
Received June 18, 2020, accepted July 15, 2020, date of publication July 23, 2020, date of current version August 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011439

GHSCN: A Graph Neural Network-Based API
Popularity Prediction Method
in Service Ecosystem
ZHONG LI1,2, XIAOCHEN LIU 1,2, TIANBO WANG 1,3, (Member, IEEE),
WENHUI HE1,2, AND CHUNHE XIA1,2,4
1Beijing Key Laboratory of Network Technology, Beijing 100191, China
2School of Computer Science and Engineering, Beihang University, Beijing 100191, China
3School of Cyber Science and Technology, Beihang University, Beijing 100191, China
4Guangxi Key Laboratory of Multi-Source Information Mining and Security, School of Computer Science and Information Technology, Guangxi Normal
University, Guilin 541004, China

Corresponding author: Chunhe Xia (xch@buaa.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant U1636208, Grant 61862008, and
Grant 61902013; and in part by the Beihang Youth Top Talent Support Program under Grant YWF-20-BJ-J-1038.

ABSTRACT With the rapid development of technologies in the field of service computing, and increasing
of complex business requirements, more and more large-scale service ecosystem emerges. Thus, many
researches of service ecosystem focus on issues related to optimization such as service recommendation
and load balancing, so the API popularity prediction problem studied in this paper, which is basis for this
service ecosystem optimization, becomes a research hotspot in this field. However, many existing researches
are predicting the popularity of APIs based on API functions, QoS, history usage patterns and social
relationships, which are difficult to obtain and cannot reflect the overall structure of the underlying service
ecosystem. Therefore, we propose an innovative API popularity prediction method in service ecosystem
based on Graph Neural Network (GNN). Concretely, a Global-Service Ecosystem Network (GSEN) model
is proposed firstly, for modeling a given service ecosystem to a network that can depict the complex structure
of service ecosystem and the functions, QoS, history usage patterns and social relationships of APIs. Then,
a Graph Heterogeneous Spatiotemporal Convolutional Network (GHSCN) model is proposed to predict the
popularity of APIs based on GSEN, and for getting better prediction accuracy, four different Heterogeneous
Spatiotemporal Convolutional Kernels are proposed to extract the features of different elements which have
different mechanisms to affect the popularity of target API. Finally, extensive experiments based on the
data crawled from ProgrammableWeb.com show that our method achieves a superior performance in API
popularity prediction, and the importance of the introduction of our model to service ecosystems.

INDEX TERMS API popularity prediction, graph neural network, GHSCN, service ecosystem.

I. INTRODUCTION
With the rapid development of service-oriented architecture,
cloud computing and other technologies in the field of service
computing, more and more services are published on the
network by service developers, so that users of services can
form new and more functional services by invoking these
services, and these services form a complete service ecosys-
tem. By invoking and combining the services in the service
ecosystem, the more complex functional requirements can

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

be met, which makes the whole service ecosystem more
and more rich and robust. For example, the largest existing
online Web services site, ProgrammableWeb, which records
more than 20000 APIs with different functions. Developers
can combine and reuse these APIs to form a service com-
position Mashup that meets the requirements of complex
service functions, API and Mashup are the complete embod-
iment of service programmability. Since 2008, the number
of APIs and Mashups are increasing rapidly, and in recent
years, the growth trend has accelerated obviously. The rapid
growth of the quantity and function of services as well as
the increase of the complex relationship between services,

137032 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2390-4144
https://orcid.org/0000-0002-0227-9557

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

make it important and meaningful to ensure the security and
stability of the whole service ecosystem and optimize the
structure of the service ecosystem.

Using the API and Mashup data recorded on the
ProgrammableWeb.com, the high-level service application
developers would select the more popular APIs for combi-
nation according to the historical information, which means
they have higher reliability and trust. Through historical data,
we find that some APIs are called very frequently. For exam-
ple, Google Map API is one of the most frequently called
API by Mashups. This is because many Mashups need to
call the API with Map function, and provider of the API is
the world-famous Google company with high reliability. Due
to these two factors, Google Map API is the most popular
API to provide Map function in the whole service ecosystem.
Therefore, it is very important for service developers to cal-
culate and recommend the most popular API, developers can
choose the more popular API for service composition so as
to provide high reliability service composition. The existing
API recommendation methods mainly focus on the service
function behavior, QoS, past historical service pattern and
social relationship, and the popularity of a service essentially
indicates the above four aspects. Predicting the popularity
of each service in the service ecosystem and its trend plays
an important role in the study of the reliability of the whole
service ecosystem. High popularity APIs have a great impact
on the whole service ecosystem because they are called by a
large number of Mashups, so we give safety measure to high
popularity API ensuring its normal operation. At the same
time, the popularity of API is not only related to the number of
Mashups invoke it, but also related to the function as Category
and the service providers, that is, related to the whole service
ecosystem structure.

In order to predict the popularity of API in the service
ecosystem, we find that it in the ProgrammableWeb has the
following characteristics:

1. The popularity of API is related to the number of ser-
vice combinations they participate in, that is, the more
an API participates in, the higher its popularity is. For
example, Facebook API participates in a larger number
of Mashups than other APIs, so its popularity would
remain relatively high in the future.

2. The popularity of API is also related to its competitive-
ness in functional category, that is, the competitiveness
in the same category of API. For example, Paypal
API has the highest number of service combinations
under the Payments category, but it is not as high as
Google Map API in terms of the number of Mashups
it participates in. Paypal API is the most competitive
API under the Payments category, so the popularity of
Paypal would remain at a high level in the future.

3. The competitiveness of the API’s provider also deter-
mines the popularity. For example, the provider of
Google Map API is Google company, because of its
own influence, it has produced a large number of
high popularity APIs that are recognized by everyone.

This shows that developers are willing to give priority
to such a large competitive company when using ser-
vices, so the API under Google Map would also have a
high popularity in the future.

Therefore, in the service ecosystem, the relationship
between different elements and the structure pose a higher
challenge to the prediction of API popularity. It is not only
a simple prediction process for APIs and Mashups based on
function, QoS, historical service mode and social relation-
ship, but also a prediction method based on the structure of
the service ecosystemwith analyzing the competition, depen-
dence and complementarity relationship among the elements,
these relationship contain the QoS, the reliability of historical
service pattern, its trust degree in social relations, and the
popularity of service.

While, the existing research of service popularity predic-
tion and service recommendation mostly concentrate on the
service function Tag and the obtained QoS data. The API
recommended in research [1], [2] can best meet the needs
of developers. Its main thought is the functional attributes
provided by different APIs, while weakening the historical
records of previous services. In reference [3], [4], a QoS
prediction method based on machine learning is proposed,
which predicts QoS value based on natural language pro-
cessing method, so as to recommend potential high-quality
service combination. Some researchers used machine learn-
ing method to learn the previous service composition patterns
and usage patterns, so as to recommend the service compo-
sition that best meets the high-level requirements [5], [6],
and considering based on social relations in the existing
service recommendation methods to recommend the service
composition that most developers trust [7], [8]. Some service
providers predict the popularity of service content based on
the service content they provide, such as the popularity of
online video in the future [9]–[11], but we can’t know the
specific content of each service in the service ecosystem, and
it’s hard to get the specific function behavior, QoS, historical
usagemode and social relationship of each API in real service
scenario, so these methods are not suitable for us to predict
the popularity of API in the service ecosystem. As far as
we know, there is no popularity prediction method that can
include four factors: API function, QoS, historical service
pattern and social relationship. Therefore, we would depict
the elements and structure of the service ecosystem based
on these four factors with API, Mashup and its correspond-
ing Category and Provider, and then give the popularity of
each API based on the structure of the underlying service
ecosystem.

However, due to the huge scale of each kind of element,
and high complexity of the relationships between elements,
in current service ecosystems, it is difficult to construct
meaningful feature sets for predicting API popularity man-
ually. Therefore, based on the idea of using deep learn-
ing models’ advantage in extracting hidden features from
massive sample data, this paper proposes a Graph Neural
Network-based API popularity prediction model in service

VOLUME 8, 2020 137033

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

ecosystems, the so-called Graph Heterogeneous Spatiotem-
poral Convolutional Network (GHSCN) model. Concretely,
this paper first constructs a temporal heterogeneous network
model of service ecosystems, the so-called Global Service
Ecosystem Network (GSEN) model, according to the char-
acteristic of service ecosystems that dynamic change with
time and coexistence of different kinds of element; and then,
based on the GSEN model, two GHSCN models containing
four Heterogeneous Spatiotemporal Convolutional Kernels
are designed to predict the popularity of API in global and
specific categories respectively. Where, the four Heteroge-
neous Spatiotemporal Convolutional Kernels are the core
of the GHSCN model. They extract the hidden features of
elements that have different relationships with target API (the
API of which the popularity needs to be predicted) through
heterogeneous spatiotemporal convolutional operations, so as
to improve the accuracy of target API’s popularity prediction.
Finally, to verify the effectiveness of the abovemodels, a large
number of experiments are carried out using the data crawled
from ProgrammableWeb. And the results show that GHSCN
model is extremely accurate in predicting API popularity, and
can effectively improve fault monitoring efficiency in service
ecosystems when guiding the deployment of fault monitoring
agents through the predicted APIs’ popularity.

In summary, the work and contributions of this paper
mainly include the following four points:

1) A temporal heterogeneous network model of service
ecosystems, the so-called Global-Service Ecosystem
Network (GSEN) model, is presented. This model
not only models the relationship between APIs and
Mashups, but also depicts Categories, Providers and
their relationship with APIs and Mashups, so that it
has stronger expression ability, and can express the
functions, QoS, historical service patterns and social
relationships of services through nodes, edges and their
attributes in constructed networks. Therefore, GSEN
model will provide effective support for the research
of performance, security and stability optimization of
service ecosystems;

2) A Graph Neural Network-based API popularity pre-
diction model in service ecosystems, the so-called
Graph Heterogeneous Spatiotemporal Convolutional
Network (GHSCN) model, is proposed. This model is
different from the existing models that only use the
own attributes of APIs andMashups to generate feature
sets for target API’s popularity prediction, the attributes
of Categories and Providers, and the structural infor-
mation of the underlying service ecosystem are also
used to generate feature sets. Therefore, GHSCNmodel
has better prediction accuracy of API popularity than
existing models theoretically;

3) Four different Heterogeneous Spatiotemporal Convo-
lutional Kernels are proposed to extract the features
of different elements which have different mechanisms
to affect the popularity of target API. In this paper,

we divide the elements associated with the target API
into four categories: supporting elements, required ele-
ments, competitive elements, and inherent elements.
And then, we design different convolutional operations
to deal these four categories of elements respectively,
for improvement of GHSCN’s learning efficiency and
prediction accuracy;

4) It is verified that the overall security and stability of ser-
vice ecosystemwill be improved by deployingmonitor-
ing agents in the APIs with high predicted popularity,
since this can improve the scope of monitoring and the
accuracy of source identification.

The rest of this paper is organized as follow: Chapter II
summary the related work of service ecosystem, service
popularity and Graph Neural Networks (GNN); Chapter III
gives an overview of the method proposed in this paper;
Chapter IV detailly introduces the Graph Neural Network-
based API prediction method, GHSCN method; Chapter V
shows the accuracy and efficiency of GHSCN method, and
illustrates themeaning ofAPI popularity in improving service
ecosystem’s security and stability; Chapter VI concludes this
paper and discusses the future work.

