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ABSTRACT Wind power generation provides a new route for the sustainable development of energy.
However, with the large scale integration of wind farms, the volatile wind energy and the correlation among
various wind speeds bring a considerable quantity of uncertainty for the power system operation. In this
paper, a probabilistic power flow (PPF) analysis model for the power system incorporating the correlation
among various wind speeds is proposed. As distinct from existing studies, in this paper, we introduce
the relevance vector machine (RVM) into correlation modeling of wind speeds via historical learning
samples to construct bivariate joint distribution. Compared with the conventional parameter estimation
methods, the proposed method has higher flexibility and computational efficiency. On this basis, the regular
vine copula approach is adopted further to build the multivariate joint distribution model of wind speeds.
To calculate the PPF of power system with the integration of wind power, we employ the three-point
estimationmethod (3PEM)while the Rosenblatt Transformation technique is proposed to transform the input
variables into independent variables. The effectiveness of the proposed calculation framework is examined
through simulation studies, and the obtained results illustrate the advantages of the proposed method.

INDEX TERMS Wind power, probabilistic power flow, correlation, relevance vector machine, Rosenblatt
transformation technique.

I. INTRODUCTION
With increasing concerns about sustainable utilization of
energy resources, wind energy becomes one of the most
popular substitutes for power generation. Compared with
traditional generation, wind resources have a tremendous
potential to facilitate environmental protection without air
pollution, as well as mitigate energy crisis relying on its
abundant reserve in nature. However, with the higher pen-
etration of wind energy, the variability and correlation of
wind speeds bring many uncertainties to the operation of
the power system. Therefore, the conventional deterministic
power flow calculation may be no longer appropriate for
analyzing the effects of wind generation on power system
operation.

To deal with the above issue, extensive research has been
conducted to study the effect of uncertainty (e.g., the output of
renewable distributed generations, power demand) on power
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system operation. For example, reference [1] adopted prob-
ability distribution to construct the model of uncertain real
time line capacities caused by the integration of wind turbines
into the power system. To deal with the wind generation
uncertainty, reference [2] used a scenario-based approach
and made an economic operation scheme based on stochastic
optimization. Similarly, the stochastic nature of solar power
was described via a scenario-based approach in reference [3].
Unlike the above probability methods, reference [4] adopted
uncertainty sets to model the uncertainties in solar and wind
output powers. Reference [5] introduced the robust opti-
mization to research the effect of uncertainty produced by
high-penetration renewable energy on the transaction cost
of a microgrid. Likely, to deal with the issue of renew-
able energy generation (REG) uncertainty, reference [6] built
a multiple-stage robust optimization model and solved the
energy management problem caused by unbalanced genera-
tion and demand. The above literature [1]–[6] mainly studied
the influence of uncertainties on the economy or security of
power system operation.
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To study the influence of load uncertainty on state variables
in the power system, B. Borkowska proposed probabilistic
load flow calculation [7] to make up for the deficiency of
deterministic power flow calculation. At present, there have
been extensive efforts in exploring calculation methods of
probabilistic power flow (PPF) with uncertain input vari-
ables, including simulation [8]–[11], analytical [12]–[15],
approximate methods [16]–[19]. For example, refer-
ence [8], [9] developed the Monte Carlo (MC) based
PPF analysis approach to evaluate the effects of renewable
energy generation (REG) on the operation state of the power
system, while considering the randomness and uncertainty
of REG. MC simulation is the most accurate method but
inapplicable to a practical programwith a high computational
burden. To decrease the computational time, reference [12]
adopted statistical moments and Cornish-Fisher expansion
based on linearized power flow equations to conduct PPF cal-
culation incorporating the wind generation. Most analytical
methods for PPF are based on the linear power systemmodels
and do not adequately consider the correlation of input vari-
ables. UnlikeMC simulation and analytical methods, approx-
imate methods are computationally effective while ensuring
enough accuracy of estimation results such as the point
estimate method (PEM), which does not need to evaluate the
derivatives of nonlinear power flow equations. Hong’s point
estimate methods were applied into reference [16] to handle
the uncertainty of generation unit outages or load demand
for PPF calculation. In reference [17], the MC simulation
methodwas comparedwith both two-point estimate and Latin
hypercube sampling methods. The point estimate method
was used to analyze the impact of increasing penetration
of intermittent generation resources on load flow of power
system in [18]. In this research, different wind generation
and loads scenarios were assumed to verify the point estimate
method’s effectiveness.

