driving.

There have been many previous studies of moving object
detection at intersections through use of two-dimensional
(2D) cameras [1]-[7], but it is difficult for 2D cameras
to capture all moving objects in an intersection. Even so,
some approaches focus on comprehensive moving vehicle
detection using a single 2D camera installed high above the
ground [8], [9]. Moving vehicles are detected by processing
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images from the camera. When the camera is installed high
above the intersection, it is possible to capture the entire
area. However, it remains difficult to capture pedestrians
and bicycles, which do not clearly appear in camera images.
Furthermore, installing such cameras at a sufficient height
can be difficult and costly.

Other studies have thus attempted moving object detec-
tion throughout intersections by installing multiple cameras
at complex intersections [10]. Multiple cameras can cap-
ture images from different intersection areas, allowing mov-
ing object detection by image processing. Moving objects
detected by all cameras can be merged to grasp the behavior
of moving objects situation throughout the intersection. How-
ever, the required image data processing increases when mul-
tiple cameras are used, potentially making real-time detection
difficult.

In this paper we target to detect all the moving objects
around an intersection. We installed the 3DVC 3m above the
ground at a corner of an intersection, as shown in Fig. 2.
We experimentally found that this camera installation is suffi-
cient for capturing images of the entire intersection, including
all nearby moving objects. In the other word, an image from
3DVC includes the entire intersection area, when the 3DVC is
fixed at an intersection corner following the above mentioned
installation procedure. For example, Fig. 4 shows an image
with this camera installing at an intersection. In the image,
four roads of the intersection can easily be found when you
focus on the four road crossings. In this intersection, there
is a crossing on each road. Furthermore, the moving objects
on roads as well as near the intersection region can also be
confirmed.

Lens 1image

FIGURE 1. Structure of an image captured by a Theta 3DVC.

In this study, we attempt detection and tracking of all
moving objects in a road intersection using a single 3DVC
camera. Generally, a 3DVC has two lenses, each providing
a 180-degree circular image like those shown in Fig. 1.
Two 180-degree view circular images combined provide a
360-degree view. These 3DVC cameras have been used in
studies related to topics such as virtual reality [11], map-
ping [12], [13], 360-degree imaging systems [14], video
coding [15], depth estimation [16], and navigation behavior
analysis [17]. To the extent of our knowledge, however, there
have been no studies regarding their application to detection
of traffic situations at an intersection. In early stages of
this work, we attempted detection of moving objects in the
entirety of an intersection by processing the original circular
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images [18]. However, we found that tracking moving objects
is difficult with these images, as explained in the next section.
In this study, therefore, we generated rectangular images from
the original circular images and performed moving object
detection and tracking using those rectangular images.

Experiments conducted to confirm the effectiveness of the
proposed detection algorithm showed high detection rates.
Experiments also demonstrated that the proposed tracking
algorithm can track detected moving objects with high accu-
racy. This detection and tracking approach is therefore practi-
cally applicable to development of driver assistance systems
capable of autonomous driving at complex intersections with
blind spots.

The remainder of this paper is organized as follows.
Section 2 describes 3DVC installations at intersections.
Section 3 presents the proposed moving object detection
method, and Section 4 describes it in detail. Section 5 presents
and discusses the experimental results of this work. Finally,
Section 6 concludes the paper.

Il. APPLICATION OF 3DVC TO DETECTING MOVING
OBJECTS AT INTERSECTINS

In this study, we used a Ricoh Theta 360-degree camera as
the 3DVC. This section describes the camera installation at
an intersection performed for this work and the image conver-
sion necessary for detecting and tracking moving objects. The
Theta has two lenses, each generating a 180-degree circular
image like those shown in Fig. 1. Combined, these circular
images provide a 360-degree view.

360 degree view camera
(Height of camera position=3m)

FIGURE 2. 3DVC installation at a road intersection.

A. CAMERA INSTALLATION

We installed the 3DVC 3m above the ground at a corner
of an intersection, as shown in Fig. 2. We experimentally
found that this camera installation is sufficient for capturing
images of the entire intersection, including all nearby moving
objects.

As mentioned above, full 3DVC images combine a circular
image from each of its lenses. Figure 3 shows an image from
a 3DVC installed at an intersection. Note that the brightness
might be poor in some images, according to the lighting
environment at the time (Fig. 3).
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FIGURE 3. A 3DVC-captured image.

