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ABSTRACT Advanced image sensors with high resolution are now being developed for specially purposed
electro-optical systems, with research focused on robust image quality performance in terms of super
resolution and noise removal under various environmental conditions. Recently, machine-learning and
deep-learning methods have been studied as the best practical techniques for restoration to improve the
deteriorated image quality of sensors. However, these methods show limitations and side effects of image
degradation such as image non-uniformity. In this paper, we analyze and randomly generate additive white
Gaussian noise, non-uniform line noise, and dark saturation as representative image degradations. We then
propose an advanced U-net model based on global and local residual learning in order to restore complexly
deteriorated images. The proposed method shows unparalleled performance compared to alternative models
and previous studies. In particular, various complex noise components are minimized and improved with
equal quality so that variation between sequential images is minimized. These findings leverage mutual
corroboration of quantitative and qualitative evaluation metrics. In the future, the proposed model is expected
to contribute to a wide range of field applications such as defense, surveillance, and video media for image
quality enhancement technologies.

INDEX TERMS Restoration, multi-type noises, image denoising, image enhancement, convolutional neural
network, residual learning.

I. INTRODUCTION
As image system technology advances, image restoration
for high-resolution and special-purpose images is among
the key technologies for application in fields such as
multimedia, intelligent vehicles, defense, surveillance, and
reconnaissance. Image restoration comprises the task of
restoring image damage such as noise, motion blur, focus
error, excessive light, and insufficient light. The success of
this task is determined by how completely and efficiently the
clean image (prediction image or restored image) is restored
from the degraded image, in comparison to the ground truth
(GT) image. Denoising, one of the most substantial tasks in
image restoration, is the task of finding noise components in
the input component and restoring clean images that come
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FIGURE 1. Example of correlation between noise image and GT image.
(a) noise image, (b) noise component, (c) GT image.

as close to the original as possible. As an example of such
work, Fig. 1 shows (a) the noise component corresponding
to Fig. 1 (b), which is analyzed in the generation of a clean
image as shown in Fig. 1 (c).

In order to perform the image denoising task, it is neces-
sary to analyze the causes and types of image degradation.
A classification of these types is as follows:
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1) Signal noise of photon detector and non-uniformity
from dead or bad pixels of image sensors

2) Vertical line noise from a sensor that realizes 2D images
using vertical scanning by a high-performance 1D sen-
sor (line scan camera)

3) Dynamic noise with characteristics that change in units
of frames in successive images

4) Black and white low dynamic images due to lack of
sensor signal strength or environmental influence

As examples of these types, Fig. 2 shows image degradation
due to complex noise in a thermal infrared (TIR) image or a
1D scan-based hyper-spectral (HS) image of a special design
structure [1]. Image deterioration due to image degradation
and noise can be inconvenient for users and causes the loss of
important image information.

FIGURE 2. Example of noise and saturation image. (a) line and white
gaussian noise in infrared image, (b) line noise in hyper-spectral image,
(c) dark saturation image in Automated Optical Inspection (AOI) system.

In particular, techniques used in application systems such
as object detection, tracking, and segmentation can show
various performance limitations when using deteriorated
images. The background registration-based adaptive noise
filtering (BRANF) algorithm has been studied to solve both
static and dynamic noise issues, And also general machine
learning-based algorithms and the cross fusion-based adap-
tive contrast (CFACE) have been studied to solve these prob-
lems, but they show limitations in effectively removing noise
with high uniformity and speed [2]–[5].

Recent advances in convolutional neural networks (CNNs),
software, and hardware have shown that deep learning
[6]-based algorithms (VDSR [7], DnCNN [8], FFDNet [9],
MWCNN [10], Noise2Noise [11]) rank high in state-of-the-
art (SOTA)-based paperwithcode.1 However, side effects of
these techniques include image distortion, and limitations are
found in the removal of complex noise components, as well
as in overall speed. In the present paper, we propose the per-
formance of image improvement by constructing a network
based on global residual learning (GRL) and local residual
learning (LRL).