The above literature [8]–[19] either did not consider wind
power or assumed that there was no correlation among the
wind speeds in various wind farms for PPF calculation. How-
ever, with the growing demand for wind power, there are usu-
ally more than one wind farm in an area. Moreover, the wind
farms in the same area are generally influenced by the same
wind speed zone. As a result, the wind speeds of multiple
wind farms within a particular region have spatiotemporal
correlations with each other. The results of PPF without
considering the correlation will be too rough to provide
reliable information for further planning and operational
evaluation of the power system. Facing these problems,
the Copula function is proposed to model the correlation
among wind speeds via constructing joint distribution
function [20]–[28]. For example, reference [20] studied
the bivariate correlation of wind speeds using the time-
adaptive quantile-copula approach. To simulate the correla-
tion among multiple wind farms, reference [21] proposed
the Archimedean copula approach to simulate the correla-
tion of random variables, including photovoltaic and wind
power, in a distribution network. In the same vein, the authors

of [22] adopted the Normal copula technique to model wind
power dependence for the study of the large-scale integration
of wind generation in the power system. A fuzzy copula
technique was proposed in [23] to express the uncertain
wind speed correlation caused by inadequate historical wind
speeds data. To construct the dependence structure model of
different wind speeds, reference [24] employed a Laplace
copula function to study the PPF problem.

Through the above literature review, it can be seen that the
spatiotemporal correlation among wind speeds is described
by using a single Copula function. However, in reality,
the wind speeds series have asymmetrical tail characteristics.
It is difficult to capture this feature by just relying on a
single Copula function. Specially, the Copula functions are
constructed via parameter estimation methods (such as max-
imum likelihood estimation (MLE), least square (LSQ) and
Expectation-Maximization algorithm (EM)). In these param-
eter estimation methods, since the effects of different kernel
functions on the estimation results differ a lot, these methods
have a higher requirement for the choice of kernel functions.
Besides, the computational process of parameter estimation
methods could become so complicated with a large number of
kernel functions and samples that the estimation results will
be over-fitting.

In practice, to utilize the PEM, the interdependent wind
power of different wind farms needs to be transformed into
independent variables for further point estimation. Orthogo-
nal transformation and Nataf transformation are commonly
used to transform the dependent variables into independent
variables [26], [27]. However, orthogonal transformation and
Nataf transformation cannot accurately capture the nonlinear
relationship between variables due to using a linear correla-
tion coefficient of variables as input [29].

In this paper, a methodological framework for PPF analysis
of the power systemwith incorporating the correlation among
various wind speeds is proposed. To accurately model the
wind speeds correlation of multiple wind farms, a novel
bivariate joint distribution estimate approach based on the
relevance vector machine (RVM) has been adopted. Specif-
ically, RVM is applied to convert the nonlinear joint distri-
bution problem into the high dimensional linear problem by
thoroughly learning historical samples instead of parameter
estimation. As a result, the bivariate joint distribution could be
obtained in a shorter time by solving a linear model. On this
basis, the Regular vine (R-vine) Copula approach is adopted
further to build the multivariate joint distribution model of
wind speeds. To calculate the PPF of power system with the
integration of wind power, a three-point estimation method
(3PEM) is utilized while input variables are transformed into
independent variables using the Rosenblatt Transformation
technique. Comparing with existing works in the relevant
research field, the major contributions of this paper can be
summarized as follows:

1) We propose a calculation framework to determine the
PPF of the power system incorporating the correlation
among multiple wind farms.
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2) A learning-based technique integrating the RVM and
R-vine copula is developed and used to construct the
multivariate joint distribution function of wind speeds
in our study. Compared with traditional parameter esti-
mation based correlation analysis, the RVM can effec-
tively avoid over-fitting and dimension disaster with
faster computational speed. Hence, it could provide
a more accurate estimation for the correlation among
various wind speeds, enabling the PPF analysis of the
power system to be more realistic.

3) We adopt the Rosenblatt Transformation approach to
generate independent input variables for a 3PEM based
PPF calculation.

The rest of the paper is organized as follows. Section 2 intro-
duces the method to construct a multivariate joint distribution
function of wind speeds. Then section 3 elaborates on the
PPF calculation model. Based on the proposed formula-
tion, numerical studies are carried out in section 4. Finally,
Section 5 gives the conclusion of the research.

II. CONSTRUCTION OF CORRELATION AMONG
WIND FARMS
In this section, the RVM technique for constructing bivariate
joint distribution is introduced first, and then the multivariate
joint distribution is further modeled via the R-vine Copula
model.

A. RVM MODEL
As for a special linear programming model derived from
Bayesian theory, the RVMmodel can convert nonlinear prob-
lems in low dimensional space into linear problems in high
dimensional space by appropriate kernel function mapping.
In the process of iterative calculation of RVM, most of the
hyperparameters tend to a large number (could be regarded
as infinity). As the hyperparameter approaches infinity, the
reciprocal of the hyperparameter tends to zero, and the cor-
responding kernel function will not affect the regression
results. Then a sparse model can be obtained. This could
avoid dimension disaster. Therefore, RVM is an ideal method
to obtain the joint distribution function of random variables
through the marginal distribution of random variables by
learning from historical information.