II. RELATED WORK
A. SERVICE OPTIMIZATION BASED ON APIS
In the field of service computing, many researches focus on
service discovery, service recommendation, service selection,
service composition and other issues, they selected existing
service nodes on demand to find the optimal service com-
position to meet the needs of users. There are more and
more researches on the public service data provided by the
network as ProgrmmableWeb, which is the largest online
API (i.e. service) repository at present. It collects more than
20000 APIs with various functions on the network. Because
of API are reusable and programmable, developers can com-
bine existing APIs to create a Mashup (service composition)
meeting their needs, so as to realizing the comprehensive
functional requirements and enhance the commercial value
of the original API. The existing research use these data to
study the service selection, recommendation, composition
and other issues, such as the existing API selection, com-
position, forming a new Mashup, so as to accelerate the
development of the service ecosystem.

With the emergence of API, more and more researchers
turn their attention from WSDL to the functions of API itself
and the relationship between them. References [12] and [13]
proposed a framework for discovering APIs, which can effec-
tively discover APIs that meet the functional requirements
of developers. Reference [14] presented a view of Web API
association data, which can help service developers to search
association

API from multiple perspectives and combine it into
Mashup to promote the rapid development of Web Mashup.
References [15] And [16] gives a ranking method of API,
which mainly determines the ranking of API according to
the number of Mashups that call the API. A method of

137034 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

service recommendation based on user interest and social
relationship of service is showed by [17]. Reference [18]
build an ecosystem including API and Mashup is built based
on ProgramableWeb data. Reference [19] gave a method to
obtain the service evolution pattern by using the Latent Dirch-
let Allocation (LDT) method and a prediction method based
on time series, which is used to predict the invoking rela-
tionship between services. At the same time, an innovative
Three-phase network prediction approach (NPA) is proposed
in [20] for service recommendation. So, putting forward on
API become more and more important and meaningful in
service optimization field.

B. SERVICE SELECTING AND RECOMMENDING
When selecting and recommending services, it is very impor-
tant to know the past service history data, trust degree and
popularity of services. Predicting the popularity of service is
helpful for researchers to select the most appropriate services
to achieve better service composition. As far as we know,
few studies predict the popularity of API through known
service ecosystem structure to make service recommendation
and service selection. The existing service selection meth-
ods for creating Mashup are mainly divided into four cate-
gories: (1) function-based methods. The APIs recommended
by these methods can best meet the needs of developers,
and its main focus is the functional attributes provided by
different APIs while weakening the historical records of
previous services [1], [2]. (2) collaborative filtering-based
method, this method considers the past service composition
patterns and the usage history of each API, it can provide
the most consistent service composition with the histori-
cal service pattern [1], [5]. (3) QoS-based methods, most
of these methods predict QoS values, so as to recommend
potential high-quality service combinations [3], [4], [21].
(4) Social-based method, this method takes social factors
other than services into account, such as the social relation-
ship of developers, so as to give a more reliable service
combination [6]–[8].

Most of the service selection and recommendation are
based on the above methods, which are combined to give the
optimal results. However, it is difficult for researchers to col-
lect large-scale functional behavior data sets, QoS data sets
and other related data sets of actual APIs in service ecosys-
tem. At the same time, the behavior and QoS of APIs and
the network status of users would change at any time when
be invoked, so if only according to the behavior and QoS of
services, service selection and recommendation results would
be inaccurate. For example, an unknown service provider
provides an API that performs a certain function with a high
level of QoS over a period of time, but after a period of
time, its QoS value drops significantly, this API should not
be selected or recommended. So, the popularity of API is
really important because it represents the function of API,
the stability of QoS, the historical service mode and social
relationship. So how to give a reasonable API popularity
prediction method ensure that the popularity can provide the

basis for accurate recommendation and selection of services
is a very meaningful problem.

C. SERVICE POPULARITY PREDICTION
Now there are also some researches on the popularity pre-
diction of service content, which are mostly used to provide
social network services to improve their service quality. Ref-
erence [9] predicted the future content popularity by setting
the content popularity at a specific time as a reference value
and gave the linear correlation between them. Reference [10]
presented a prediction model of video popularity based on
Reservoir Computing. This model can predict the video pop-
ularity in a short time according to the video popularity of the
previous days, but this method is easily affected by random
effects. Reference [11] showed a linear model to predict the
popularity of YouTube video, but not considering the impact
of some social policies of YouTube itself on the popular-
ity. Reference [22] predicted the popularity of online con-
tent using Cox proportional hazard expression model, which
infers the possibility of content popularity through survival
analysis model. But in real service scenario, we can’t know
the specific service content of API, thesemethods are not suit-
able for us to predict the popularity of API, so we need to give
an API popularity prediction method for the service ecosys-
tem, and the popularity should include four factors: func-
tion, QoS, historical service pattern and social relationship
of APIs. These four factors are mapped with API, Mashup,
and its corresponding Category and Provider to describe the
structure of service ecosystem, and the popularity of eachAPI
is predicted based on the structure information.

D. GRAPH NEURAL NETWORKS (GNN)
In recent years, driven by the large number of graph
data analysis and mining requirements in e-commerce,
biomedicine, chemistry, citation networks and many other
fields, the research of Graph Neural Network (GNN), pro-
posed by Gori et al. in 2005 [23], has become a hotspot
in the field of Artificial Intelligence (AI). And according to
the difference of learning tasks, five kinds of GNN models
have been designed in existing literature, namely, Graph
Convolutional Network (GCN), Graph Attention Network
(GAN), Graph Auto Encoder (GAE), Graph Generation Net-
work (GGN) and Graph Spatial Temporal Network (GSTN).

Where, as a basic module of other four kinds of GNN
models, GraphConvolutional Network (GCN) has the highest
research heat, and it is mainly used to solve the problem
that is caused by the irregularity of graph data (the num-
ber and order of nodes in different graphs are different),
so that the traditional convolutional operations and pooling
operations (Defined by tensor operations), which are applied
to regular European space data processing such as images
and videos, become invalid. To solve this problem, in the
existing work, researchers have proposed a large number
of generalization and redefinition schemes for convolutional
operations and pooling operations. For example, in [24]–[27],
based on the graph theory, the graph convolution operations

VOLUME 8, 2020 137035

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

are represented as the noise removal processes of graph sig-
nal processing, that is, the hidden features are extracted by
the means of multiple graph Fourier transforms; [28]–[36]
represents the graph convolution operation as the aggregation
process of the attributes of target node and its neighbor nodes,
that is, the hidden features are extracted by calculating the
weighted average of the attributes of target node and its
neighbor nodes for many times, through using the operations
with neighbor node arrangement invariance as an aggrega-
tion function [29], or substituting some selected important
neighbor nodes of target node into traditional convolution
operations [31]–[33], etc.. In [24], [37], [38], the graph pool-
ing operations are represented as the structure compression
processes of graphs, that is, down sample the original graphs
by selecting some important nodes in the original graph to
recombine a new graph as the input of subsequent opera-
tions [24], [37], or using Multi-Layer Perceptron (MLP) to
compress the dimensions of the original graph’s connection
matrix and characteristic matrix [38].

Comparedwith GCN, the research work of other four kinds
of GNN models are relatively less. By introducing the atten-
tion mechanism, [39]–[42] proposed the Graph Attention
Network (GAN) model to improve prediction accuracy, that
is, give different importance to different neighbor nodes of
the target node [39], [40], or provide instructions for selecting
different models [41] and information propagation paths [42].
In order to use low-dimensional vector to accurately rep-
resent the nodes in graphs, [43]–[48] train the Graph Auto
Encoder (GAE) models, by using Multi-Layer Perceptron
(MLP) to encode and decode the adjacency matrix of graphs
without attribute [43], [44] or directly encoding and decod-
ing graphs attribute by GCN [45]–[48]. In [49]–[52], some
Graph Generation Network (GGN) models are proposed, and
for improving the training efficiency, [49], [50] divide the
graph generation process into node and edge generation pro-
cesses, [51], [52] transform the training process into a game
process of graph generation model and discriminant model
by using GAN models. To solve the problem of learning
tasks in spatiotemporal graph data, [53]–[56] proposed the
Graph Spatial Temporal Network (GSTN) models, which
obtains the spatial correlation of data throughGCNs, and uses
the Convolutional Neural Network (CNN), Recurrent Neu-
ral Network (RNN) or Long-Short-Term Memory (LSTM)
model to obtain the time correlation of data.

In conclusion, it can be seen that the advantage of GNN
models in extracting hidden features from graph data makes
GNN possible to change the status quo of graph data analysis
and processing tasks that rely heavily on artificially con-
structed feature sets, thereby providing strong technical sup-
port for analysis and processing of larger and more complex
graph data.

III. METHOD OVERVIEW
A. MOTIVATION
FIGURE 1 shows a complicated service ecosystem in the real
world. Software product of Company A provides a variety

FIGURE 1. The research scenario of service ecosystem.

of APPs. APP1 and APP2 are high-level App service appli-
cations which independently combined with existing API
services developed by company A. Mashup1 is a composite
service provided by Company A through invoking existing
APPs for combination. A large number of companies are
similar to Company A’s service delivery mode, they provide
various services to different users through the APP developed
by themselves and the Mashup generated by invoking other
APIs. These massive APPs, Mashups and their interaction
with different APIs and API’s providers constitute a complex
service ecosystem.

As FIGURE 1 presented, Google Map, Alipay and Baidu
Data Storage are popular APIs in the entire API resource pool,
which would be called by a large number of high-level Apps
and Mashups, this means that these APIs have high service
quality and provide excellent service reliability and stabil-
ity. When high-level developers choose appropriate APIs for
service composition, they will give priority to these high
popularity APIs in order to obtain high reliability and better
service quality for building APPs and Mashups. When high-
level developers need to call an API to realize a certain
function of their APP or Mashup, they prefer to select the
most popular API among all APIs with such functions. For
example, Google Map has a high popularity in the Map func-
tion, indicating that the service quality and service reliability
of Google Map are leading under the same function API,
so calling that API can ensure that APP and Mashup with
the map function have high-level reliability. At the same time,
the same service provider such as Google and Baidu, the pop-
ularity of the API they can provide is not the same, we can see
that GoogleMap andBaiduData Storage are themost popular
APIs among the services provided by their corresponding
service providers. This judgment and prediction of popularity
can help us to deploy some load balancing measures against
these APIs to balance the traffic borne and improve service
quality.

When the high popularity API is attacked, the impact on
the whole service ecosystem would be larger than that of the
low popularity API. For example, if Alipay is maliciously
attacked, the APP3, APP4, APP6, APP7, and APP8 which

137036 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

related with Alipay would have an impact, and all of these
APPs can only be terminated due to the payment function
be fail. This cascading impact would cause the users bad
experience of these five Apps. If Google Calendar API fails,
due to its low popularity, only APP4 and APP8 have relation
with it, so its impact range is smaller than that of Alipay.