Also, as mentioned in MWCNN [10], In this paper,
we consider the correlation between computing cost and

1[Online]. Available: http://paperswithcode.com/sota

performance caused by a sufficient acceptance field. As the
receptive field grows, the consumption of computing
resources increases, leading to a trade-off between efficiency
and performance. However, we also argue that a sufficient
receptive field is helpful for image reconstruction, since the
noise is unpredictable and appears throughout the range.
In addition, we establish a receptive field of sufficient size
(192 × 192 pixels) in the trade-off process of performance
and resources and consider this a problem to be solved with
the development of software and hardware. Although there
is a risk of information loss, the pooling layer is used in
this paper to effectively cope with the distribution of noise
according to the image scale. As a result, our method shows
excellent noise removal and low variation in performance
compared to other algorithms.

II. RELATED WORK
The task of image denoising is representative works in the
field of image restoration research. As a traditional method
for removing noise, basic image processing algorithms such
as average filter, median filter, and Gaussian filter have been
studied [12]. Image restoration has also been developed into
machine learning-based algorithms such as Block-Matching
and 3D filtering (BM3D) [3] and Weighted Nuclear Norm
Minimization (WNNM) [4]. However, BM3D [3] and
WNNM [4] are very slow in real-time application and show
poor image restoration performance. Recently, with advances
in software and hardware, CNN-based algorithms (VDSR [7],
DnCNN [8], FFDNet [9], MWCNN [10], Noise2noise [11],
etc.) are dramatically developed and shown outstanding
performance and high speed. Among them, Multi-level
Wavelet-CNN (MWCNN) [10], one of the best-performing
algorithms, applies discrete wavelet transform (DWT) and
inverse wavelet transform (IWT) operations between net-
works based on enlarged receptive field. Complementing the
deep learning method that produces somewhat blurry results,
it shows excellent resilience by utilizing textural detail and
sharp structures. In addition, most existing denoising tasks
require both a noise image and a clean image as supervised
learning methods, but in Noise2Noise [11], restoration was
performed with only noisy images without clean data, sug-
gesting a new paradigm for denoising tasks. Also, in this task,
research on video denoising is actively underway based on the
Recurrent Neural Network (RNN) algorithm [13].

However, most denoising algorithms aim to remove
AWGN, one of the noise types, and show poor performance
when applied to the complex and various types of noise
generated in software and hardware for a wide range of mul-
timedia applications. Research is also being conducted using
a scene-based non-uniform correction (SBNUC) method [1]
to remove line noise that is often observed in HS systems.
Also, several CNN-based methods have been studied to solve
these problems [14], [15], [16]. Among them, the two-stream
wavelet enhanced U-net (TSWEU) [16] method analyzed
noises of various line patterns and has shown observable
performance.
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Image enhancement, one of the other image restoration
fields, is a technique that corrects values when an undesirable
brightness value is obtained from an image due to errors or
malfunctions such as lighting, exposure time, aperture value,
sensor, etc. For example, in Fig. 2 (c), the defect is not
correctly found due to the abnormal operation of the lighting,
and Fig. 3 (a) shows that detection is not performed properly
in the dark image. Fig. 3 (b) shows successful detection after
yolo-v3 tiny [17] restoration as part of the method proposed
below.

FIGURE 3. Example of image restoration and enhanced detection
performance. (a) sample of dark saturation image, (b) enhanced image
and result applied detection algorithm (yolo-v3 tiny model),
(c) histograms of pixel brightness for (a) and (b).

In order to resolve these issues, one of the most com-
mon and popular methods is general histogram equalization
(GHE). However, in images with dynamic brightness, GHE
shows poor reconstruction performance when comparing the
restored image to the ground truth. Engineers and researchers
have attempted to solve this problem using vision-based algo-
rithms such as contrast-limited adaptive histogram equaliza-
tion (CLAHE) as well as machine learning-based algorithms
(SVD-DWT [18], AGCWD [19], CegaHe [20], etc.). Also,
under study is restoration using the generative adversarial
network (GAN) algorithm [21], [22] using a deep learning
technique. In the future, this technique may be applied to
technologies such as high dynamic range (HDR).