Assumed that x = [x1,x2, · · · ,xn]T is input vector with
N observations values and Y = y(x;ω) is corresponding out-
puts, the model of RVM can be constructed as follows [30]:

y(x;ω) =
N∑
i=1

ωiK (x, xi)+ ω0 = ω
Tφ(x) (1)

where K (x, xi) is a vector composed of multiple kernel func-
tions; ω= [ω0, ω1, . . .ωn] represents the weight vector.
According to the corresponding target values

t = (t1, · · · , tn)T of given input vector x, the likelihood

function of the training sample can be obtained via

p(t|xi, β, α) =
N∏
i=1

p(ti|xi, ω, β−1I ) (2)

where α represents the vector of all hyperparameter; Each
weight parameter ωi corresponds to a hyperparameter αi in
the RVM model, which is different in general linear models.

Based on the likelihood function of the training sample, the
weight-prior could be described as follow:

p(ω|α) =
M∏
i=1

N (ωi|0, α
−1
i ) (3)

During the above calculation, most elements of vec-
tor α tend to infinity, and the posterior distributions
of corresponding weight parameters are concentrated at
zero.

According to Bayesian theory, the posterior probability
distributions of weight parameters satisfy p (ω | t, xi, β,α) ∝
p (t |ω, xi, β,α) p (ω |α), and could be obtained via

p(ω|t, xi, β, α) = N (ω|m, 6) (4)

where m and 6 are the mean and covariance of weight
parameters respectively, given as follows:

m = β6KT t (5)

6 = (A+ βKTK )−1 (6)

where A= diag (αi).
In this paper, we adopt T-copula, Clayton copula, and

Gumbel copula function to construct the joint distribution to
capture the nonlinear symmetric correlation, the asymmetric
correlation, and the tail correlation of joint distribution of
two wind farms. T-copula has a symmetric tail correlation
structure to capture the nonlinear symmetric correlation
between input variables. The distribution of Gumbel copula
and Clayton Copula are asymmetric, which can reflect the
asymmetric correlation of input variables. And Gumbel cop-
ula has a characteristic of strong upper tail correlation, while
Clayton copula distribution has a strong lower tail correlation.
Suppose that the variables v1 = (v11, v12, . . . , v1n) and
v2 = (v21, v22, . . . , v2n) stand for wind speed sampled from
two wind farms respectively. According to the historical wind
speed information of the two wind farms, the marginal distri-
bution functions F1(v1) and F2(v2) are obtained using kernel
density estimation. Based on this, the T-copula, Clayton-
copula, and Gumbel-copula can be calculated, respec-
tively denoted as ζ ζCT(Fϑ (xϑ ),F(x))CT (F1(v1),F2(v2)),
CC (F1(v1),F2(v2)) and CG(F1(v1),F2(v2)). CT (F1(v1),
F2(v2)), CC (F1(v1),F2(v2)) and CG(F1(v1),F2(v2)) take n
sampling values respectively to form a sample space denoted
as U{U1,U2U3}, in which U1 = [u11, u12,. . . , u1n]T ,
U2=[u21, u22,. . . , u2n]T and U3=[u31, u32,. . . , u3n]T , are all
normalized to control the data range within [0,1]. Then the
bivariate joint distribution function of two wind farms could
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be described as follows:

Ĉ (v1, v2) =
[
Ĉ1, Ĉ2, . . . , Ĉn

]T
= g1U1 + g2U2 + g3U3

(7)

where g1, g2, and g3 are the weight parameters of the
T-Copula, Clayton-Copula, and Gumbel-Copula, respec-
tively. The element of the bivariate joint distribution function
ζ Ĉξ (xϑ , x) is calculated via

Ĉξ (v1, v2) = g1u1ξ + g2u2ξ + g3u3ξ , ξ = 1, 2, . . . , n (8)

According to (1), (7), (8), the RVM model of two wind
farms could be obtained as follows:

y
(
Ĉξ (v1, v2)

)
=

n∑
i=1

ωiK
(
Ĉξ (v1, v2) , Ĉi (v1, v2)

)
+ ω0

=

n∑
i=1

ωi exp

−
∥∥∥Ĉξ (v1, v2)− Ĉi (v1, v2)∥∥∥

2σ 2
Ĉ

+ ω0,

ξ = 1, 2, . . . , n (9)

where
∥∥∥Ĉξ (v1, v2)− Ĉi (v1, v2)∥∥∥ is the norm of the differ-

ence between two elements in bivariate joint distribution
function; σĈ is the standard deviation of the bivariate joint
distribution.

To obtain the weight parameter ω and g(g1, g2, g3),
equation (4) could be transformed by using natural logarithm,
and then calculate the partial derivative of (10), respectively
shown in (10) and (11):

ln p(ω|t, ui, β, α) = lnN (ω|t, 0,C)

= −
1
2

{
N ln(2π )+ ln |C| + tC−1t

}
(10)

∂ (ln p(ω|t, ui, β, α, g))
∂ω

= 0
∂ (ln p(ω|t, ui, β, α, g))

∂g
= 0

(11)

where t = (t1, · · · , tN )T is sampled from the empirical
copula Ĉn of the two wind farms. And Ĉn is defined as
follows:
∧

Cn(F1(v1k ),F2(v2k ))

=
1
n

n∑
i=1

I[F1(v1i)≤F1(v1k )]I[F2(v2i)≤F2(v2k )] (12)

where F1 (v1k) and F2 (v2k) are the marginal distribution;
I is an indicator function, if F1 (v1i) ≤ F1 (v1k), or F2 (v2i) ≤
F2 (v2k), I = 1; otherwise, I = 0.