Therefore, system protection and defense measures should
be priority given to Alipay with high popularity, which can
improve the security and stability of thewhole service ecosys-
tem. As well as, because the high popularity API participates
in more APPs and Mashups, setting monitoring nodes at the
high popularity API is also conducive to finding the source of
API faults in time and improving the accuracy of traceability
when the APPs and Mashup failed.

For service ecosystem, it is very important to study the
popularity of API for promoting the development of ser-
vice ecosystem and ensuring its security and stability. The
in-category popularity of API represents the popularity of the
API within APIs that have the same functions. The higher
in-category popularity indicates that the API has higher relia-
bility and better service quality in the APIs which have same
functions, which also means that more and more APPs and
Mashups would invoke it preferentially when they need such
functions. The global popularity of API represents the popu-
larity of API in the whole service ecosystem. The high global
popularity indicates that API plays an important role in the
whole service ecosystem, and its service provider and service
quality are widely recognized. If the in-category popularity
and global popularity of API are accurately predicted, service
optimization and corresponding protection measures can be
deployed for high popularity APIs to improve the security and
stability of the whole cloud service ecosystem.

B. PROBLEM STATEMENT
1) DEFINITION OF API POPULARITY IN SERVICE
ECOSYSTEMS
As we know, in many service ecosystems, most of APIs
provide multiple functions, and when Mashups choose APIs,
they often compare the APIs that provide the same cate-
gories of functions. Therefore, the popularity of APIs in
service ecosystems is divided into in-category popularity
and global popularity, which are respectively defined as
follows:
Definition 1: the in-category popularity pICf ,s (t) of a API s

in a specific functional category f , means that at a specific
moment t , the proportion of Mashups, which call function f
provided by service s, in the all Mashups which call func-
tion f , i.e.:

pICf ,s (t) =
nMf ,s (t)

nMf (t)

where, nMf ,s (t) represents the number of Mashups which
call function f provided by service s at moment t , nMf (t)
represents the number of the all Mashups that call function
f at moment t .

For example, there were 162 Mashups calling the Finan-
cial function, and of which there were 35 Mashups call-
ing the Financial function provided by PayPal API, in the
data recorded on the ProgrammableWeb in January 2019.
Therefore, in January 2019, the in-category popularity of
PayPal API within the Financial functional category is
35/

162= 0.216.
Definition 2: the global popularity pGs (t) of a API smeans

that at a specific moment t , the proportion of Mashups, which
call API s, in the all Mashups, i.e.:

pGs (t) =
nMs (t)
nM (t)

where, nMs (t) represents the number of Mashups which
call API s at time t , and nM (t) represents the number of all
Mashups at time t .

Similarly, taking the data of ProgrammableWeb as an
example, in January 2019, there were 6408 Mashups in all,
and of which there were 35 Mashups calling the PayPal API.
Therefore, in January 2019, the global popularity of PayPal
API was 35

/
6408= 0.00546.

Note that the definition of the popularity of other kinds
of elements, such as Providers and Categories, in service
ecosystems is the same as the APIs’.

2) API POPULARITY PROBLEM IN SERVICE ECOSYSTEMS
As with most of time sequence prediction problems, in this
paper, the goal of API popularity prediction problem in ser-
vice ecosystems is to predict the popularity of each API at
a future moment, based on the data collected in the under-
lying service ecosystem in a previous period. Thus, if using

PSE (t) =
⋃
s∈SS

[
pGs (t) ∪

(⋃
f ∈SF

pICf ,s (t)

)]
∈R

(
nF (t)+1

)
×nS (t)

to represent the vector formed by concatenating the pop-
ularity of all APIs in the underlying service ecosystem
at moment t (where, there are nF (t) × nS (t) in-category
popularity pICf ,s (t) and nS (t) global popularity pGs (t), and
nF (t) and nS (t) respectively represent the number of Cat-
egories and APIs in the underlying service ecosystem at
moment t , SF and SS respectively represent the set of Cat-
egories and APIs, ∪ represents the concatenation operation
of vectors here), using DSE (t) ∈ Rn

D(t) to represent the
vector formed by concatenating the data collected in the
underlying service ecosystem at moment t (where nD (t)
represents the number of data collected at moment t , and
nD (t) ≥

(
nF (t)+ 1

)
× nS (t)), and using DSE [t1:t2] =

[DSE (t1) ,DSE (t1 + 1) , · · · ,DSE (t2)] to represent the vec-
tor formed by concatenating the data collected in the under-
lying service ecosystem from time t1 to time t2. Then, the goal
of API popularity prediction problem in service ecosystems
is to learn a function h (·), so that the function can map the
data DSE [t − T :t − 1] collected in the T moments before
any moment t to the popularity PSE (t) of all APIs at the
moment t , i.e.:

h : DSE [t − T : t − 1]→ PSE (t)

VOLUME 8, 2020 137037

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

C. APPROACH ROADMAP
Aiming at the problems studied in this paper, as with the
mainstream research work on sequence prediction prob-
lems, we propose a solution based on machine learn-
ing method. However, due to the characteristic of service
ecosystems that dynamic change with time, coexistence
of different kinds of element, and the high complexity of
relationships between elements, traditional deep learning
models dealing with European space learning problems,
like CNN and RNN, not suitable for predicting the pop-
ularity of APIs in service ecosystems. There are two rea-
sons for this: (1) with the evolution of service ecosystem,
the dimension nD (t) of collected data DSE (t) will change
with time t . Therefore, when using DSE [t − T :t − 1] =
[DSE (t-T) , · · · ,DSE (t − 2) ,DSE (t − 1)] as the input of
CNN, RNN or other traditional deep learning models,
we need to fill in a large number of invalid data, or cut off
a large number of data inDSE [t − T :t − 1] to make the input
dimension of each sample the same. (2) using the Euclidean
space vector DSE (t) to represent the data collected from
service ecosystems cannot describe the complex relationships
between different kinds of elements. Thus, traditional deep
learning models such as CNN and RNN are prone to overfit-
ting during the training process, and it will take more time,
resources, and samples to achieve good learning results.

FIGURE 2. Approach roadmap of this paper’s research.

To overcome the above two problems, this paper proposes
an approach roadmap as shown in the top half of FIGURE 2.
First of all, based on the original data DSE [t − T : t − 1] =
[DSE (t − T) , · · · ,DSE (t − 2) ,DSE (t − 1)] collected from
the underlying service ecosystem, a sequential ser-
vice ecosystem networkGSE [t − T : t − 1] = [GSE (t − T) ,
· · · ,GSE (t − 2) ,GSE (t − 1)] is constructed, so that the
network can depict the relationships between key ele-
ments in the underlying service ecosystem at each
moment of [t − T : t − 1]. And then, taking the network

GSE [t − T : t − 1] as the input, using GNN model which
is good at dealing with structured data learning problem to
predict the API popularity PSE (t) at next moment t . Thus,
the solution proposed in this paper converts the objective
function h (·) in Section B of Chapter III into the following
two-step mapping:

h : DSE [t − T : t − 1]→ GSE [t − T : t − 1]→ PSE (t)

The benefits of the above solution are: (1) the rela-
tionships between key elements in the underlying service
ecosystem can be reflected in the input of GNN model,
so that the learning efficiency of GNN model can improve
effectively; (2) since after being converted into a sequential
service ecosystem network GSE [t − T : t − 1], the data in
DSE [t − T : t − 1] is scattered in the attributes of each node
and each edge in GSE [t − T : t − 1], so that when input to
the GNN model in batches, there is no need to fill in invalid
data or cut off existing data in large scale.

However, as shown in the bottom half of FIGURE 2,
there are four key problems need to be solved in designing
the API popularity prediction method in service ecosystems
along this route: (1) how to model a given service ecosys-
tem as a network? (2) how to construct a service ecosystem
network by the original data collected from the underlying
service ecosystem? (3) how to design an API popularity
prediction model based on GNN? (4) how to extract the
features of the elements associated with the target API? To
solve these problems, this paper gives four corresponding
technologies: Global-Service Ecosystem Network (GSEN)
model of service ecosystems, service ecosystem network con-
struction algorithm based on interactive relationship deriva-
tion, Graph Heterogeneous Spatiotemporal Convolutional
Network (GHSCN) model for API popularity prediction in
service ecosystems, Graph Heterogeneous Spatiotemporal
Convolutional Kernels for extracting the features of different
elements which have different mechanisms to affect the pop-
ularity of target API. Next, we introduce these technologies
in detail.

IV. GHSCN METHOD
This chapter introduces theGraphNeural Network-basedAPI
popularity prediction method in service ecosystems proposed
in this paper. The Global-Service Ecosystem Network model
part introduces the service ecosystem network model pro-
posed in this paper, and corresponding algorithm for con-
structing service ecosystem networks based on the original
data collected from service ecosystems; the Graph Neural
Network-based API popularity prediction method part intro-
duces the framework of the API popularity prediction method
proposed in this paper, and the graph heterogeneous spa-
tiotemporal convolutional operations designed for the char-
acteristics of service ecosystem network.

A. GLOBAL-SERVICE ECOSYSTEM NETWORK MODEL
Ecosystem is a word derived from the field of ecology,
which is defined as all animals and plants in a specific area,

137038 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 3. Service ecosystem network model.

their relationship with each other and their contact with the
environment (LongmanDictionary of Contemporary English,
2008). In the ecosystem, animals, plants and environment
are related with each other. Their own activities and their
interactions lead to the formation, maintenance, develop-
ment, deterioration and disappearance of the whole ecosys-
tem. In this way, the change of elements and relationships
in the whole ecosystem will promote the evolution of the
ecosystem. Ecosystem consists of two important compo-
nents: one is the elements in the system, which can have
different characteristics and attributes; the other is the func-
tional relationship between these elements, through which
different elements are connected together, a complex network
with self-organization characteristics and continuous evolu-
tion characteristics can be formed. Reference [57] introduced
the concept of ecosystem into modern commerce for the first
time, proposed the business ecosystem and its life cycle, and
gave the definition of business ecosystem with leading the
development of business research. In recent years, service
ecosystem has emerged with the attention of researchers in
the field of service computing. The earliest definition of
service ecosystem is from the perspective of supply based on
customer centered, which evolved with the development of
other dynamic factors related to customers and their interac-
tion relationship [58]. However, there is no commonly used
definition of service ecosystem in the research field until
now. G. Scheithauer [59] believes that the service ecosys-
tem is the result of the transformation from the traditional
electronic market to the service economy. The goal of the
service ecosystem is to make different services interact with
each other through the Internet, so as to make services having
more commercial value. In this paper, we regard the service
ecosystem is influenced by API, Mashup, Provider, Cate-
gory and their interaction. These basic elements interact with
each other through cooperation, competition, invocation, etc.
Thus, affecting the direction of the whole service ecosys-
tem development, and making the service ecosystem more
complicated.

In order to better depict the service ecosystem, we abstract
the service ecosystem into a complex network structure.