Yet another restoration task is the improvement of old
or degraded images and videos through technologies such
as Single-Image Super Resolution, JPEG artifact removal,
deblur, and defocus [23]–[26]. Research is actively underway
for this task within image restoration. Image restoration tasks
such as image denoising and enhancement are essential for
viewing outdated or deteriorated images or videos, as well
as for other applications. Reflecting this, ETH Zurich’s com-
puter vision laboratory in Switzerland has been leading the
field of image restoration by holding the NTIRE (New Trends
in Image Restoration and Enhancement workshop2) chal-
lenge every year since 2016.

In the restoration task proposed in this paper, practicality
is considered for application in various applications. Unlike
the conventional method of removing only AWGN (a single
noise type), we propose a method to simultaneously correct
multi-type noise based on Global Residual Learning (GRL)
and Local Residual Learning (LRL). GRL is a process of
subtracting noise features and inputs, which are the final

2[Online]. Available: http://www.vision.ee.ethz.ch/ntire19/

output of the network, and LRL is a process of subtracting for
each scale of images (max-pooling, up-sampling). Designed
to reflect the characteristics of noise, these techniques are
expected to improve network performance and will lead to
advanced image reconstruction. Furthermore, this model is
a general restoration model that can show excellent perfor-
mance by applying the re-learning method as a dataset for
improving contrast.

III. METHOD
A. DATA GENERATION AND AUGMENTATION
This section describes data generation and augmentation for
network learning as shown in the flowchart in Fig. 4 (a).

FIGURE 4. Data generation and augmentation. (a) algorithm flowchart,
(b) GT image, (c) line noise image, (d) line + AWGN image.

Since the existing single-type noise imag3e denoising task
generates noise based on the sigma level in the input image,
it is limited to various types of noise generated in the applica-
tion system. We focus on multi-type noise image denoising,
which removes complex noise by generating line noise and
AWGN, which is one of the noise types that appear frequently
in IR and HS systems.

However, there are limitations in obtaining a real dataset
from non-uniform noise observed in IR and HS systems.
In particular, in the IR system, there are functions such as
fixed pattern noise (FPN) correction for removing uniform
noise, but it is difficult to completely remove non-uniform
noise [27]. Therefore, it is not easy to build a dataset because
of the characteristic of CNN, where input (Noise image) and
label (GT image) are simultaneously needed. In order to over-
come the limitations, this study analyzes the non-uniformity
of real IR systems and generates at an equivalent level of real
IR noises.

The dataset used for training and validation is the
DIV2K [28] dataset (training images: 800, validation images:
100). Using this dataset, noise components are generated as
similar as possible, as shown in Fig. 5.

First, white and black layers (WL, BL) of the same size as
the input in the prepared dataset were randomly generated as

WL,BL =
∑NL

n=1
round

{
(rand (1)× 255)

Int

}
(1)
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FIGURE 5. An example of noise that is generated at real IR systems.
(a) an example of real IR systems, (b) a feature of real noise component,
(c) a feature of generated noise component.

where NL is number of lines, Int is the intensity of the
generated lines, and rand (∗) is the function that randomly
generates ∗ values from 0 to 1.

Next, a Gaussian filter, one of the smoothing operations,
was applied to create a line noise layer that looked as equally
as possible as follows:

WLσ ,BLσ (pi, pj) =
1

2πσ 2 e
−

(
p2i +p

2
j

2σ2

)
(2)

where σ is a parameter for determining blurring and is called
a scale parameter, and pi, pj are the width and height of each
pixel.

Adding each dynamic noise layer to the input image pro-
duced a GT+ line noise image as shown in Fig. 4 (c). Finally,
by adding AWGN (σ = 25), a dataset with multi-type noise
was created as shown in Fig. 4 (d).