Besides, the matrix C in (10) is calculated via

C = β−1I + KA−1KT (13)

where

A = diag
(
αnewi

)
= diag

(
γi

m2
i

)
(14)

(βnew)−1 =
||t − Km||2

N −
∑

i γi
(15)

where γi reflects the prediction accuracy of the RVM model
and is defined via

γi = 1− αi6i (16)

B. R-VINE MODEL AND MULTIVARIATE DISTRIBUTIONS
Use one space after periods and colons. Hyphenate complex
Nonlinear joint distribution of two wind farms is estimated
by RVM based method in Section II.A. However, in practice,
due to the high penetration of wind power, there are usually
more than two correlatedwind farms in the real power system.
Because of this, this section constructs a high dimensional
joint distribution of multiple correlated wind farms based on
the above bivariate distribution (9) by introducing the R-vine
copula approach.

According to the copula theory [31], the multivariate dis-
tributions function of various correlated wind farms can be
formed via the marginal cumulative distribution function
(CDF) Fi(vi), described as follows:

F(v1, v2, · · · , vn) = Cj(F1(v1),F2(v2), · · · ,Fn(vn)) (17)

However, in practice, it is challenging to construct multi-
ple dimensional distribution functions by adopting the con-
ventional Copular model. To solve this problem, Bedford
proposed R-vine Copular based on a graphical model [32].
A regular vine model with d variables consists of a sequence
of nested trees T1, . . . ,Td−1 with nodes N1, . . . ,Nd−1
and edges E1, . . . ,Ed−1 [32], while satisfies the following
conditions:

(1) The tree T1 has N1 nodes and E1 edges.
(2) The tree Ti has Ni nodes equal to the Ei-1 edges in tree

Ti−1, that is, Ni = Ei−1, for i = 1,. . . , d-1.
(3) If one edge in tree Ti is connected with another edge in

tree Ti+1, these two edges share a common node in tree Ti.
Based on the above definition of R-Vine model, the joint

probability density function (PDF) f (v1, v2,. . . , vd ) of a
d-dimensional wind speed sequence v = (v1, v2, . . . , vd ) can
be decomposed into the marginal density function of each
variabl e (fl (vl)) as follows:

f (v1, v2, . . . , vd ) =
d∏
l=1

fl(vl)×
d−1∏
i=1

∏
e∈Ei

ĉj(e),k(e)|D(e)

×(F(vj(e)|vD(e)),F(vk(e)|vD(e))) (18)

where j(e), k(e) are two conditional nodes of edge e; D(e) is
conditional set; The edge e = j(e),k(e)|D(e) belongs to Ei;
ĉj(e),k(e)|D(e) is a PDF of conditional bivariate copula which
can be used to associate each edge e. Besides, the conditional
CDF F(vj(e)|vD(e)) can be expressed via

F(vj(e)|vD(e)) =
∂Ĉ(F(vj(e)),F(vD(e)))

∂F(vD(e))
(19)

Above all, we can find that precisely estimating the copula
function is the key to improve the accuracy of the calculation.
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III. PROBABILISTIC POWER FLOW CALCULATION
The uncertain wind power caused by uncertain wind speeds
has a significant effect on the power system’s operation state.
Traditional deterministic power flow cannot provide valid
information for further planning and risk evaluation of the
power system. To solve this problem, the probabilistic power
flow (PPF) of power system needs to be calculated as follows:

S = f (H) (20)

where S is the output of PPF; H is the input vector
of PPF, including correlated wind power {h1, h2, . . . , hd }
and other stochastic variables in conventional power system
{hd+1, hd+2, . . . , hn}, such as load, the output of traditional
generation units. Besides, the correlated wind power can
be calculated according to correlated wind speeds obtained
by (18). The relationship between wind power and wind
speeds is shown as follows [27]:

Pw =


0 v < vwi, v > vwo
v− vwi
vr − vwi

Prate vwi < v < vr

Prate vr ≤ v < vwo

(21)

where vwi is the cut-in wind speed, equal to 3 m/s; vwo is
the cut-out wind speed, equal to 24 m/s; vr is the rated wind
speed, equal to 13 m/s.

To obtain more effective power flow analysis, this paper
considers spatial and temporal correlations among different
wind farms output to calculate the probability power flow
by combining the 3PEM with Rosenblatt Transformation
technique, described in Section III.A and III.B.