The elements of the service ecosystem mainly include API,
Mashup and Provider. Provider can provide multiple APIs,
and Mashup can realize its functions by invoking multi-
ple APIs. Generally, the main indicators used to describe
and distinguish between API and Mashup are function and
service quality. APIs with different functions can coop-
erate with each other to form a Mashup with complex
functions. The service ecosystem will evolve and develop
when users put forward their own requirement, the popu-
larity and reliability of API play a key role in the stability
and security of the service ecosystem. Therefore, predict-
ing the popularity of API in the service ecosystem is of
great significance to users and the evolution of the service
ecosystem.
Definition 3: (Service Ecosystem Network) The ser-

vice ecosystem network is formalized into SEnet(t) =<
SE(t),R(t)SE >. where SE(t) ={API (t),Mashup(t),Provi-
der(t),Function(t)} refers to the elements of time t in the
service ecosystem, and RSE (t) = {(se1 (t) , se2 (t))|se1(t) ∈
SE(t), se2(t) ∈ SE(t)} refers to the interaction of different
elements in the service ecosystem at time t .

1) DERIVATION OF INTERACTION RELATIONSHIP
Because the existing service recommendation is mainly based
on QoS, function, social relationship and historical service
pattern, we hope to build the service ecosystem can contain
the above four factors. The following gives the derivation
method of RSE (t) relationship at time t, which describes the
derivation of the relationship between the elements of cloud
service ecosystem at time t .

In order to meet the QoS, function and social relationship
in service ecosystem, the concretely derivation process is as
follows:

• SEout (t) is the target service element, i.e. the API,
Mashup, Provider, Category connected with the existing
service element at time t;

• SE in (t) is the existing service element, i.e. API,
Mashup, Provider, Category known at time t .

• Sn (t) , S ′n (t) is a subset of SEout (t) or SE in (t);
• en (t) , e′n(t) is the data element related to API, Mashup,
Provider, Category in service ecosystem;

• Dn (t) ,D′n(t) is the data element related to API,Mashup,
Provider, Category in the service ecosystem, including
input data entity and output data entity. These data
include QoS, social relations, and historical service pat-
terns. Each data entity includes a collection of data
elements Dn(t) =

{
e1n(t), e

2
n(t), . . .

}
;

• f (t) is the conversion process from Dn (t) to
BD′n (t).

• Sn (t)→ Dn (t)indicates the output relationship of data,
i.e., the output data of Sn at time t is Dn.

• Dn(t)→ Dn(t), indicates the relationship between data,
that is, at time t , Dn is a subset of D′n.

• Dn(t)→ Sn(t), it indicates the input relationship of data,
that is, at time t , SnneedsdataofDn as input.

VOLUME 8, 2020 137039

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

Based on the above definition, the triple (RSEo (t) ,RSEL (t) ,
RSEI (t)) of a derivation process is given to decide
whether API, Mashup, Provider, Category are connected or
not, i.e.:

RSEo (t) = {(Sn(t), Dn(t))|Sn(t)→ Dn(t)}

RSEL (t) = {(Dn(t), Dn′(t))|Dn(t)→ Dn′(t)}

RSEI (t) = {(Dn′(t), Sn′(t))|Dn′(t)→ Sn′(t)}

2) BUILDING SERVICE ECOSYSTEM NETWORK
Given a set of service ecosystem elements SEn, build-
ing a service ecosystem network is to build a network
G =< V ,E > with a series of SEn by the following
algorithm:

Algorithm 1 Service Ecosystem Network Construction
Input: SAPI , SFunction, SProvider , SMushup
Output: GSE
Procedure: SvcEcsConstruction
GSE = ∅;
For t ∈

{
0, 1, 2, · · · ,TMaxSE

}
Do

VSE (t) = SAPI (t)∪ SFunction (t)∪ SProvider (t)∪ SMushup (t) ;
ESE (t) = ∅;
For sAPI (t) ∈ SAPI (t) , sFunction (t) ∈ SFunction (t) Do
RsAPI (t),sFunction(t) = ItaRlsDerivation(sAPI (t) , sFunction (t));
If RsAPI (t),sFunction(t) 6= NR Then
ESE (t) = ESE (t) ∪

{
RsAPI (t),sFunction(t)

}
;

End If
End For
For sProvider (t) ∈ SProvider (t) , sFunction (t) ∈ SFunction (t)Do
RsProvider (t),sFunction(t) = ItaRlsDerivation(sProvider (t) ,
sFunction (t));
If RsProvider (t),sFunction(t) 6= NR Then
ESE (t) = ESE (t) ∪

{
RsProvider (t),sFunction(t)

}
;

End If
End For
For sAPI (t) ∈ SAPI (t) , sProvider (t) ∈ SProvider (t) Do
RsAPI (t),sProvider (t) = ItaRlsDerivation(sAPI (t) , sProvider (t));
If RsAPI (t),sProvider (t) 6= NR Then
ESE (t) = ESE (t) ∪

{
RsAPI (t),sProvider (t)

}
;

End If
End For
For sMushup (t) ∈ SMushup (t) , sAPI (t) ∈ SAPI (t) Do
RsMushup(t),sAPI (t) = ItaRlsDerivation(sMushup (t) , sAPI (t));
If RsMushup(t),sAPI (t) 6= NR Then
ESE (t) = ESE (t) ∪

{
RsMushup(t),sAPI (t)

}
;

End If
End For
GSE (t) = 〈VSE (t) ,ESE (t)〉;
GSE = GSE ∪ {GSE (t)} ;
End For
Return GSE ;
End Procedure

B. GRAPH NEURAL NETWORK-BASED API POPULARITY
PREDICTION METHOD
1) GRAPH HETEROGENEOUS SPATIOTEMPORAL
CONVOLUTIONAL NETWORK MODEL
As described in Section C of Chapter III, after con-
verting the original data DSE [TStart : TEnd] collected from
the underlying service ecosystem into sequential network
GSE [TStart : TEnd] through the model and algorithm given in
Section A of Chapter IV, this paper predict the popularity of
APIs based on GNN model. Concretely, we first decompose
the prediction process of overall popularity PSE (t) of the
underlying service ecosystem into the prediction process of
in-category popularity pICf ,s (t) and global popularity pGs (t),
i.e., the second step mapping GSE [t − T : t − 1]→ PSE (t)
of objective function h (·) in Section C of Chapter III is
decomposed into the following mapping set:{

s ∈ SS |GSE [t − T : t − 1]→ pGs (t)
}

∪

{
s ∈ SS , f ∈ SF |GSE [t − T : t − 1]→ pICf ,s (t)

}
There are two reasons for this composition: (1) by dividing

the attribute prediction of the whole network (corresponding
to the prediction ofPSE (t)) into the attribute prediction of sin-
gle node (corresponding to API global popularity prediction
pGs (t)) and single edge (corresponding to API in-category
popularity prediction pICf ,s (t)), each iteration inmodel training
process no longer needs to input the whole service ecosystem
network in a period of time (i.e. GSE [t − T : t − 1]), only
needs to input the subgraph sequences strongly related to the
target API and Category, so that the cost of time and resources
can be effectively reduced; (2) in many application scenar-
ios, such as service recommendation and internal resource
optimization of Providers, it is only necessary to predict the
popularity of some or a single API in the underlying service
ecosystem, so the decomposed model has a larger scope of
application and higher flexibility.

Furthermore, for the prediction of in-category popularity
pICf ,s (t) and global popularity p

G
s (t) of a single API s, we pro-

pose a Graph Heterogeneous Spatiotemporal Convolutional
Network (GHSCN) model with three core layers as shown
in FIGURE 4. Where, the heterogeneous spatiotemporal con-
volution layer is the core part of GHSCNmodel, and it use the
Graph Heterogeneous Spatiotemporal Convolutional Kernels
designed in this paper to extract the features of different
elements which have different mechanisms to affect the pop-
ularity of target API; the pooling layer combines the output
of the convolutional layer into a complete fixed-dimensional
vector; the fully connected layer finally fits the popularity of
the target API based on the vector output from the pooling
layer.

It is worth noting that in the later sections, for convenience
of expression, we use GHSCN-GP and GHSCN-ICP to rep-
resent the Graph Heterogeneous Spatiotemporal Convolu-
tional Network (GHSCN) models for API global popularity

137040 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 4. The Graph Heterogeneous Spatiotemporal Convolutional Network (GHSCN) Model.

prediction and in-category popularity prediction respectively
(the difference between this two models is reflected in the
convolutional operations described below).

2) GRAPH HETEROGENEOUS SPATIOTEMPORAL
CONVOLUTIONAL KERNELS
In order to improve the learning efficiency of the GHSCN
model designed in this paper, we need to process the underly-
ing service ecosystem’s elements, which associate with target
API, in the graph convolutional operations in batches, accord-
ing to their different mechanisms to affect the popularity of
target API. Thus, first of all, based on the Calling Relation-
ship (between APIs and Mashups), Subordination Relation-
ship (between APIs and Providers), Providing Relationship
(between APIs and Categories) and other native relationships
of elements in service ecosystems, this paper defines the
following four types of higher-level relationships:
Collaborative Relationship: refers to the relationship

between the APIs called by the same Mashups. For example,
the relationships between target API (marked in yellow in the
figures) and the APIs circled by the green dotted line on the
right of FIGURE 5 and FIGURE 6.
Joint Relationship: refers to the relationship between the

APIs provided by the same Providers. For example, the rela-
tionship between target API and the APIs circled by the blue
dotted line on the left of FIGURE 5 and FIGURE 6.
Direct Competitive Relationship: refers to the relationship

between APIs where function sets intersect. For example,
the relationship between target API and the APIs circled by
the red dotted line in the lower left corner of FIGURE 5 and
FIGURE 6.
Indirect Competitive Relationship: refers to the relation-

ship between the APIs, which have a Direct Competitive
Relationship with a API s, and the APIs that have a Joint

FIGURE 5. The Sketch Map of Graph Convolutional Process for API Global
Popularity Prediction.

FIGURE 6. The Sketch Map of Graph Convolutional Process for API In-
category Popularity Prediction.

Relationship with s; and the relationship between the APIs,
which have a Direct Competitive Relationship with a API s,

VOLUME 8, 2020 137041

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

and the Provider of s. For example, the relationship between
target API and the APIs and Providers circled by the red
dotted line in the lower right corner of FIGURE 5 and
FIGURE 6.

Further, as shown in FIGURE 5 and FIGURE 6, based on
the above four types and original relationships of elements
in service ecosystems, this paper divides the elements asso-
ciated with the target API into four categories, and designs
corresponding graph convolution operations to extract their
features. Concretely:

1) The target API’s Provider provides resources for the
target API, and the APIs, which have a Joint Rela-
tionship with target API, form functional complement
with target API. They are all support for increas-
ing the popularity of target API. Thus, they and the
native relationships between them and between them
and target API are defined as the first category of
elements, Supporting Elements. Just as the elements
convolved along the blue arrows in FIGURE 5 and
FIGURE 6.

2) The Mashups, which have a Calling Relationship with
target API, and the APIs, which have a Collaborative
Relationship with target API, reflect the demand level
and characteristics of the entire service ecosystem for
target API. Thus, they and the native relationships
between them and between them and target API are
defined as the second category of elements, Required
Elements. Just as the elements convolved along the
green arrows in FIGURE 5 and FIGURE 6.

3) The APIs, which have a Direct Competitive Relation-
ship with target API, compete with target API for
Mashups with the same requirements, and the APIs
and Providers, which have an Indirect Competitive
Relationship with target API, provide support for the
competitors of target API. They all have an inhibitory
effect on the popularity of target API. Thus, they and
the native relationships between them and between
them and target API are defined as the third category of
elements, Competitive Elements. Just as the elements
convolved along the red arrows in FIGURE 5 and
FIGURE 6.