Then, in the augmentation process, the image was divided
into patches, and rotation (180◦) and flip (up/down, left/right)
were randomly performed based on the scale change
(×0.6∼1.2). The key point of this process was to focus on the
scale change by reflecting the noise characteristics appearing
randomly overall, and to exclude the 90◦ and 270◦ reorienta-
tions during rotation because the purpose is to remove the ver-
tical line noise. Finally, in this process, a dataset for network
learning was generated by augmenting noise characteristics
equivalent to those of reality.

B. NETWORK ARCHITECTURE DESIGN
This section discusses the overall network architecture
design.We explain whywe designed the network architecture
and why we decided upon this particular architecture.

1) NETWORK ARCHITECTURE
The correlation between GT image (x), noise image (y), and
noise ingredient (n) can generally be defined as x = y − n.
In general, most algorithms predict the x component based
on y. In our network, however, the clean image (x) is restored
by predicting the noise feature (n) component from the resid-
ual learning perspective. In fact, existing residual learning has
been introduced in that deeper networks are likely to run into
gradient vanishing or exploding problems, and deep learning
cannot be performed well, for example increased training
error. Reference [29]. However, referring to the method used
in DnCNN [8] in an attempt to approach from a different
perspective than the existing residual learning, we applied the

new residual learning method which is modified overall to
the network. This residual learning method removes the clean
image components from the noisy image and then calculates
the residual features (n) to finally derive them as

x̂ = y− R(y) (3)

where y is the input (noise image), R(y) is the residual feature
through the network, and x̂ is the final prediction image (clean
image).

The biggest difference from previous research is the appli-
cation of Local Residual Learning (LRL) and Global Resid-
ual Learning (GRL) in the U-shaped [30] network structure.
Residual operations are applied to both global and local
parts to calculate the residual features effectively. In this
way, the noise image is ultimately restored to a clean image
(prediction image).

First, in this network, LRL is a residual operation
applied to each layer immediately after the max-pooling
or interpolation-based resize up-sampling. This operation is
added to correspond to the scale of the input before obtaining
the final feature. In fact, pooling operations tend to lose
information, so researchers and engineers prefer not to use
them. However, we added this process to deal with noise of
various distributions at various scales. As will be mentioned
again in the next section, checkerboard artifacts that occur
when using the transposed convolution operation degrade the
image restoration. Therefore, to prevent the artifact, we use an
interpolation-based up-sampling operation instead. As shown
in Fig. 6 (b), LRL is a combination of convolution layer +
batch normalization [31] + ReLU [32], and four sets are
connected to each group. Finally, the residual operation is
performed through a subtract operation in groups 1 and 4.

GRL is the network output, and the final clean image
is obtained by calculating the difference between the final
residual image and the input. The distinguished two residual
learnings (GRL, LRL) are the key point of this network, since
noise is additional information not wanted by users, and even-
tually added unwanted features coming out of the network can
be removed by difference calculations. The overall network
is designed as shown in Fig. 6 (a).

For the validation and analysis of the effectiveness of
residual learning on the network, we have confirmed through
the ablation study. In the ablation study, quantitative and qual-
itative evaluations were performed. The equations used for
quantitative evaluation are peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) [33].

PSNR (Ix , Ix̂) = 10× log
(

I2max
MSE (Ix , Ix̂)

)
(4)

where Ix is theGT image, and Ix̂ is the predicted image. Imax is
the max dynamic range of input and output images. Imax is
255 for 8-bit image. The MSE is the mean square error of the
output image in comparison with the original image.

SSIM (Ix , Ix̂) =
2µxµx̂ + C1

µ2
x + µ

2
x̂ + C1

·
2σxx̂ + C2

σ 2
x + σ

2
x̂ + C2

(5)
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FIGURE 6. Proposed network architecture. This network consists of (a) and (b). the black line (subtraction operation) corresponds to GRL and LRL.

where µx and µx̂ are the respective average values of input
and output images. σx and σx̂ are the respective variances of
input and output images. C1 = k1I2max , and C2 = k2I2max .
k1 = 0.01, k2 = 0.03.
As shown in Fig. 7, in the validation process of training,

both methods are applied to LRL and GRL, that are shown
the improved performance compare to the method no applied
residual learning.