B. BRIGHTNESS IMPROVEMENT

As preprocessing, we apply gamma correction to improve
the brightness of original images [19]. In gamma correction,
an original camera image with 8-bit pixel intensity levels (/;)
is converted into levels in the range [0, 1]. Gamma conversion
is then performed following Eq. (1), and a gamma-converted
image I, of I; is generated following Eq. (2).

I, = (2 (1)
87 2255
I, = I %255 2

Figure 4 shows gamma conversion of the image in Fig. 3.
This brightness correction can improve detection of moving
objects that are far from the camera.

FIGURE 4. Gamma correction of the image shown in Fig. 3.

C. CONVERSION TO RECTANGULAR IMAGES

In early stages of this work, we attempted to detect
moving objects at intersections using the original circular
images [18]. We could achieve moving object detection to
some extent, but it was difficult to track moving objects using
these images, owing to the difficulty of tracking crossover
from one image to the other. In this study, therefore, we per-
formed moving object detection and tracking after converting
the circular images to rectangular ones. Specifically, we con-
tinually convert pairs of source circular images to combined
rectangular images.

To convert the original images to rectangular images,
we use equirectangular conversion, a simple map projec-
tion method [20]. In this study, we perform projections
from spherical coordinates to planar coordinates by Egs. (3)
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and (4).

X = (A — Ag) cos B 3)
y="0-9 @)

In the above equations, x and y respectively denote hor-
izontal and vertical coordinates of the projected location
coordinate, A and A are respectively the longitude and central
meridian of the location to project, and ¢ and ¥ | denote the
latitude of the location to project and standard parallels.

FIGURE 5. Example equirectangular conversion (a) Original image,
(b) Equirectangular conversion.

Figure 5(a) shows an original image from the camera and
Fig. 5(b) shows its equirectangular conversion.

Image after gamma correction
and equirectangular
conversion

Background subtraction
process by GMM

Noise removal by morphology
operations

Moving object confirmation by
contour determination

Detected moving objects

FIGURE 6. Major steps in the moving object detection algorithm.

Ill. MOVING OBJECT DETECTION AND TRACKING

We use images after brightness correction and equirectangu-
lar conversion to perform moving object detection. Our pro-
posed algorithm for moving object detection is sufficiently
lightweight to allow real-time detection. Figure 6 shows the
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major steps in the algorithm, as described in the following
sub-sections.

A. MOVING OBJECT CANDIDATE EXTRACTION BY
GAUSSIAN MIXTURE MODEL BASED BACKGROUND
SUBTRACTION

Frame and background subtraction can be used to detect
moving objects in images [21]-[32]. In frame subtraction,
moving objects are detected by calculating the image subtrac-
tion between two or a few consecutive frames [21], [23], [28].
Moving objects must have some minimal speed for detection
by frame subtraction. In this study, the camera is static and
some targeted moving objects, such as wheelchairs, have
very low speeds. Note that objects like pedestrians waiting
at the intersection cannot be detected with frame subtraction,
so we decided not to use frame subtraction to extract mov-
ing objects. Instead, we use background subtraction, which
generally performs subtraction between a current frame and
a previously prepared background image [22], [27], which
must be updated as lighting conditions at the intersection
change. We use a background subtraction method that follows
a Gaussian mixture model (GMM) to extract moving object
candidates from the images [24]-[26], [46], [47] because
this method can automatically update background pixels in
the image. The light condition of the outdoor environment
slightly changes as sunlight changes. Sometimes it changes
sharply following the changes of cloud conditions. In GMM,
multi Gaussian models (K) are generated and updated fol-
lowing the pixel value variation over the time, regarding each
pixel in the image. Then, if the current pixel value is away
from the multi Gaussian models, it is picked up as a pixel
of a moving object. The same process is applied to all the
pixels in the image to extract the pixels of moving objects.
GMM is robust against above-mentioned light changes in the
outdoor environment because a pixel of moving objects are
extracted by comparing with several Gaussian models, those
are generated following it’s value variation over the time.
Thus, the GMM is adaptive enough for detecting moving
objects from consecutive images from a static camera in an
outdoor environment. This method models each background
pixel by a mixture of K Gaussian distributions (K = 3...5).
The mixture weight denotes the time interval over which
those colors remain in the scene. The probability of each pixel
to be in the foreground or background is calculated using its
intensity in RGB color space as