4) The functional Categories provided by target API are
the same as the properties of the target API itself,
reflecting the inherent characteristics and inner com-
petitiveness of the target API. Thus, they and the
native relationships between them and between them
and target API are defined as the fourth category of
elements, Inherent Elements. Just as the elements con-
volved along the yellow arrows in FIGURE 5 and
FIGURE 6.

Then, based on the above classification results, we design
two sets of Graph Heterogeneous Spatiotemporal Convolu-
tional Kernels to extract the features of related elements for
the prediction API global popularity and in-category popular-
ity in service ecosystems. The details are as follows:

FIGURE 7. The model of the four graph heterogeneous spatiotemporal
convolutional kernels proposed in this paper.

a: GRAPH CONVOLUTIONAL KERNELS FOR API GLOBAL
POPULARITY PREDICTION
As shown in the sketch map of FIGURE 5 and the convo-
lutional operation model of FIGURE 7, this paper uses the
following four groups of graph heterogeneous spatiotempo-
ral convolutional operations

⊗Sup,
⊗Req,

⊗Com and
⊗Inh,

which are constructed by Multi-Layer Perceptron (MLP),
to respectively extract the characteristics of Supporting Ele-
ments, Required Elements, Competitive Elements and Inher-
ent Elements associated with the target API s∗ that need to
predict global popularity:⊗Sup

: I Joi[t−T ,t−1]→MLP RI−Sup

RI−Sup, ISub[t−T ,t−1]→MLP RC−Sup⊗Req
: ICoo[t−T ,t−1]→MLP RI−Req

RI−Req, ICal[t−T ,t−1]→MLP RC−Req⊗Com
: I IComS[t−T ,t−1]→MLP R

I−Com
1

RI−Com1 , I IComP[t−T ,t−1]→MLP R
I−Com
2

IDCom[t−T ,t−1]→MLP R
I−Com
3

RI−Com2 ,RI−Com3 → RC−Com⊗Inh
: RC−Com, IPro[t−T ,t−1]→MLP RC−Inh

where, RI−Sup, RI−Req, RI−Com1 , RI−Com2 and RI−Com3
respectively represent the intermediate results of each con-
volutional operation, RC−Sup, RC−Req, RC−Com and RC−Inh

respectively represent the final results of each convolu-
tional operation, I Joi[t−T ,t−1], I

Sub
[t−T ,t−1], I

Coo
[t−T ,t−1], I

Cal
[t−T ,t−1],

I IComS[t−T ,t−1], I
IComP
[t−T ,t−1], I

DCom
[t−T ,t−1] and IPro[t−T ,t−1] respectively

represent the input vectors of each convolutional operation
composed of the attributes of the four categories of ele-
ments associated with target API s∗, and are respectively

137042 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

defined as follows:

I Joi[t−T ,t−1] =

 aJois∗,t−T ,1 · · · aJois∗,t−1,1
...

. . .
...

aJois∗,t−T ,N Joi · · · aJois∗,t−1,N Joi


ISub[t−T ,t−1] =

(
aSubs∗,t−T · · · aSubs∗,t−1

)
ICoo[t−T ,t−1] =

 aCoos∗,t−T ,1 · · · aCoos∗,t−1,1
...

. . .
...

aCoos∗,t−T ,NCoo · · · aCoos∗,t−1,NCoo



ICal[t−T ,t−1] =

 aCals∗,t−T ,1 · · · aCals∗,t−1,1
...

. . .
...

aCals∗,t−T ,NCal · · · aCals∗,t−1,NCal



I IComS[t−T ,t−1] =

 aIComSs∗,t−T ,1 · · · aIComSs∗,t−1,1
...

. . .
...

aIComSs∗,t−T ,N IComS · · · aIComSs∗,t−1,N IComS



I IComP[t−T ,t−1] =

 aIComPs∗,t−T ,1 · · · aIComPs∗,t−1,1
...

. . .
...

aIComPs∗,t−T ,N IComP · · · aIComPs∗,t−1,N IComP



IDCom[t−T ,t−1] =

 aDComs∗,t−T ,1 · · · aDComs∗,t−1,1
...

. . .
...

aDComs∗,t−T ,NDCom · · · aDComs∗,t−1,NDCom



IPro[t−T ,t−1] =

 aPros∗,t−T ,1 · · · aPros∗,t−1,1
...

. . .
...

aPros∗,t−T ,NPro · · · aPros∗,t−1,NPro


where, t represents the moment that need to predict the

global popularity of target API s∗, T represents the length
of the time period of the historical data used for the predic-
tion task, N Joi represents the number of APIs that have a
Joint Relationship with target API and are selected for using
their attributes as the input of graph convolution operations,
NCoo represents the number of APIs that have a Collabora-
tive Relationship with target API and are selected for using
their attributes as the input of graph convolution operations,
NCal represents the number of Mashups that have a Call-
ing Relationship with target API and are selected for using
their attributes as the input of graph convolution operations,
NDCom represents the number of APIs that have a Directly
Competitive Relationship with target API and are selected
for using their attributes as the input of graph convolution
operations, N IComS represents the number of APIs that have a
Indirectly Competitive Relationship with target API and are
selected for using their attributes as the input of graph convo-
lution operations, N IComP represents the number of Providers
that have a Indirectly Competitive Relationship with target
API and are selected for using their attributes as the input of
graph convolution operations, NPro represents the number of
Categories that have a Providing Relationship with target API
and are selected for using their attributes as the input of graph

convolution operations, aJois∗,t ′,i, a
Sub
s∗,t ′ , a

Coo
s∗,t ′,i, a

Cal
s∗,t ′,i, a

DCom
s∗,t ′,i ,

aIComSs∗,t ′,i , a
IComP
s∗,t ′,i , a

Pro
s∗,t ′,i, represent the vectors as shown at the

bottom of the next page respectively.
Where, A (e) represents the operation of acquiring the vec-

tor composed of element e’s attributes, R (e1, e2) represents
the operation of acquiring the relationship between element
e1 and e2, P (s) represents the operation of acquiring the
provider which provides API s, sJois∗,t ′,i represents the API
ranked i-th, according to a given criteria, in APIs that have
a Joint Relationship with target API at moment t ′, sCoos∗,t ′,i
represents the API ranked i-th, according to a given criteria,
in APIs that have a Collaborative Relationship with target
API at moment t ′, cCals∗,t ′,i represents the Mashup ranked i-th,
according to a given criteria, in Mashups that have a Calling
Relationship with target API at moment t ′, sDComs∗,t ′,i represents
the API ranked i-th, according to a given criteria, in APIs that
have a Directly Competitive Relationship with target API at
moment t ′, sIComs∗,t ′,i represents the API ranked i-th, according
to a given criteria, in APIs that have a Indirectly Competitive
Relationship with target API at moment t ′, pIComs∗,t ′,i represents
the Provider ranked i-th, according to a given criteria, in
Providers that have a Indirectly Competitive Relationship
with target API at moment t ′, f Pros∗,t ′ represents the Category
ranked i-th, according to a given criteria, in Categories that
have a Indirectly Providing Relationship with target API at
moment t ′, pSubs∗,t ′ represents the Provider of target API at
moment t ′.
In the above definitions, using the combinations of MLP,

which has strong expression ability and high adaptability,
to extract the features of the elements associated with target
API, makes it not only ensures the accuracy of GHSCN
model, but also reduces the training complexity. And at
the same time, ranking the elements which have different
relationship with target API at each moment in time period
[t − T , t − 1] according to a given criteria, and selecting
the attributes of the top fixed number of elements as the
input of vector I Joi[t−T ,t−1], I

Sub
[t−T ,t−1], I

Coo
[t−T ,t−1], I

Cal
[t−T ,t−1],

I IComS[t−T ,t−1], I
IComP
[t−T ,t−1], I

DCom
[t−T ,t−1], I

Pro
[t−T ,t−1], guarantees the

rotation invariance characteristic and fixed input dimension
of the graph heterogeneous spatiotemporal convolution oper-
ations

⊗Sup,
⊗Req,

⊗Com and
⊗Inh. Where, for the given

criteria of ranking the elements which have different rela-
tionship with target API, this paper follows the principle that
putting the elements with high correlation with the global
popularity and in-category popularity of target API at the
front, and design as follow:

1) The APIs that have a Joint Relationship, Collabora-
tive Relationship and Indirect Competition Relation-
ship with target API are sorted in descending order
according to their average in-category popularity;

2) The Mashups of target API are sorted in descending
order according to their update time;

3) The APIs that have a Directly Competition Relation-
ship with target API, and the Providers that have an
Indirectly Competition Relationship with target API,

VOLUME 8, 2020 137043

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

are sorted in descending order according to the sum
of their in-category popularity within the functional
Categories provided by target API;

4) The Categories provided by target API are sorted in
descending order to their global popularity.

b: GRAPH CONVOLUTIONAL KERNELS FOR API
IN-CATEGORY POPULARITY PREDICTION
As shown in the sketch map of FIGURE 6, different from
the graph convolutional operations for API global popularity
prediction task, the graph convolutional operations for API
in-category popularity prediction task need to deal with the
target Category f ∗ (the Categorywithin which the in-category
popularity of target API needs to be predicted, and marked in
yellow in FIGURE 6) and other Categories provided by target
API s∗ separately. Therefore, in each API in-category pop-
ularity prediction task, the graph heterogeneous spatiotem-
poral convolutional operation

⊗Com needs to be performed
twice to respectively extract the features of elements of which
the path to target API s∗ need go through the target Category
f ∗ and other Categories provided by target API s∗ in the
service ecosystem network, just as the convolution process
of elements circled by the red dotted line in upper and lower
parts of FIGURE 6 (It is worth noting that the input vectors
I IComS[t−T ,t−1], I

IComP
[t−T ,t−1] and I

DCom
[t−T ,t−1] corresponding to

⊗Com

also need to be constructed twice in accordance with the
two different processing objects). The graph convolutional
operations

⊗Sup,
⊗Req and

⊗Inh are only executed once just
like in the API global popularity prediction task, and the only
difference is the input part of

⊗Inh: the vector IPro[t−T ,t−1] only
be composed of the attributes of elements associated with
other Categories provided by target API s∗ except for target
Category f ∗.

V. EXPERIMENTS AND DISCUSSIONS
In this section, we use the data crawled from Pro-
grammableWeb to verify the API popularity prediction
method in service ecosystems proposed in this paper, and
analyze and discuss the experimental results.

A. INTRODUCTION OF DATA SET
1) RAW DATA FROM PROGRAMMABLEWEB
ProgrammableWeb is the largest Internet-based API infor-
mation and news platform in the world, it records more
than 22000 APIs, more than 7000 Mashups, more than
490 Categories, more than 13000 Providers, and a large
number of SDKs, Libraries, Frameworks, Sample Sources
Codes, Users, Developers, Teaching Documents, Comments
and other peripheral data, which form a complex, diverse,
relatively stable and complete service ecosystem. Therefore,
this paper chooses the service ecosystem data recorded on
ProgrammableWeb as the experimental samples.