FIGURE 7. The ablation study with PSNR,SSIM results during validation of
training.

Also, in the inference, as shown in Table 1, it is ana-
lyzed that the quantitative evaluation showed a performance
difference.

TABLE 1. The comparisons of the ablation experiments.

In addition, quantitative evaluation was performed based
on the restored image. Most of the participants in the

experiment responded that the results were good when they
used LRL and GRL together.

2) INTERPOLATION-BASED UP-SAMPLING
The commonality between the transposed convolution
(deconvolution) operation and the up-sampling operation is
mainly used to enlarge the image reduced by operations such
as pooling. The difference between the two operations (based
on the Keras3 API) is that the up-sampling is an interpolation-
based image resize, while the transposed convolution opera-
tion enlarges the size of the image based on the learned filters.
In this process, as mentioned in Distil’s blog [34], when
using transposed convolution operation, uneven overlap may
occur depending on filter size and stride, causing checkboard
artifacts.

Similarly, artifacts such as those in Fig. 8 were also often
observed in this study when transposed convolution is used.
Therefore, we modified the network with up-scaling in order
to reduce the effects of incorrect restoration. The number of

3[Online]. Available: https://keras.io

FIGURE 8. Comparison using interpolation-based resizing with
transposed convolution. When using up-sampling (c, d), these
phenomena disappeared (a, b).
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hyper-parameters in the network is slightly increased, but this
is not significantly affecting the performance.

C. NETWORK TRAINING
For learning we used the ADAM [35] algorithm for the
optimizer (learning rate = 0.001, β1 = 0.9, β2 = 0.999,
epsilon = None), and a mini batch randomly shuffled based
on the maximum size that the graphics processing unit could
accommodate (batch size: 128). In order to select the loss
function, we referred to [36], which analyzed the field of
image restoration in detail, and [37], which analyzed which
loss function should be used in the image restoration task.
Through various experiments, we selected the loss function
(L) according to the mean absolute error (MAE):

L (h) =
1
N

N∑
i=1

|R (yi; h)− (yi − xi)| (6)

where h is the network parameter learned through this pro-
posed network, and N is the number of pairs of clean-noise
images (x, y) during training (patch). Experiments were
selected by comparison with a total of two control groups.
The first control was a mean square error (MSE)-based loss
function:

L (h) =
1
2N

N∑
i=1

||R (yi; h)− (yi − xi) ||2 (7)

The second control was the loss function of the combination
of MAE and SSIM [33]. This expression can be redefined as
in (8), reflecting the characteristics of the CNN:

LSSIM = 1− SSIM(Ix , Ix̂) (8)

Finally, this control is combined as

LMix = α · LMAE + β · LSSIM (9)

where α, β are hyperparameters for the ratio of loss function.
As shown in Fig. 9, and in Table 2, control groups showed

good performance in learning when the loss function was
used.

FIGURE 9. The comparison of PSNR,SSIM results of loss functions during
validation of training.

TABLE 2. Quantitative comparison of loss functions.

However, in the evaluation, control groups showed better
performance quantitatively and qualitatively when MAE was
used. We confirmed that control groups show outstanding
performance throughout the experiment. In fact, we found it
best to combine the necessary loss functions depending on
the task.

In addition, loss of information after learning may result
from the relatively high depth and relatively large receptive
field (192 × 192) of this network. Therefore, we verified
the image that activated after passing the convolution layer
of each layer. From this, we could see that the network was
working correctly as shown in Fig. 10.

FIGURE 10. Activated Network layer. (a) GT image, (b) Noise image,
(c) activated images of convolutional layer, (d) residual image (predicted
image), (e) output image (clean image). The noise image shows that the
noise component has been calculated through the network.