A. THREE-POINT ESTIMATION METHOD
In 3PEM [33], each input random variable hi,k (k = 1, 2, 3)
takes three sampling values based on the statistical character-
istics of input variables, shown as follows:

hi,k = h̄i + ξhi,k si, k = 1, 2, 3 (22)

where h̄i and si are the expectation and variance of each group
of input variables respectively; ξhi,k is the standard sample
value of hi,k , which could be calculated viaξhi,k =

λhi

2
+ (−1)3−k

√
υhi −

3
4
λ2hi k = 1, 2

ξhi,k = 0 k = 3
(23)

where, λhi and υhi are the skewness coefficient and kurtosis
coefficient of random variables respectively, described as
follows:

λhi =
1

ns3i

n∑
i=1

(hi − h̄i)3 (24)

υhi =
1

ns4i

n∑
i=1

(hi − h̄i)4 (25)

According to (23)-(25), each sampling result’s weight coeffi-
cients could be calculated via

whi,k =
(−1)3−k

ξhi,k (ξhi,1 − ξhi,2 )
k = 1, 2

whi,k =
1
n
−

1
υhi−λ

2
hi

k = 3
(26)

Through the above sampling, the corresponding output ran-
dom variable Y (i, k) is shown in (27)

Y (i, k) = G(µh1, · · · , µhi−1, xi,k , µhi+1, · · · , µhn),

i = 1, 2, · · · n, k = 1, 2, 3 (27)

Based on (23) - (27), the above output variables could be eval-
uated using the deterministic method, described as follows:

E(Y l (i, k)) ≈
n∑
i=1

3∑
k=1

wi,k (Y (i, k))l (28)

where E
(
Y l(i, k)

)
is the l-order origin moment of the corre-

sponding output variable.
Based on the first-order moment and second-order moment

of output variable obtained by (28), the expectation (µy,i) and
variance (σy,i) of output variable can be expressed as follow:

µy,i = E (Y (i, k)) i = 1, 2, · · · , n k = 1, 2, 3 (29)

σy,i =

√
E
(
Y 2 (i, k)

)
− µ2

y,i i = 1, 2, · · · , n k = 1, 2, 3

(30)

B. ROSENBLATT TRANSFORMATION BASED 3PEM
The above 3PEMmodel in Section 3.1 requires that the input
variables must be independent with each other. Therefore,
correlated wind speeds need to be transformed into indepen-
dent variables. In this paper, we used the Rosenblatt transfor-
mation technique to obtain independent input variables for
the 3PEM model while maintaining the correlation among
wind power reflected by the joint distribution function. The
Rosenblatt transformation method is not limited by a specific
type of distribution. And no matter whether the correlation of
variables is linear or not [30], the Rosenblatt transformation
has better performance.

Referring to (2), the joint probability density function
(PDF) f = (x1, x2, . . . , xd ) of the d-dimensional random
vector x = (x1, x2, . . . , xd ) can be reformulated as follows:

f (x1, x2, · · · , xd )

=

n∏
k=1

fk (xk )·
n−1∏
j=1

n−j∏
i=1

ĉi,i+j|i+1,··· ,i+j−1

· (Fi|i+1,··· ,i+j−1(xi|xi+1, · · · , xi+j−1),

×Fi+j|i+1,··· ,i+j−1(xi+j|xi+1, · · · , xi+j−1)) (31)

To solve the above PDF, taking n=2 as an example, the con-
ditional probability density function needs to be calculated as
follows:

f2|1(x2|x1) =
ĉ1,2f1(x1) · f2(x2)

f1(x1)
= ĉ1,2f2(x2) (32)
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The conditional probability cumulative function (F1|2 (x1|x2))
can be expressed as follows:

F1|2(x1|x2) =
∫ x2

−∞

f2|1(x2|x1)dx2 =
∫ x2

−∞

ĉ1,2f2(x2)dx2

(33)

When n=3, conditional probability density function can be
obtained as follows:

f3|1,2(x3|x1, x2) =
f123(x1, x2, x3)

f1(x1) · f2|1(x2|x1)

=
ĉ1,2 · ĉ1,3 · ĉ2,3|1f1(x1) · f2(x2) · f3(x3)

f1(x1) · ĉ1,2 · f2(x2)
= ĉ1,3 · ĉ2,3|1 · f3(x3) (34)

And the conditional probability cumulative function
Fi|1,2,...,i (xi |x1, x2, . . . , xi ) can be deduced as follows:

Fi|1,2,...,i(xi|x1, x2, . . . , xi)

=

∫ xi

−∞

ĉ1,iĉ2,i|1 · · · ĉ i−1|1,2,...,i−2fi(xi)dxi (35)

Based on the conditional probability cumulative function and
the Rosenblatt Transformation technique, the correlated input
variables could be transformed into independent variables
0 = (τ1, τ2, . . . ,τd )T .

τ1 = 8
−1 [F1(x1)]

τ2 = 8
−1
[
F2|1(x2|x1)

]
...