Concretely, this paper will simply process and trans-
form the original data crawled from the ProgrammableWeb,
and save it in the form of service ecosystem network
GES[t0,t0+T] =

{
GESt0 ,G

ES
t0+1

, · · · ,GESt0+T
}
, that is, for each

sampling moment t , the APIs, Mashups, Categories and
Providers contained in ProgrammableWeb at that moment,
as well as the numerical and enumeration data related to
them (for example, the global popularity at moment t , the
number of sample codes and authentication types, etc.) are
saved in four node files in the form of node and node
attribute of network GESt respectively; four kinds of relation-
ships, namely, Mashup-API, API-Provider, API-Category
and Provider-Category, as well as the numerical data and enu-
meration data related to them (for example, the in-category
popularity at moment t) are saved in four edge files in the
form of edge and edge attributes of networkGESt respectively.
Where, the sampling moments t0, t0+1, · · · , t0+T represent
the zero hour on the first day of eachmonth in the period from
June 1, 2005 to March 1, 2019 (as of the beginning of our
experiments).

2) DATA SET SELECTED FOR EXPERIMENTS
As shown in FIGURE 8, the change trend of the num-
ber of APIs, Mashups, Categories and Providers on Pro-
grammableWeb has obviously different characteristics in dif-
ferent time periods. Therefore, in order to avoid the impact on

aJois∗,t ′,i =

(
A
(
sJois∗,t ′,i

)
A
(
R
(
sJois∗,t ′,i, p

Sub
s∗,t ′

)))
aSubs∗,t ′ =

(
A
(
pSubs∗,t ′

)
A
(
R
(
pSubs∗,t ′ , s

∗

)))
aCoos∗,t ′,i =

(
A
(
sCoos∗,t ′,i

)
A
(
R
(
sCoos∗,t ′,i, c

Cal
s∗,t ′,1

))
· · · A

(
R
(
sCoos∗,t ′,i, c

Cal
s∗,t ′,NCal

)))
aCals∗,t ′,i =

(
A
(
cCals∗,t ′,i

)
A
(
R
(
cCals∗,t ′,i, s

∗

)))
aDComs∗,t ′,i =

(
A
(
sDComs∗,t ′,i

)
A
(
R
(
sDComs∗,t ′,i , f

Pro
s∗,t ′,1

))
· · · A

(
R
(
sDComs∗,t ′,i , f

Pro
s∗,t ′,NPro

)))
aIComSs∗,t ′,i =

(
A
(
sIComs∗,t ′,i

)
A
(
R
(
sIComs∗,t ′,i,P

(
sIComs∗,t ′,i

))))
aIComPs∗,t ′,i =

(
A
(
pIComs∗,t ′,i

)
A
(
R
(
pIComs∗,t ′,i, f

Pro
s∗,t ′,1

))
· · · A

(
R
(
pIComs∗,t ′,i, f

Pro
s∗,t ′,NPro

)))
aPros∗,t ′,i =

(
A
(
f Pros∗,t ′,i

)
A
(
R
(
f Pros∗,t ′,i, s

∗

)))
137044 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 8. The change trend of the number of APIs, Mashups, Categories and Providers on ProgrammableWeb. Where,
(a) is the total number growth trend chart, (b) is the quarterly growth statistics chart.

the general trend of API’s global popularity and in-category
popularity caused by the change of self-promotion and oper-
ation strategy of ProgrammableWeb, and the unexpected
events (such as the emergence of new development models
or tools) in the field of service computing and Internet-based
API. In this paper, the service ecosystem network data from
January 1, 2006 to January 1, 2011 are selected as the exper-
imental samples (the change trend of the number of APIs,
Mashups, Categories and Providers are relatively fixed), for
reducing the experimental error caused by data imbalance.

Concretely, at each sampling moment t from January 1,
2006 to January 1, 2011, the global popularity attributes of
all APIs in the service ecosystem network GESt are taken
as sample YGP of API global popularity prediction model
GHSCN-GP, with a total of 148141; the in-category popu-
larity attributes of all API-Category relationships are taken
as sample Y ICP of service in-category popularity prediction
model GHSCN-ICP, with a total of 55155.

3) EXPERIMENTAL ENVIRONMENT
The experiments in this paper were conducted on a server
with CentOS 7 operating system, 8-core CPU (Xeon E5-
2640 v3) of Intel, and 125G memory. Further, for the con-
venience of experiments implementation, the following soft-
ware development frameworks and tools are used: NumPy
1.18.1, Pandas 0.25.1, Torch 1.4.0, NetworkX 2.4 and Python
3.6.1.

4) MODEL CONFIGURATION
It can be found from Subsection 2 of Section B of Chapter IV
that there are eight constants that need to be configurated
according to the scale and structure of the underlying service
ecosystem (parameters that do not change with the training
process of the model), namely T , N Joi, NCoo,NCal , NDCom,
N IComS ,N IComP andNPro. Therefore, before the experiments,
we first set the values of these eight constants according
to the information about the service ecosystem recorded on
ProgrammableWeb from January 1, 2006 to January 1, 2011.

Concretely, as shown in FIGURE 9, to set more reason-
able values for N Joi, NCoo,NCal , NDCom, N IComS , N IComP

and NPro, we respectively counted the number distributions

of the APIs that have a Joint Relationship with each API,
the APIs that have a Collaborative Relationship with
each API, the Mashups that have a Calling Relationship
with each API, the APIs that have a Directly Competitive
Relationship with each API, the APIs that have a Indirectly
Competitive Relationship with each API, the Providers that
have a Indirectly Competitive Relationshipwith eachAPI and
the Categories that have a Providing Relationship with each
API in the service ecosystem network samples obtained from
ProgrammableWeb during the period from January 1, 2006 to
January 1, 2011. From the results, it can be seen that these
distributions are obviously concentrated in a small interval.
Thus, after considering the accuracy and operation efficiency
of GHSCN model, we select the non-zero median value of
the corresponding distributions as the values of N Joi, NCoo,
NCal , NDCom, N IComS , N IComP and NPro in our experiments,
which are 7, 48, 253, 128, 165, 126 and 2 respectively.

Further, to set reasonable values for T , we firstly calcu-
late the multiple correlation coefficient values (RGP−Ipt and
RICP−Ipt) between samples (YGP and Y ICP) and the corre-
sponding prediction model inputs (i.e., I Joi[t−T ,t−1], I

Sub
[t−T ,t−1],

ICoo[t−T ,t−1], I
Cal
[t−T ,t−1], I

IComS
[t−T ,t−1], I

IComP
[t−T ,t−1], I

DCom
[t−T ,t−1] and

IPro[t−T ,t−1] in Subsection 2 of Section B of Chapter IV)
when T takes different values. The calculation results are
shown in FIGURE 10, and it can be seen that when T is
greater than 4, there is no significant increase in RGP−Ipt and
RICP−Ipt . Thus, after considering the accuracy and efficiency
of GHSCN model, we set T = 4 in our experiments.

B. DESIGN AND RESULTS OF EXPERIMENTS
Based on the above data set, computing environment
and model configurations, two groups of experiments are
designed to verify the performance and application value of
the API popularity prediction method in service ecosystems
proposed in this paper.

1) PERFORMANCE VALIDATION EXPERIMENTS
As with the methods verifying the performance of GNN
models in most existing literature, this group of experiments
are divided into two parts: the prediction accuracy verification

VOLUME 8, 2020 137045

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 9. Figures (a) to (g) are respectively the number distributions of the APIs that have a Joint Relationship with each
API, the APIs that have a Collaborative Relationship with each API, the Mashups that have a Calling Relationship with each
API, the APIs that have a Directly Competitive Relationship with each API, the APIs that have a Indirectly Competitive
Relationship with each API, the Providers that have a Indirectly Competitive Relationship with each API and the Categories
that have a Providing Relationship with each API in the service ecosystem network samples obtained from
ProgrammableWeb during the period from January 1, 2006 to January 1, 2011.

experiments and training speed verification experiments, and
the details are as follows:

a: PREDICTION ACCURACY VERIFICATION EXPERIMENTS
The purpose of this part of experiments is to verify the accu-
racy of GHSCNmodel in predicting the global popularity and
in-category popularity of APIs by using the full sample data
set (i.e., the service ecosystem data on ProgrammableWeb
from January 1, 2006 to January 1, 2011). Thus, whether it
is the API global popularity prediction model GHSCN-GP
or the in-category popularity prediction model GHSCN-ICP,
the steps of experiments are as follows:

1) Randomly divide the full sample data set Y (YGP for
GHSCN-GPF verification experiment, and Y ICP for
GHSCN-ICPF verification experiment) into training
data set Y Trn and test data set Y Tst in a ratio of 9.5 : 0.5;

2) Use the tenfold cross-validation method to train the
model in the training data set Y Trn, that is, after each
hyperparameters adjustment, divide Y Trn into ten parts
randomly; then, perform ten model training, and each
training uses the data of different parts of Y Trn as the

validation data set; finally, use the average value of ten
training results as the loss function value of the current
hyperparameters;

3) Test the accuracy of the model in test data set Y Tst , that
is, count and record the values of Mean Absolute Error
γMAE and Coefficient of Determination γ CoD;

4) Judge whether five independent tests (Steps 1) to 3) is
an independent and complete test) have been per-
formed, if so, skip to the next step, otherwise, return
to Step 1) to start the next test;

5) Calculate the average values (γMAE and γ CoD) ofMean
Absolute Error γMAE and Coefficient of Determination
γ CoD of the model obtained from five tests, and use
them as the final experimental result.

Where, using the tenfold cross-validation method to train
model is to avoid the over fitting phenomenon, using the
average value of five independent test results as the final
experimental result is to reduce random errors, and due to
the API popularity prediction in service ecosystems is a
regression problem, using theMeanAbsolute Error γMAE and
Co-efficient of Determination γ CoD defined as follows as the

137046 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 10. The curves of the multiple correlation coefficient values,
between the samples Y GP and Y ICP (the output of models) and the
corresponding prediction models inputs, with the values of T .

measurement indicators in this part of experiments:

γMAE =
1

NTst

NTst∑
i=1

∣∣∣yTsti − ŷ
Tst
i

∣∣∣
γ CoD = 1−

∑NTst

i=1
(
yTsti − ŷ

Tst
i

)2
∑NTst

i=1

(
yTsti − Y

Tst
)2

where, NTst represents the total number of samples in
the test data set, yTsti and ŷTsti represent the real value and
predicted value of the sample i in the test data set, and
Y Tst represents the expected value of the samples in the test
data set.

TABLE 1. The experimental results of prediction accuracy verification.