The software used in this paper was Keras (2.2.4, backend
TensorFlow4: 1.13) based on cuda 10 and cudnn 7.5. The
server computer specification used for network learning con-
sisted of an Intel (R) Core (TM) i9-7900X with a 3.3 GHz
CPU, 64 GB of RAM, and NVIDIA Titan V 2way system.
The evaluated computer specification was 99900KF with
a 3.6 GHz CPU, 32 GB of RAM, and NVIDIA GeForce
RTX 2080Ti. Due to sufficient hardware specifications,
we quickly performed large batches of learning, inference,
and evaluation.

IV. EXPERIMENTS
A. DATASET FOR EVALUATION
For the evaluation of the multi-type noise image denois-
ing task, we used 100 randomly selected videos from pix-
abay.com,5 a website that provides copyright-free photos
and videos. This dataset was regenerated into an evaluation
dataset using the data generation process of section III.A.
These datasets were edited to 30 fps, up to 10 seconds long,
because of image frame length deviation. The reason why
video is used for multi-type noise image denoising task evalu-
ation is that video is composed of frames. Based on this factor,
it serves to evaluate how effectively different dynamic noise
is removed for each frame. In addition, for evaluation of σ the
image enhancement task, 155 images randomly selected from
pixabay.com were darkened, and evaluation was performed
on a total of 2635 images.

4[Online]. Available: https://www.tensorflow.org

5[Online]. Available: https://pixabay.com
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TABLE 3. Quantitative comparison of algorithmic performance on multi-type noise image denoising task.

The degraded dataset for evaluation was created dynami-
cally for each frame.

B. QUANTITATIVE MEASUREMENT
Machine learning-based algorithms such as BM3D [3] and
WNNM [4] did not need to be trained to evaluate multi-type
noise image denoising tasks, but deep learning-based algo-
rithms needed to be trained anew. We proceeded implemen-
tation of training each algorithm based on the paper in which
it was referenced. Based on the same dataset (DIV2K [28] +
random multi-type noise in each frame), training and vali-
dation were conducted in the same way as for the proposed
method. After applying the algorithm to the dataset, evalua-
tion proceeded, using a total of six formulas as quantitative
indicators. The indicators were MAE, frame-to-frame varia-
tion, root-mean-square error (RMSE), PSNR, SSIM [33], and
multi-scale SSIM (MS-SSIM) [38], as respectively quantified
in (10), (11), (12), (13), (4), (5), and (14):

MAE (p) =
1
N

∑
p∈P
|x(p)− x̂(p)| (10)

where x is the GT image, and x̂ is the clean image (prediction
image or restored image), and p is the pixel value.

AE (p) = |x(p)− x̂(p)| (11)

Variation =
1
N

∑
p∈P

AE(p)fn−AE(p)fn−1 (12)

where AE is absolute error between pixels, and fn is the
nth frame; variation is calculated as the difference between
the (n− 1)th frame and the nth frame.

RMSE =

√√√√ 1
N

∑
p∈P

(x (p)− x̂(p))2 (13)

where RMSE is an operation that takes the square root of the
mean square error (MSE).

MS− SSIM (p) = lαM (p)
M∏
j=1

cs
βj
j (p) (14)

where MS-SSIM [37] is based on (5). It calculates the SSIM
score at multi-scale (M ) and then weights it to obtain a final

score. l is luminance, c is contrast, and s is structure. These
parameters are the basic building blocks of SSIM [33]. For
convenience, we used the default values as A = B = 1, for
j = {1, . . . ,M}.
These formulas were used to evaluate how properly the

noise was removed in successive frames and how completely
the image was restored in comparison with the GT image.
The supplementary data include some videos and graphs with
quantitative indicator results, presented frame by frame.

Table 3 lists the average values of quantitative indicators
for 103 videos. In terms of numerical values, the RMSE,
PSNR, and SSIM [33] methods showed lower (worse) val-
ues than MWCNN [10] and Noise2Noise [11], while MAE,
variation, and MS-SSIM performed well. In some images,
the features in the video were slightly blurry, but in terms
of video footage or frame-by-frame, AWGN and line noise
were clearly removed, demonstrating excellent image restora-
tion quality. As shown in Fig. 11, three algorithms showed
high performance: MWCNN [10], Noise2Noise [11], and the
proposed method.