τd = 8
−1
[
Fd |1,2,··· ,d−1(xd |x1, x2, · · · , xd−1)

] (36)

where 8 is the CDF of the standard normal distribution.
The procedures for calculating the PPF of power system

with considering the correlation of wind speeds are presented
as follow:
Step 1) Based on historical sample data, obtain marginal

CDF and PDF of wind speeds in each wind farm using the
kernel estimation method.
Step 2) Calculate the bivariate joint distribution function

and PDF of every two wind farms via the RVM technique
according to (7)-(16), denoted as Ĉ (F1 (x1) ,F2 (x2)) and
ĉ (F1 (x1) ,F2 (x2)) respectively.
Step 3) According to R-Vine model and bivariate joint dis-

tribution function obtained in Step 2), construct high dimen-
sional joint distribution function by (18) and (19).
Step 4) Transform the multiple dimensional joint distri-

butions into various independent distribution based on the
Rosenblatt Transformation technique via (36), and obtain
independent wind speeds sequence by inversely converting
the Weibull distribution of wind speeds.
Step 5)According to the relationship between wind speeds

and wind power, calculate the corresponding wind power.
Based on this, analyze the PPF of power system with con-
sidering the correlated wind speeds via adopting 3PEM,
described in (22)-(30).

IV. CASE STUDY
A. TEST DATA
The effectiveness of the proposed PPF analysis approach is
tested on an IEEE 118-bus test system with four wind farms
connected to buses 5, 8, 18, and 23, respectively. The specific
data of the IEEE 118-bus test system can refer to [34]. In this
paper, we assume that load fluctuation follows the normal
distribution, and the rated power of one wind farm is 80 MW
with a constant power factor of 0.98. Besides, we adopt
wind farms data of HeiBei province in China to construct the
joint distribution functions of wind speeds. The obtained data
covers 365 days with a time interval of one hour. Therefore,
there is a total of 8760 wind speed points on each wind farm.

Based on the historical data of each wind farm,
the marginal distribution of wind speeds could be obtained
by the kernel estimation method, which is compared with
corresponding empirical distribution, shown in Fig.1.

FIGURE 1. Kernel estimation of the marginal distribution of wind speeds.

Furthermore, Weibull distribution is adopted to inversely
convert the independent distributions of wind speeds to inde-
pendent wind speeds vw for the further PPF analysis, shown
as follows:

vw = W−1(τ ) = ckww

√
ln

1
1− τ

(37)

where the shape parameter cw and scale parameter kw of
Weibull distribution for each wind farm can be estimated via
the real data of the studied wind farms, shown in Table.1.

In this simulation, we achieve the PPF calculation via
Matlab on a PC (with 3.20GHz Intel Core i7, 8GB RAM).

B. SIMULATION RESULTS
1) EFFECTIVENESS OF PROPOSED CORRELATION
ESTIMATION METHOD
In this study, we propose an RVM approach to estimate the
joint distribution of wind speeds for every two wind farms.
For simplicity, two groups of bivariate joint distribution
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TABLE 1. Estimated value of weibull distribution parameters.

functions of wind speeds and frequency histogram of empir-
ical distribution are shown in Fig.2.

FIGURE 2. Joint distribution and frequency histogram of empirical
distribution of two wind farms. (A) NO.1 AND NO.2 WIND FARMS.
(B) NO.1 AND NO.2 WIND FARMS. (C) AND NO.3, NO.4 WIND FARMS.

To test the performance of the RVM method, we eval-
uate the difference between estimated joint distribution
function and empirical distribution function by adopting
Kolmogorov–Smirnov (K-S) test [35] and Euclidean Dis-
tance [36]. With high estimation accuracy, the estimated
distribution should reach the corresponding empirical dis-
tribution as closely as possible. The formulation of the
Kolmogorov–Smirnov (K-S) test can be expressed as follows:

K = sup
v
|Cn (v)− C (v)| (38)

And the Euclidean Distance of two probability distribution
is shown as follows:

d = |Cn (v)− C (v)| (39)

whereCn (v) is the 4-dimensional empirical distribution func-
tion of wind speeds; C (v) is the 4-dimensional joint dis-
tribution function calculated by different joint distribution
estimation methods.

According to the definition of K-S test and Euclidean Dis-
tance, a smaller value of K and a smaller value of d demon-
strate that the estimated joint distribution is more similar to
the corresponding empirical distribution.

Besides, to evaluate the effectiveness of the proposed
method, we make a comparison of K-S test results, Euclidean
Distance, and P-P diagram of the proposed method with those
of EM and OLS methods.

The K and d values of the estimated distribution obtained
by RVM, EM, and OLS methods are reported in Table.2.
And for simplicity, the P-P diagrams of 4-dimensional joint
distribution are illustrated in Fig.3.

TABLE 2. K-S test results and euclidean distance using different
distribution estimation methods.

FIGURE 3. The comparison among p-p diagram of joint cdf estimated by
different methods and p-p diagram of empirical distribution of two
correlated wind farms.(A) NO.1 AND NO.2 WIND FARMS. (B) NO.3 AND
NO.4 WIND FARMS.

As depicted in Table.2, the values K and values d of
RVM method are all smaller than those of the EM method
and OLS method. This indicates that the 4-dimensional joint
distributions estimated by RVM are more consistent with the
corresponding empirical distribution.