After completing this part of experiments according to
the above steps, we get the experimental results as shown
in TABLE 1 and FIGURE 11. It can be seen that both the
GHSCN-GP model and the GHSCN-ICP model proposed in
this paper perform well in general. They not only have low
Mean Absolute Error value, but also have very fast conver-
gence speed (the convergence can be achievedwithin 100 iter-
ations). Where, the only point that is not outstanding is that
the Coefficient of Determination of GHSCN-ICPF model is
relatively low, and the reason is that sample Y ICP contains
a large number of zero samples, and the difference between
non-zero samples is very small, resulting in the value of∑NTst

i=1

(
yTsti − Y

Tst
)2

in the formula of Coefficient of Deter-
mination is only 0.0002332859583584961.

b: TRAINING SPEED VERIFICATION EXPERIMENTS
The main idea of this part of experiments is to count the time
and iterations number spent in training in different size of

FIGURE 11. The prediction accuracy convergence curve of the model
proposed in this paper. (a), (b), (c) and (d) are respectively the
convergence curve of Mean Absolute Error of GHSCN-GP model,
Coefficient of Determination of GHSCN-GP model, Mean Absolute Error of
GHSCN-ICP model and Coefficient of Determination of GHSCN-ICP model
with the number of process iterations.

sample data sets to verify the training speed of the model
proposed in this paper. Thus, the steps of training speed
verification experiments of API global popularity prediction
model GHSCN-GP and in-category popularity prediction
model GHSCN-ICP are all as follows:

1) Randomly select 100, 500, 1000, 5000, 10000, and
50000 samples from the full sample data set Y (YGP

for GHSCN-GP verification experiment, and Y ICP for
GHSCN-ICP verification experiment) to form sub-data
sets Y100, Y500, Y1000, Y5000, Y10000 and Y50000;

2) Carry out eight groups of experiments, and each group
of experiments set the hidden layer number, hid-
den layer neuron number and output layer dimen-
sion of each MLP (including the four graph heteroge-
neous convolutional operations

⊗Sup,
⊗Req,

⊗Com,⊗Inh and the last full connection layer of GHSCN
model) according to the parameters in different rows
in TABLE 2; then, train the model with Y100, Y500,
Y1000, Y5000, Y10000 and Y50000 as training data sets,
respectively; and finally, count the training time tTrn

(the value when the model reaches convergence state);
3) Judge whether five independent tests (Steps 1) to 2) is

an independent and complete test) have been per-
formed, if so, skip to the next step, otherwise, return
to Step 1) to start the next test;

4) Calculate the average value tTrn of training time tTrn of
the model obtained from the five tests under different
settings and different size of data sets, and use them as
the final experimental result.

After completing this part of experiments according to
the above steps, we get the experimental results as shown
in FIGURE 12. It can be seen that the training time of the
model proposed in this paper almost increases linearly with
the increase of the number of training samples under any

VOLUME 8, 2020 137047

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 12. Figure (a) and (b) respectively represent the change curves of GHSCN-GP model’s and GHSCN-ICP model’s training time
with the number of training samples, under different configurations.

TABLE 2. The parameters of each MLP in the model, that is, the
proportion of the number of their hidden layer layers, the number of their
hidden layer neurons and their output layer dimension in the
corresponding input layer dimension (it is worth noting that due to the
output dimension of the fully connected layer of the model is always 1,
so only two other parameters are given).

configuration. Therefore, through reasonable configuration
of parameters, our model can also have high training effi-
ciency in large-scale sample learning tasks. Furthermore,
by comparing the training time of the model under different
configurations, it can be found that the number of neurons in
hidden layers has a greater impact on the performance than
the number of hidden layers. Thus, when applying GHSCN
model, we suggest to increase the number of hidden layers
to improve the prediction accuracy of the model, rather than
increase the number of neurons.

2) APPLICATION VALUE VALIDATION EXPERIMENTS
Different from the previous group of experiments to verify
the theoretical performance indicators of GHSCNmodel, this

group of experiments aims to demonstrate and verify the
application value of GHSCN model in service ecosystems
through simulations. Thus, we choose the common problem
in the service ecosystem, fault source identification, as an
example to demonstrate the importance of the introduction
of the model proposed in this paper to service ecosystems.

Concretely, we conducted 30 experiments on different ser-
vice ecosystem networks sampled in the period from Jan-
uary 1, 2006 to January 1, 2011. In each experiment, we firstly
use different metrics (Degree, Betweenness Centrality, Close-
ness Centrality, PageRank and global popularity predicted
by CHSCN model) as the basis for selecting the deploy-
ment location of monitoring agents in the underlying service
ecosystem network; then, using the SI model with random
assignments of propagation probability of edges, conduct
100 times of fault propagation simulation; and finally, per-
form fault source identification (three classic source iden-
tification algorithms, Concentric Center, Jordan Center and
DMP, are used respectively) based on the information moni-
tored by monitoring agents selected by different metrics and
the finally state of all nodes in the underlying service ecosys-
tem network, respectively, and calculate the corresponding
source identification difficulties as the following formula
(taking one of them as an example):

γPop =
1
100

100∑
i=1

(
rTrueSourcePop,Conc,i + r

TrueSource
Pop,Jord,i + r

TrueSource
Pop,DMP,i

)/
3∣∣VMashup∣∣+ |VAPI | + |VProvider |

where, γPop represents the source identification difficulty
based on the information monitored by monitoring agents
selected by global popularity predicted by CHSCN model
(γDeg, γBC , γCC , γPr and γAll respectively represent the cor-
responding value for Degree, Betweenness Centrality, Close-
ness Centrality, PageRank and ‘‘all nodes in the underlying
service ecosystem network’’), VMashup, VAPI and VProvider
respectively represent the set ofMashups, APIs and Providers
in the underlying service ecosystem network, rTrueSourcePop,Conc,i ,

137048 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

FIGURE 13. Figure (a)∼(f) are respectively the distribution of the difficulty of source identification in 30 experiments,
when using different metrics (degree, betweenness centrality, closeness centrality, PageRank and global popularity
predicted by CHSCN model) as the basis for selecting the deployment location of monitoring agents in service
ecosystem networks.

rTrueSourcePop,Jord,i and rTrueSourcePop,DMP,i respectively represent the ranking
values of the real fault source in the i-th fault propagation
simulation, among all nodes in the underlying service ecosys-
tem network, for the estimated value (the measure of the
probability that a node in the network is the source of fault)
calculated in source identifications by Concentric Center,
Jordan Center and DMP based on the information monitored
by monitoring agents selected by global popularity predicted
by CHSCN model.

FIGURE 14. The average values of the difficulty of source identification,
when using different metrics (degree, betweenness centrality, closeness
centrality, PageRank and global popularity predicted by CHSCN model) as
the basis for selecting the deployment location of monitoring agents in
service ecosystem networks.

After completing this group of experiments according to
the above steps, we get the experimental results as shown
in FIGURE 13 and FIGURE 14. It can be seen that when a
fault propagation occurs in service ecosystems, the difficulty
of source identification based on the final state of the top
10% of APIs for global popularity predicted by GHSCN

model is lowest, and is closer to the difficulty of source
identification based on the final state of all nodes in service
ecosystems. Therefore, using the API global popularity pre-
dicted by the model proposed in this paper, as the basis for
selecting the deployment location of the monitoring agent
in service ecosystems, can effectively reduce the difficulty
of fault source identification and ensure the security and
accountability of the service ecosystem.

VI. CONCLUSION
The APIs, Mashups, Providers corresponding to services,
compositions, and providers form an evolving service ecosys-
tem. Understanding the popularity of API which includes
QoS, function, historical usage pattern and social relationship
can help to recommend adequate services, as well as promote
the security and stability of service ecosystem.

In this paper, we propose a Graph Neural Network-based
Service Popularity Prediction Method (GHSCN) in service
ecosystem, and then carry out extensive experiments on the
data set crawled from ProgrammableWeb. The experiments
showed that our approach have higher accuracy because four
different Heterogeneous Spatiotemporal Convolutional Ker-
nels are proposed to extract the features of different elements
which have different mechanisms to affect the popularity
of target service, and that the prediction APIs popularity is
meaningful for selecting placement of fault monitoring agents
in service ecosystem.

For future work, we have the following four suggestions:
(1) modeling more elements and information, such as users,
SDKs and teaching documents of API, in service ecosystem
in the form of a network, just like GSEN model, to further
improve the accuracy of GNN-based API popularity predic-
tion methods; (2) introduce some knowledge and experience

VOLUME 8, 2020 137049

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

in the field of service ecosystem, such as the relationships
between API popularity and API centrality (PageRank and
Closeness Centrality, etc.) in the underlying service ecosys-
tem network, to improve the convolutional kernels of GHSCN
model, for further improving the model’s accuracy and speed;
(3) based on the GHSCNmodel in this paper, adding a Graph
Auto Encoder (GAE) to encode the information of elements
related to Mashups, it is can easily design a GNN-based
Mashup-API link prediction method. (4) Combining API
popularity with other aspects in service optimization field
such as compositions or recommendations.

ACKNOWLEDGMENT
(Zhong Li and Xiaochen Liu contributed equally to this work.)

REFERENCES
[1] L. Yao, Q. Z. Sheng, A. Segev, and J. Yu, ‘‘Recommending Web services

via combining collaborative filteringwith content-based features,’’ inProc.
ICWS, Santa Clara, CA, USA, Jun. 2013, pp. 42–49.

[2] C. Li, R. Zhang, J. Huai, and H. Sun, ‘‘A novel approach for API rec-
ommendation in mashup development,’’ in Proc. ICWS, Anchorage, AK,
USA, Jun. 2014, pp. 289–296.

[3] Z. Zheng, H. Ma, M. R. Lyu, and I. King, ‘‘Collaborative Web service QoS
prediction via neighborhood integrated matrix factorization,’’ IEEE Trans.
Services Comput., vol. 6, no. 3, pp. 289–299, Jul. 2013.

[4] P. Wang, Z. Ding, C. Jiang, M. Zhou, and Y. Zheng, ‘‘Automatic Web
service composition based on uncertainty execution effects,’’ IEEE Trans.
Services Comput., vol. 9, no. 4, pp. 551–565, Jul. 2016.

[5] Y. Jiang, J. Liu, M. Tang, and X. Liu, ‘‘An effective Web service recom-
mendation method based on personalized collaborative filtering,’’ in Proc.
ICWS, Washington, DC, USA, Jul. 2011, pp. 211–218.

[6] B. Tapia, R. Torres, and H. Astudillo, ‘‘Simplifying mashup component
selection with a combined similarity-and social-based technique,’’ in Proc.
ACM ICPS, 2011, p. 8.

[7] J. Cao, W. Xu, L. Hu, J. Wang, and M. Li, ‘‘A social-aware service
recommendation approach for mashup creation,’’ IJWSR, vol. 10, no. 1,
pp. 53–72, Jan. 2013.

[8] T. Liang, L. Chen, J. Wu, G. Xu, and Z. Wu, ‘‘SMS: A framework for
service discovery by incorporating social media information,’’ IEEE Trans.
Services Comput., vol. 12, no. 3, pp. 384–397, May 2019.

[9] A. Tatar, J. Leguay, P. Antoniadis, A. Limbourg, M. D. de Amorim,
and S. Fdida, ‘‘Predicting the popularity of online articles based on user
comments,’’ in Proc. WIMS, 2011, p. 67.

[10] T. Wu, M. Timmers, D. D. Vleeschauwer, and W. V. Leekwijck, ‘‘On the
use of reservoir computing in popularity prediction,’’ in Proc. INTERNET,
Valencia, Spain, Sep. 2010, pp. 19–24.

[11] H. Pinto, J. M. Almeida, and M. A. Gonçalves, ‘‘Using early view patterns
to predict the popularity of youtube videos,’’ in Proc. WSDM, Rome, Italy,
2013, pp. 365–374.