K
PX) =D o K i ) ), 5)

where X; is the current pixel in frame ¢, K is distributions in
the mixture, w; ; is the weight of the k-th distribution in frame
t, Wi,; is the mean of the k-th distribution in frame ¢, and ) it
is the standard deviation of the k-th distribution in frame z.
(X, Mit, Zi’ ,)is a probability density function with general
structure

T (Xls M, 2) = %exp_%(xf_”‘)zil(xt_ﬂ) (6)
@m)} |z}
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Not every RGB is correlated with others [25], [26], so dif-
ferences in intensity can be assumed to have uniform standard
deviations. The covariance matrix can thus be expressed as

i = of,l. @)

Every Gaussian exceeding a defined threshold (th) is
extracted as background, and others are extracted as fore-
ground. When a pixel matches at least one K Gaussian in
the mixture, w, u, and o are updated. To clearly indicate
this classification, pixels selected as foreground are colored
white, while pixels selected as background are colored black,
as

T G ) {(2)55 (if every Gaussian > th) @)
Figure 7 shows an image after gamma correction and
equirectangular conversion. This image was captured by an
3DVC installed at an intersection under the above-described
installation conditions. Figure 8 shows its background sub-
traction following the GMM method, demonstrating that
candidate moving objects can be extracted as white blobs.
Note that these candidates do not have a uniform shape, and
some noise is present. As mentioned above, in this paper the
camera is static, so these subtraction methods can easily be
used to detect moving objects from consecutive images from
the camera rather than color based [40]-[43] and learning
based [44], [45], [48] methods.

FIGURE 7. Image after gamma correction and equirectangular conversion.

FIGURE 8. Background subtraction by GMM.

B. SHAPING MOVING OBJECT CANDIDATES

AND NOISE REMOVAL

To remove noise from the subtraction results and recover the
shape of candidate moving objects, we apply a morphology
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operation process. Previous studies have addressed this prob-
lem by proposing a hole-filling method [26]. In consideration
of the computational times required, however, we instead
apply a morphology operation, in which the subtraction
image is eroded m times and the resulting eroded image is
dilated m times. Figure 9 shows the result of this morphology
operation applied to the subtraction image shown in Fig. 8.

FIGURE 9. Results of the morphology operation process.

As Fig. 9 illustrates, the morphology operation process
reduces noise and improves the shape of candidate moving
objects. However, some noise unrelated to subtractions of
moving objects still exists in the image, the object in the red
circle being an example. To extract actual moving objects
from among candidates in an image resulting from the mor-
phology operation, we apply the contour-tracking method
described in the next subsection.

FIGURE 10. Results of raster scanning and contour tracking.

C. EXTRACTING MOVING OBJECTS

BY CONTOUR TRACKING

We perform contour tracking to calculate the contour length
of each candidate in images resulting from the morphology
operation. Figure 10 shows this contour tracking operation,
in which image pixels are raster scanned. If a white pixel
is found during scanning, contour pixels of the object in
which that white pixel is contained are tracked. This tracking
is performed in the counterclockwise direction, as shown
Fig. 10.

During the tracking process, we count the number of con-
tour pixels (Cp). Candidate moving objects with C, exceeding
a predefined threshold (7}) are extracted as moving objects.
In this paper, T), = 7.

Figures 11 and 12 respectively show moving objects
detected in images resulting from the morphology operation
and in a rectangularized source image. We calculate the cir-
cumscribing rectangle for each detected moving object (green
rectangles in Figs. 11 and 12), the middle point of which is
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FIGURE 11. Moving objects detected in an image resulting from the
morphology operation.

FIGURE 12. Moving objects detected in a rectangularized original image.

used as the object’s posit.ion (pf.g’ ). Ir} this paper, pfl(eig is the
number of detected moving objects in a frame, where i is
counting order of them.

IV. TRACKING OF DETECTED OBJECTS

Detected moving objects are tracked to determine their move-
ment direction, an important factor on the vehicle side.
We plan to create a system that can send detected moving
object information to vehicles approaching the intersection
from all directions. In manual driving, drivers can more easily
perform decision-making at intersections if moving object
information can be received a few seconds before arriving.
In particular, providing information about moving objects in
blind spots can make drivers much more comfortable at inter-
sections and allow computers to better control autonomous
vehicles.