Also, the P-P diagrams of the joint distribution of
4-dimensional wind farms are illustrated in Fig.3. As can be
seen, the P-P diagrams of three different estimation methods
(including RVM, EM, and OLS) are all approximately linear
and very close to the corresponding empirical distribution.
However, compared with EM and OLS methods, the RVM
method based distribution is more consistent with empirical
distribution after magnifying the P-P diagrams locally (shown
in Fig.3). This proves that the joint distribution estimated
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via RVM can reflect the actual distribution better. Therefore,
the proposed method has a more satisfactory performance for
the multi-dimensional joint distribution estimation of wind
speeds.

Furthermore, to illustrate the effect of the proposed correla-
tion estimation method on the PPF analysis results, we make
a comparison of the relative errors of PPF calculation results
based on RVM, the non-parameter kernel density estima-
tion (KDE) and OLS. The relative errors of the expected
value and standard deviation of the PDF of voltage amplitude,
voltage phase angle, active power, and reactive power are
described as follow:

εx1µ =

∣∣∣∣∣µ
x
Cn − µ

x
CEM

µxCn

∣∣∣∣∣× 100% (40)

εx1σ =

∣∣∣∣∣σ
x
Cn − σ

x
CEM

σ xCn

∣∣∣∣∣× 100% (41)

where, µxCn , σ
x
Cn and µxCEM , σ xCEM represent the expected

value and standard deviation respectively obtained from the
empirical distribution and the above correlation estimation
methods(RVM, KDE, and OLS). Besides, we use statistical
characteristics (average value and maximum value) of the
relative errors to illustrate the effectiveness of the calculation
results obtained from the proposed method.

The average values and maximum values of the relative
errors of PDF of the system state variables calculated based
on RVM, KDE, and OLS are shown in Table.3.

TABLE 3. Relative error comparison of different correlation estimation
methods.

As observed in Table.3, the maximum difference of rela-
tive errors of all system state variables (voltage amplitude,
voltage phase angle, and active power) between RVM and
KDE is 0.87%, and that between RVM and OLS is 1%.
This indicates that, different correlation estimation methods
has a different influence on PPF analysis of power system
with wind power integration. Besides, compared with relative
errors of PPF analysis results based on the traditionalmethods
(KDE and OLS), all the average and maximum values of
relative errors PPF analysis results based on the proposed
method (RVM) are smaller. This demonstrates that, the PDF
of the system state variables obtained based on RVM is

closer to the real distribution. Therefore, RVM has better
performance than traditional methods in reflecting the impact
of correlation among wind farms on the power system’s
PPF analysis.

2) PERFORMANCE OF THE PROPOSED PPF ANALYSIS
METHOD
In this paper, Rosenblatt transformation based 3PEM is uti-
lized to carry out PPF analysis of the power system with
integratingmultiple wind farms. To examine the effectiveness
of the proposed method, we make a comparison of the calcu-
lation results obtained via the proposed method with that via
the MC simulation, Nataf transformation-based 3PEM, and
3PEM without Rosenblatt transformation (assuming that the
distribution of wind speeds is independent).

For this purpose, we calculate the relative errors of the
expected value and standard deviation of the probability den-
sity distribution of system state variables (voltage amplitude,
voltage phase angle, and active power) obtained from above
three PPF analysis methods respectively. The relative errors
of the expected value and standard deviation are described as
follow:

εx2µ =

∣∣∣∣∣µ
x
Cn − µ

x
PPF

µxCn

∣∣∣∣∣× 100% (42)

εx2σ =

∣∣∣∣∣σ
x
Cn − σ

x
PPF

σ xCn

∣∣∣∣∣× 100% (43)

where µxPPF , σ
x
PPF represent the expected value and standard

deviation respectively obtained from the above PPF analysis
methods.

The average values and maximum values of the relative
errors of the system state variables calculated via Rosen-
blatt transformation based 3PEM, the MC simulation, Nataf
transformation based 3PEM, and 3PEM without Rosenblatt
transformation (3PEM only) are shown in Table.4. Moreover,
the PDF of voltage and power belong to bus 8 and 18 are
presented from Fig.4 to Fig.7.

TABLE 4. Relative error comparison of different PPF analysis methods.

It can be seen from Table.4 that, both average and maxi-
mum values of relative errors caused by the MC simulation
are the smallest among these three PPF analysis methods.
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FIGURE 4. Pdf of voltage on bus 8.

FIGURE 5. Pdf of voltage on bus 18.

FIGURE 6. Pdf of active power on branch 26.