We observed that networks with relatively large receptive
fields showed excellent image restoration performance. There
were distortions in the videos when algorithms other than the
proposed method were applied; for these same algorithms,
line noise was not properly removed, remaining faint. Also,
as shown in Fig. 12, it is clearly confirmed that non-uniform
noises when the histogram equalization is applied to the
restored image.

As mentioned in the SRGAN [26] paper, the high values
for PSNR and SSIM do not necessarily mean that the video
is visually appealing or that the noise is removed well; rather,
they reflect the characteristics of deep learning optimization
based on the loss function. As shown in (4), the use of MSE
loss would produce high values in the evaluation metrics
(PSNR), but at the potential cost of blurry output or improper
noise removal. Therefore, in accordance with [39], which
analyzes the distortion measure and the human perceptual
measure, we also adopted the mean opinion score (MOS)
method and used it as a quantitative indicator.

Table 4 provides a quantitative average index of the image
enhancement task based on 2635 images (dark degraded
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FIGURE 11. Quantitative evaluation of multi-type noise denoising task by various algorithms (PSNR, SSIM, MAE). In the proposed method, multi-type
noises are effectively removed. However, from a numerical point of view, it can be observed that there is a difference in image restoration quality.

images). Indicators used for quantitative evaluation were
MAE, PSNR, SSIM [33], MS-SSIM [38], and additionally
Natural Image Quality Evaluator (NIQE) [40], which does
not require a reference (GT image) to evaluate image quality.

As shown in Fig. 13, three algorithms performed properly:
AGCWD [19], CegaHe [20], and the proposed method. Par-
ticularly numerically, the proposed method showed the image
restoration closest to GT images by improving dark satura-
tion. However, among the algorithms with good performance
(AGCWD [19], CegaHe [20]), there were cases in which the

quantitative evaluation was bad even though the quality of the
restored image was good. This suggests that evaluation using
qualitative indicators is necessary.

C. QUALITATIVE MEASUREMENT
As mentioned above, we conducted the MOS test because
there appeared to be a limit to the usefulness of quantita-
tive indicators in the evaluation of algorithm performance.
For MOS testing, we asked a human evaluator to assign to
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FIGURE 12. The result of applying histogram equalization to the restored image. It can be confirmed that it is incorrectly restored, or noises remain. Also,
looking at the line profile (GT: black, each algorithm result: red line) at the bottom of each figure, it can be confirmed that the proposed method is most
similar to the graph of GT, and that the fluctuation range of values is small.

FIGURE 13. Quantitative evaluation of algorithms (PSNR, SSIM, NIQE) on an image enhancement task. Compared to other algorithms, the image derived
from the proposed method is most similar to the GT image.

TABLE 4. Quantitative comparison of algorithmic performance on image
enhancement task.

each reconstructed image a point value from 1 (the worst
quality) to 5 (excellent quality).

Table 5 provides a qualitative index of the MOS for
the multi-type noise image denoising task. We showed
10 selected videos to 21 different study subjects. For each,

we asked in a questionnaire survey whether the noise was
properly removed so that there were no inconveniences in
viewing the images, i.e., if the videos were smooth and nat-
ural. Most of the participants who conducted the evaluation
presented the following common opinions.

1) Quality was considered worse when noise remained
in successive scenes or when the transition between
frames was unnatural.

2) Quality was considered better when the transition
between frames was natural and clear.

3) The usefulness of quantitative algorithm evaluation
metrics was considered quite limited (based on sub-
jects’ comparisons of their qualitative scores with
quantitative evaluation metrics provided to them
afterward).
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TABLE 5. Qualitative comparison of algorithmic performance on multi-type noise image denoising task.

FIGURE 14. Quantitative (variation, MAE, PSNR, SSIM, MS-SSIM) and qualitative (MOS) evaluation of algorithmic performance on a multi-type noise
image denoising task.