A. KALMAN FILTER-BASED MOVING

OBJECT POSITION ESTIMATION

Object tracking is an interesting problem in computer vision,
and there are many previous studies of this topic [33]-[35].
In this paper, we perform tracking based on a Kalman fil-
ter [36], which is less time-consuming and has been applied
to similar tracking problems [37], [38]. We estimate the
position of a moving object in a current frame (p¢') by
following its position in the previous frame (p¢*', ), following
Eqgs. (9) and (10). In these equations, v¢*' is the estimated
moving object velocity following the velocity value estimated
in the previous frame (vfi’ ). In addition, a; is acceleration
of the moving object, and w), and w, are respectively noises
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regarding the moving object’s position and velocity.
1
P = Py e+ Sadn? +wy ©)
Ve = 4 audt +wy (10)

Equations (9) and (10) can be summarized as

1
P L dr] [ = (dr)? Wp
[vfst =lo 1 Vtes_tl +12 &t [a:]+ wy | (11)
By substituting into Eq. (11) the definitions in

Egs. (12)—(15), we derive Eq. (16), which gives the estimated
position of a moving object in the current frame (p¢*).

(1 ar
fi=1o 1] (12)
- 1 5
b = 5“”} (13)
| dt
u, = [a] (14)
W, = y} (15)
L Vv
P = iy + by +wy (16)
In this paper, p®*’ is calculated assuming that w, = 0.

In addition, when tracking starts after detecting a moving
object, we initialize the estimation assuming that the moving
object’s estimated positions in a few previous frames are the
same as the current detected position.

est

Pt

h .b/ Searchingregion to

. . det
find corresponding f
w Pe(i)

FIGURE 13. Definition of a searching region for finding a
corresponding p;’(‘:.;.

B. CONNECTING ESTIMATED MOVING OBJECT POSITIONS
WITH POSITIONS BY THE DETECTION PROCESS

After estimating a current position for a moving object, it is
compared with the positions of moving objects in the current
frame detected by the detection process (pf(eig) described in
the previous section. Here, i is an index for detected moving
objects in the current frame. We define a region keeping p¢*'
as the center point, as illustrated in Fig. 13. The p;i(el.g located
within that region is selected as the corresponding position

of the currently tracked object. At an intersection, however,
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different types of moving objects move in different direc-
tions. Multiple detected positions can thus appear within the
defined region, leading to tracking errors. In such situations,
we focus on the directions of p¢. We calculate the moving
direction of an object by following its estimated positions in
a few previous frames. By comparing that direction value,

we select the pf(‘;.’) corresponding to p¢*. After confirming

the relation between detected positions pffig and estimated

positions p(}), estimated pfj) values can be updated by p%.;.

FIGURE 14. Tracking results, with red dots indicating detected moving
object positions (p‘a.;) and white crosses indicating estimated positions

).

The image in Fig. 14 shows an example of this tracking
method. In that image, green color rectangles are circum-
scribing rectangles for detected moving objects, with red dots
at their center. As mentioned above, we consider these dots as

the detected positions (P;i(%) of moving objects. White crosses

denote estimated moving object positions (pf(sit)).

V. EXPERIMENTS

We conducted experiments to evaluate the proposed mov-
ing object detection and tracking method. All experiments
were conducted installing the 3DVC camera at several
intersections.

FIGURE 15. Theta camera installation at an intersection corner.

A. EXPERIMENTAL ENVIRONMENT

The 3DVC was installed at corners of the intersections used in
experiments to evaluate the proposed detection and tracking
methods. Figure 15 shows an example camera installation.
We conducted experiments only at intersections where two
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roads with four lanes intersect. In each intersection, there
is a pedestrian crossing across each road segment near the
intersection (Fig. 15). Furthermore, they are complicated
intersections having blind spots from drivers’ perspectives.

Configuration of personal computer used for experiments:
3.40 GHz (Core i7, 8 GB RAM). Dimensions of came images:
640 x 480 pixels.

We evaluated moving object detection at intersections
for targets such as vehicles, pedestrians, wheelchairs, and
cyclists. The detection rate was calculated for 400 objects at
each through multiple experiments under sunny and cloudy
conditions. Each experimental time (total video length) was
110 min. Human-pushed baby strollers and wheelchairs,
as well as powered wheelchairs, were all categorized as
“wheelchairs.” In some cases, moving behavior by multiple
pedestrians walking together resulted in detection as a single
object. We counted such clusters as a pedestrian. During the
experiments, intersections were not very crowded and traffic
flow was normal without traffic jams. The maximum vehicle
speed on these roads was 70 km/h.