[12] D. Bianchini, V. D. Antonellis, and M. Melchiori, ‘‘A multi-perspective
framework for Web API search in enterprise mashup design,’’ in Proc.
CAiSE, Valencia, Spain, 2013, pp. 353–368.

[13] R. Torres, B. Tapia, and H. Astudillo, ‘‘Improving Web API discovery by
leveraging social information,’’ in Proc. ICWS, Washington, DC, USA,
Jul. 2011, pp. 744–745.

[14] D. Bianchini, V. D. Antonellis, and M. Melchiori, ‘‘A linked data perspec-
tive for effective exploration of Web APIs repositories,’’ in Proc. ICWE,
Aalborg, Denmark, 2013, pp. 506–509.

[15] A. Ranabahu, M. Nagarajan, A. P. Sheth, and K. Verma, ‘‘A faceted
classification based approach to search and rank Web APIs,’’ in Proc.
ICWS, Beijing, China, Sep. 2008, pp. 177–184.

[16] D. Bianchini, V. D. Antonellis, and M. Melchiori, ‘‘Model-based search
and ranking of Web apis across multiple repositories,’’ in Proc. WISE,
Thessaloniki, Greece, 2014, pp. 218–233.

[17] B. Cao, J. Liu, M. Tang, Z. Zheng, and G. Wang, ‘‘Mashup service rec-
ommendation based on user interest and social network,’’ in Proc. ICWS,
Santa Clara, CA, USA, Jun. 2013, pp. 99–106.

[18] K. Huang, Y. Fan, and W. Tan, ‘‘An empirical study of programmable
Web: A network analysis on a service-mashup system,’’ in Proc. ICWS,
Honolulu, HI, USA, Jun. 2012, pp. 552–559.

[19] Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang, ‘‘Time-aware service
recommendation for mashup creation,’’ IEEE Trans. Serv. Comput., vol. 8,
no. 3, pp. 356–368, May/Jun. 2015.

[20] K. Huang, Y. Fan, and W. Tan, ‘‘Recommendation in an evolving service
ecosystem based on network prediction,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 3, pp. 906–920, Jul. 2014.

[21] Z. Zheng, H. Ma, M. R. Lyu, and I. King, ‘‘WSRec: A collaborative
filtering based Web service recommender system,’’ in Proc. ICWS, Los
Angeles, CA, USA, Jul. 2009, pp. 437–444.

[22] J. G. Lee, S. Moon, and K. Salamatian, ‘‘Modeling and predicting the
popularity of online contents with cox proportional hazard regression
model,’’ Neurocomputing, vol. 76, no. 1, pp. 134–145, Jan. 2012.

[23] M. Gori, G. Monfardini, and F. Scarselli, ‘‘A new model for learning in
graph domains,’’ in Proc. IJCNN, MOntreal, QC, Canada, Jul./Aug. 2005,
pp. 729–734.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. NIPS,
Barcelona, Spain, 2016, pp. 3844–3852.

[25] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. ICLR, Toulon, France, 2017, pp. 1–13.

[26] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ‘‘Spectral networks and
locally connected networks on graphs,’’ in Proc. ICLR, Scottsdale, AZ,
USA, 2014, pp. 1–14.

[27] R. Li, S.Wang, F. Zhu, and J. Huang, ‘‘Adaptive graph convolutional neural
networks,’’ in Proc. AAAI, New Orleans, LA, USA, 2018, pp. 3546–3553.

[28] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, andG. E. Dahl, ‘‘Neural
message passing for quantum chemistry,’’ in Proc. ICML, Sydney, NSW,
Australia, 2017, pp. 1263–1272.

[29] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Inductive representation
learning on large graphs,’’ in Proc. NeurIPS, Long Beach, CA, USA, 2017,
pp. 1024–1034.

[30] J. Atwood and D. Towsley, ‘‘Diffusion-convolutional neural networks,’’ in
Proc. NeurIPS, Montreal, QC, Canada, 2016, pp. 1993–2001.

[31] M. Niepert, M. Ahmed, and K. Kutzkov, ‘‘Learning convolutional neu-
ral networks for graphs,’’ in Proc. ICML, New York, NY, USA, 2016,
pp. 2014–2023.

[32] H. Gao, Z. Wang, and S. Ji, ‘‘Large-scale learnable graph convolutional
networks,’’ in Proc. KDD, London, U.K., Jul. 2018, pp. 1416–1424.

[33] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, ‘‘Geometric deep learning on graphs and manifolds
using mixture model CNNs,’’ in Proc. CVPR, Honolulu, HI, USA,
Jul. 2017, pp. 5425–5434.

[34] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, ‘‘Geniepath:
Graph neural networks with adaptive receptive paths,’’ in Proc. AAAI,
Honolulu, HI, USA, 2019, pp. 4424–4431.

[35] C. Zhuang and Q. Ma, ‘‘Dual graph convolutional networks for graph-
based semi-supervised classification,’’ inProc. WWW, Lyon, France, 2018,
pp. 499–508.

[36] D. V. Tran, N. Navarin, and A. Sperduti, ‘‘On filter size in graph
convolutional networks,’’ in Proc. SSCI, Bengaluru, India, Nov. 2018,
pp. 1534–1541.

[37] M. Zhang, Z. Cui, M. Neumann, and C. Yixin, ‘‘An end-to-end deep learn-
ing architecture for graph classification,’’ in Proc. AAAI, NewOrleans, LA,
USA, 2018, pp. 4438–4445.

[38] Z. Ying, J. You, C. Morris, X. Ren,W. Hamilton, and J. Leskovec, ‘‘Hierar-
chical graph representation learning with differentiable pooling,’’ in Proc.
NeurIPS, Montreal, QC, Canada, 2018, pp. 4805–4815.

[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lió, and Y. Bengio,
‘‘Graph attention networks,’’ inProc. ICLR, Vancouver, BC, Canada, 2018,
pp. 1–12.

[40] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Yeung, ‘‘GaAN: Gated
attention networks for learning on large and spatiotemporal graphs,’’ in
Proc. UAI, Monterey, CA, USA, 2018, pp. 339–349.

[41] J. B. Lee, R. Rossi, and X. Kong, ‘‘Graph classification using structural
attention,’’ in Proc. KDD, London, U.K., Jul. 2018, pp. 1666–1674.

[42] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. Alemi, ‘‘Watch your
step: Learning node embeddings via graph attention,’’ in Proc. NeurIPS,
Montreal, QC, Canada, 2018, pp. 9180–9190.

[43] S. Cao, W. Lu, and Q. Xu, ‘‘Deep neural networks for learning graph
representations,’’ inProc. AAAI, Phoenix, AZ, USA, 2016, pp. 1145–1152.

137050 VOLUME 8, 2020

Z. Li et al.: GHSCN: GNN-Based API Popularity Prediction Method

[44] D. Wang, P. Cui, and W. Zhu, ‘‘Structural deep network embedding,’’ in
Proc. KDD, San Francisco, CA, USA, Aug. 2016, pp. 1225–1234.

[45] T. N. Kipf and M. Welling, ‘‘Variational graph auto-encoders,’’ 2016,
arXiv:1611.07308. [Online]. Available: http://arxiv.org/abs/1611.07308

[46] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, ‘‘Adver-
sarially regularized graph autoencoder for graph embedding,’’ 2018,
arXiv:1802.04407. [Online]. Available: https://arxiv.org/abs/1802.04407

[47] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong, H. Chen,
and W. Wang, ‘‘Learning deep network representations with adversari-
ally regularized autoencoders,’’ in Proc. KDD, London, U.K., Jul. 2018,
pp. 2663–2671.

[48] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, ‘‘Deep recursive net-
work embedding with regular equivalence,’’ in Proc. KDD, London, U.K.,
Jul. 2018, pp. 2357–2366.

[49] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, ‘‘GraphRNN:
A deep generative model for graphs,’’ 2018, arXiv:1802.08773. [Online].
Available: https://arxiv.org/abs/1802.08773

[50] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, ‘‘Learning deep
generative models of graphs,’’ in Proc. ICLR, Vancouver, BC, Canada,
2018.

[51] N. De Cao and T. Kipf, ‘‘MolGAN: An implicit generative model for
small molecular graphs,’’ 2018, arXiv:1805.11973. [Online]. Available:
http://arxiv.org/abs/1805.11973

[52] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, ‘‘NetGAN:
Generating graphs via random walks,’’ 2018, arXiv:1803.00816. [Online].
Available: http://arxiv.org/abs/1803.00816

[53] Y. Li, R. Yu, C. Shahabi, and Y. Liu, ‘‘Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,’’ in Proc. ICLR, Vancou-
ver, BC, Canada, 2018, pp. 1–33.

[54] B. Yu, H. Yin, and Z. Zhu, ‘‘Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,’’ in Proc. IJCAI,
Jul. 2018, pp. 3634–3640.

[55] C. Wu, X.-J. Wu, and J. Kittler, ‘‘Spatial residual layer and dense con-
nection block enhanced spatial temporal graph convolutional network
for skeleton-based action recognition,’’ in Proc. ICCVW, Oct. 2019,
pp. 1740–1748.

[56] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, ‘‘Structural-RNN:
Deep learning on spatio-temporal graphs,’’ in Proc. KDD, Jun. 2016,
pp. 5308–5317.

[57] J. F. Moore, ‘‘Predators and prey: A new ecology of competition,’’Harvard
Bus. Rev., vol. 71, no. 3, pp. 75–86, 1993.

[58] J. Spohrer, P. P. Maglio, J. Bailey, and D. Gruhl, ‘‘Steps toward a science
of service systems,’’ IEEE Computer, vol. 40, no. 1, pp. 71–77, Jan. 2007.

[59] G. Scheithauer, S. Augustin, and G. Wirtz, ‘‘Describing services for
service ecosystems,’’ in Proc. ICSOC, Sydney, NSW, Australia, 2008,
pp. 242–255.

ZHONG LI received the B.S. degree in com-
puter science from Beihang University, where he
is currently pursuing the Ph.D. degree. His main
research interests include cloud computing tech-
nology, social network analysis, and source iden-
tification of information diffusion.

XIAOCHEN LIU received the B.S. and M.S.
degrees from the School of Computer Science
and Technology, Beijing University of Posts
and Telecommunications, China. She is currently
pursuing the Ph.D. degree with the School of
Computer Science and Engineering, Beihang Uni-
versity, Beijing, China. Her research interests
include network management, cloud service man-
agement, and cloud security analysis.

TIANBO WANG (Member, IEEE) received
the Ph.D. degree in computer application from
Beihang University, Beijing, China, in 2018. He is
currently a Lecturer with Beihang University.
He has participated in several national natural
science foundations and other research projects.
His research interests include network and infor-
mation security, intrusion detection technology,
and information countermeasure.

WENHUI HE received the B.S. degree in informa-
tion safety from Central South University, Hunan,
China, in 2018. She is currently pursuing the mas-
ter’s degree with the School of Computer Science
and Engineering, BeihangUniversity. Her research
interests include services computing and graph
neural networks.

CHUNHE XIA received the Ph.D. degree in
computer science and engineering from Beihang
University, Beijing, China, in 2003. He is cur-
rently the Head of the Beijing Key Laboratory
of Network Technology, Beihang University. His
research interests include network security, net-
work management, and network measurement.

VOLUME 8, 2020 137051