MWCNN [10], Noise2Noise [11], and the proposed method
received good qualitative evaluations. According to the opin-
ions of evaluators, the proposed method not only effectively
removed multi-type noise, but also minimized the variation
among frames, resulting in a natural image reconstruction
with uniform quality. In the denoising task, the restoration
of features and backgrounds needed to be harmonious and
natural. Although numerical evaluation is important for quan-
titative measurement, the qualitative evaluation of the pro-
posed method demonstrates that the perceptual measure is
important in terms of quantitative measurement [39].

Table 6 shows the MOS of the image enhancement task.
We showed 35 selected images to 21 different study subjects.
For each, we asked in a questionnaire survey how closely it
was restored to the GT, i.e., how natural the images were.

TABLE 6. Qualitative comparison of algorithmic performance on image
enhancement task.

Through this quantitative measurement, three meth-
ods received good qualitative evaluations: AGCWD [19],
CegaHe [20], and the proposed method. In the image
enhancement task, the restoration of dynamic brightness
needed to be harmonious and natural. Among these three

winning methods, the proposed method was evaluated to give
the most natural and harmonious restoration. Table 5 shows
that the proposed method also provided the best performance
for this task in terms of quantitative metrics.

D. TOTAL MEASUREMENT
In this section, quantitative and qualitative evaluations are
combined and evaluated.

Fig. 14 uses an integrated indicator to show that the perfor-
mance of the proposed method for the multi-type noise image
denoising task is excellent. The performance of the proposed
method is also good the image enhancement task.

Our study once again emphasizes that both quantitative and
qualitative indicators should be used to determine how well
image restoration has been performed.

E. REAL EXPERIMENT
In this section, actual datasets are created and evaluated to
demonstrate the diversity of the proposed methods.

In IR systems, various noises caused by scene changes or
heat generation can be observed frequently. For this reason,
NUC method is essential to obtain high quality images. NUC
method works to address common multi-type noise (AWGN,
line noise) and temperature compensation.

However, as mentioned by FLIR [41], it takes about
20 minutes to warm up for accurate temperature measure-
ments. During preheating, the NUC method continues to
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FIGURE 15. Real image comparison using proposed method with NUC method. (a) an examples of real IR systems, (b) results of applying NUC method
(c) results of applying proposed method. Looking at the normalized image, it can be seen that the proposed method removes noise better than the NUC
method. In addition, it can be observed from the line profile that it is well restored in harmony based on the uniformity of the brightness value.

work for 20 minutes, and no image can be obtained during
operation.

Because of these limitations, the proposed method is used
to replace the NUC method, and the following Fig. 15 is the
result.

As shown in Fig. 15, It can observe that the NUC method
is not always perfect. Because of the characteristic of the
noise, it is not easy to obtain an image (GT Image) that is
perfectly and harmoniously removed. The proposed method
not only shows results equivalent to images processed with
the NUCmethod, but also shows the same and excellent level
of restoration quality without any deviation between images,
and better results depending on the specific scene.

V. CONCLUSION
This paper presented a residual learning based RFSUNET
architecture for image restoration, which consists of GRL
and LRL. For multi-type noise image denoising tasks, actual
multi-type noises such as TIR images and HS images were
analyzed and used to generate equivalent evaluation datasets.
The performance of RFSUNET in restoration tasks was eval-
uated through quantitative and qualitative means. In partic-
ular, the proposed method was found to effectively remove
various types of noise in comparison with conventional
algorithms and networks. In addition, the results show low
variation and uniform quality in both dynamic and static
images. Also, we performed comparative analysis experi-
ments on how effectively to remove multi-type noises, which
are frequently observed in real IR systems, using the NUC
method and the proposed method. Through these experi-
ments, we were able to prove the excellence of our research
once again.

However, most CNN-based algorithms, including this pro-
posed method, show slightly blurring results due to the deep
learning structure. This flaw produces admittedly imperfect
restoration results compared to the GT image.

In future work, we will create a network that sharpens and
blurs the somewhat blurry image once again. As a two-stage

network, we aim to design a CNN that enhances the perfor-
mance of restoration as close as possible to the GT image.
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