B. RESULTS
As Fig. 14 shows, a single 3DVC could detect objects moving
from different directions at intersections.

100

90
80
70 T
60

........ Vehicles

50

0 me——— Wheelchairs

Detection rate(%)

= — Pedestrians

------ Cyclists

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Dsitanceto object (m)

FIGURE 16. Detection rate variation by distance.

Figure 16 shows detection rate variations for each moving
object, which suggest that all moving object types had very
high detection rates at distances within 25 m. At greater
distances, however, detection rates generally showed gradual
decreases. However, vehicles maintained high detection rates
even when moving 30 m from the camera because they pro-
duce relatively many pixels in the images. The average false
positive rate for all moving object types was 5.8%.

The tracking algorithm was capable of tracking all types
of detected moving objects. Figure 17 shows differences
between estimated and detected positions for a moving vehi-
cle and a cyclist. Figure 18 shows differences between
estimated and detected positions for a pedestrian and a
wheelchair.

Across all tracking experiments, the mean difference
between estimated and detected positions was 1.67 pixels and
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.......... Cyclist
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Different between estimated positionand detected

Time (s)

FIGURE 17. Differences between estimated and detected positions for a
vehicle and a cyclist.

= = = Pedestrian

.......... Wheelchair

Different between estimated positionand detected
position ( pixels

0 s NS, R U A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (s)

FIGURE 18. Differences between estimated and detected positions for a
pedestrian and a wheelchair.

mean error rates when matching detected and estimated posi-
tions was 1.8%. The tracking method thus has high accuracy.

The average processing time was 28 msec/frame, so detec-
tion and tracking can be performed nearly in real time.
According to the experiments, online processing is possible
when the frame rate of the camera is less than 25 fps.

According to the overall experimental results, the tracking
and detection algorithms both worked well when distances to
moving objects were less than 30 m. Performance of the pro-
posed method did not change with traffic flow. As mentioned
above, there were some false detections in the experiments,
but not at rates that would become a significant issue when
applying the proposed methods to driver assistance and auto-
mated driving. The performance demonstrated above thus
shows high potential for applying the proposed method to
supporting drivers and for achieving safe automatic vehicle
control at intersections. (See the submitted video to confirm
these results.)

C. COMPARISONS WITH CONVENTIONAL METHODS

We compared the proposed moving object detection method
with three conventional methods from the literature, denoted
as Con 1 [22], Con 2 [27], and Con 3 [39]. Specifically,
we compared detection rates for all moving objects in 110 min
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Detection rate(%)
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FIGURE 19. Comparison of the proposed moving object detection method
with some conventional methods.

TABLE 1. Comparison of false positive rates.

Method False Positive Rates
Con 1 11.3%
Con 2 10.3%

Con 3 6.2%
Proposed 5.8%

of the above-described video data, thereby providing simi-
lar experimental environments. Figure 19 shows the results,
which confirm that the proposed moving object detection
method based mainly on a GMM provided the best results.
Table 1 summarizes false positive rates for each method. The
proposed method resulted in fewer false positives than did the
conventional methods.

VI. CONCLUSION

We proposed moving object detection and tracking meth-
ods for application at road intersections using a 3DVC for
driver assistance and automated driving. We experimentally
confirmed that a 3DVC installed at an intersection corner
can image the entire intersection area. We also developed
algorithms for detecting and tracking moving objects at the
intersection using those 3DVC images. Experiments per-
formed under varied conditions demonstrated that the devel-
oped algorithms showed high performance for detecting and
tracking moving objects.

The proposed methods performed well when the distance
to moving objects was within 25 m. The proposed meth-
ods can thus be applied at intersections between intersect-
ing four-lane roads. Application of the proposed methods at
larger intersections will require improvements to the detec-
tion and tracking algorithms, which we plan to investigate in
future work. In addition, all experiments in this study were
conducted during daytime under cloudy or sunny conditions.
We are working to achieve similar performance under rainy
and snowy conditions. By conducting tests with different
cameras, we plan to achieve moving object detection and
tracking during nighttime as well. Future work will also
investigate estimations of detected moving object directions
and development of a driver support system.
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