This shows that, the probability density distribution of system
state variables calculated via the MC simulation is most
consistent with the real operation. Besides, both the average
and maximum values of relative errors of Rosenblatt transfor-
mation based 3PEM are smaller than those of Nataf transfor-
mation based 3PEM. And the average values of relative errors
of all system state variables (voltage amplitude, voltage phase
angle and active power) obtained by the proposed method are
less than 2%. In comparison, the maximum difference of rela-
tive errors of all system state variables between the proposed

FIGURE 7. Pdf of active power on branch 36.

method with the MC simulation is only 0.12%. Also, both
average andmaximumvalues of relative errors of the PPF cal-
culation results without considering the correlation of wind
speeds (3PEM only) are much larger than those of the PPF
calculation results considering the correlation of wind speeds
(Rosenblatt transformation based 3PEM, the MC simulation,
Nataf transformation based 3PEM). And the relative errors
of standard deviation obtained by 3PEM without considering
the correlation of wind speeds are very large. This indicates
that, only using 3PEM to analyze PPF has a significant
error. The correlation of wind speeds should be considered
by using a transformation approach. And the input variables
converted via the Rosenblatt transformation method could
reflect the correlation of original variables more completely
than that via the Nataf transformation method. Compare with
the Nataf transformation based 3PEM, the PDF of system
state variables obtained from the Rosenblatt transformation
based 3PEM is more similar to that from the MC simulation
(shown in Fig.4-7).

In addition, the average computational time required for
Rosenblatt transformation based 3PEM (35.76 seconds) is
shorter than that for the MC simulation (1124.56 seconds).
This means that, the PPF analysis using the proposed method
could be more than thirty times faster than that using the
MC simulation.

Therefore, the proposed method is more accurate with
considering the correlation among wind speeds, while having
better performance in actual application with higher compu-
tational efficiency.

3) IMPACT OF CORRELATION OF WIND SPEEDS
Compared with existing studies, the correlations among mul-
tiple wind farms and their potential influence on the PPF of
the power system has been carefully reflected in this paper.
To demonstrate this impact, a comparative analysis is con-
ducted in this section, wherein the PPF of the power system
is analyzed, with and without incorporating the correlation
among various wind speeds.

The influence of the correlation among four wind farms
on the PDF of power system state variables is illustrated
in Fig.8 and Fig.9.
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FIGURE 8. The comparison between the pdf of node voltage of four wind farm nodes with and
that without considering correlation.

FIGURE 9. The comparison between the pdf of active power of two branches with and that without
considering correlation.

As depicted in Fig.8, for nodes 5, 8, 18, and 23, the PDFs
of node voltage amplitude without incorporating correlation
are considerably different from those with correlation among
various wind speeds. Besides, the curve of historical data rep-
resents the PDF of the node voltage in the real situation. It can
be seen that the PDF of the node voltage with considering

correlation is very close to the real PDF of the corresponding
node voltage. This indicates that considering the correlation
among multiple wind farms is more accordant with the actual
condition in PPF calculation.

The PDFs of the active power of branches 4, 17, 26, and
36 are shown in Fig.9. Similar to node voltage amplitude,
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there are apparent differences between the PDFs of active
power between with and without incorporating correlation
of the four wind farms. And the PDFs of active power with
considering correlation are more consistent with the PDFs of
the real situation (all for branches 4, 17, 26, and 36). This
signifies that the correlation of various wind speeds has an
essential impact on the PDF of active power.

In summary, the correlation of various wind speeds signif-
icantly influences the PPF calculation of the power system.
Therefore, it is more realistic to consider the correlation of
multiple wind farms for PPF analysis of the power system.

V. CONCLUSION
In this paper, we present a PPF calculation framework
for quantifying the impact of the correlation among
multi-dimensional wind farms on the power system. Com-
pare with the existing studies, the major contributions of this
work is that we introduce a novel learning-based distribution
estimation approach to determine the multiple dimensional
joint distribution functions to model the correlated wind
speeds, which does not require parameter estimation. On this
basis, Rosenblatt transformation-based 3PEM is employed
to implement PPF calculation. According to the simulation
results from, some major findings of this research are sum-
marized as follows:
• Compared with traditional estimation parameter meth-
ods, the proposed distribution estimation method more
accurately construct the joint distribution functions for
modeling the correlation among various wind farms.

• Rosenblatt transformation technique helps improve the
computation accuracy of 3PEM and make the obtained
PPF analysis results reflect the influence of real wind
speeds better.

• Rosenblatt transformation-based 3PEM not only cap-
tures the correlation among wind speeds accurately but
also has advantages of engineering applications with
higher computational efficiency.

• The correlation of multiple wind speeds has a high
impact on the PPF calculation results. Therefore, it is
indispensable to incorporate the correlation of wind
speeds for conducting the PPF calculation.

In this study, due to space restrictions, the uncertainty
of photovoltaic power generation is not considered in the
proposed PPF calculation model. However, in practice, not
only wind but also photovoltaic energy is the main renew-
able energy resource for power generation. And the output
characteristic of photovoltaic is different from that of wind
turbines, while there could be coupling between the output
power of wind and photovoltaic. Besides, incentive-based
and price-based energy loads are also stochastic variables in
integrated energy systems, including electricity, natural gas,
heat, cool, and other energy carriers. It is desirable to develop
the PPF calculation of the power system into probabilistic
energy flow calculation of multiple energy systems. As such,
these are valuable issues, and we would focus on these for our
future research.
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