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ABSTRACT A brain-computer interface (BCI) provides a direct communication pathway between user
and external devices. Motor imagery (MI) paradigm is widely used in non-invasive BCI to control external
devices by decoding user intentions. The traditional MI-BCI problem is to obtain enough EEG data
samples for adopting deep learning techniques, as electroencephalography (EEG) data have intricate and
non-stationary properties that can cause a discrepancy between different sessions of data. Because of
the discrepancy, the recorded EEG data with different sessions cannot be treated as the same. In this
study, we recorded a large intuitive EEG dataset that contained nine types of movements of a single-arm
across 12 subjects. We proposed a SessionNet that learns generality with EEG data recorded over multiple
sessions using feature similarity to improve classification performance. Additionally, the SessionNet adopts
the principle of a hierarchical convolutional neural network that shows robust classification performance
regardless of the number of classes. The SessionNet outperforms conventional methods on 3-class, 5-class,
and two types of 7-class and 9-class of a single-arm task. Hence, our approach could demonstrate the
possibility of using feature similarity based on a novel ensemble learning method to train generality from
multiple session data for better MI classification performance.

INDEX TERMS Brain-computer interface (BCI), electroencephalogram (EEG), motor imagery (MI),

convolutional neural network (CNN), weighted ensemble learning.

I. INTRODUCTION

Brain-computer interface (BCI) has been widely studied to
recover and replace the motor function of motor-disabled
patients [1]-[4]. Recent advances in BCI have tried to pro-
vide healthy users with extended motor function capabili-
ties to control external devices [5]-[7]. One type of brain
signal is electroencephalography (EEG) that can be col-
lected without any brain surgery. Therefore, EEG-based BCI
has been investigated for using various paradigms such as
event-related potential (ERP) [8], steady-state visual evoked
potential (SSVEP) [9], movement-related cortical potential
(MRCP) [10], and motor imagery (MI) [11]. According to
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the BCI paradigms, ERP is the potential generated by direct
brain responses such as P300 and N200 from a stimu-
lus such as a target cognitive. Specifically, a P300-based
speller system has been developed using the ERP paradigm
[12], [13]. The SSVEP is a natural brain response
corresponding to frequencies that are triggered by visual
stimuli [14], [15]. The MRCP reflects the user’s voluntary
movement a few seconds before the movement, so it has
been applied in exoskeleton walking experiments [16], [17].
The MI paradigm can induce an event-related desynchro-
nization/synchronization pattern [18] over the supplementary
motor area and premotor cortex when the user imagines
him or herself performing movements. Because of its neu-
rophysiological origin, MI is mainly used to control exter-
nal devices [6], [19]. As an endogenous BCI, consistent
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muscle imagination is required for high classification per-
formance. However, it is difficult to obtain high-quality data
in the MI paradigm because what the user imagines is not
exactly known. Furthermore, repeated MI causes users to feel
severely tired, making it difficult to collect sufficient data
from a single subject [20], [21].

Decoding user intentions using EEG signals is one of
the important issues because the non-stationary proper-
ties of EEG signals cause session and subject dependency
[22], [23]. Therefore, many BCI researchers have investi-
gated improving MI-BCI performance with novel machine
learning algorithms and deep learning [24]. For example,
a filter-bank common spatial pattern (FBCSP) algorithm has
been adopted to extract spatial features measuring spectral
power modulations from EEG data [25], [26]. For classi-
fiers, they have used linear discriminant analysis (LDA)
and support vector machine (SVM) as a classifier [27].
Recently, deep learning approach such as a convolutional
neural networks (CNNs) [28]—-[31] and long short-term mem-
ory (LSTM) [32]-[36], have been introduced to decode user
intentions from EEG signals. Specifically, for the MI-based
BCI, deep and shallow CNN architectures were designed
to investigate the causal contributions of features from dif-
ferent frequency bands [37]. Some groups have attempted
depthwise and separable convolutions, which summarizes
individual features over time to consider more channel infor-
mation [30]. However, these approaches have suffered from
lack of data samples thereby giving several problems in train-
ing procedure. To overcome this constraint, recent studies
have tried to use only a small amount of input data based on
transfer learning [38]. In addition, a diverse depth of CNN
can extract features and use them as an input data to exploit
input information [39]. Through this approach, it has been
demonstrated that BCI performance enhancement using deep
learning is possible with a sufficient amount of feature input
data.

In this paper, we propose a SessionNet based on weighted
ensemble learning to exploit multi-session data for learn-
ing generality. The proposed SessionNet comprises several
hierarchical CNNs to utilize multiple session data, where
each CNN was assigned specific session data. Session-
Net primarily trains using target session data. Furthermore,
the proposed model learns generality from other session data
(non-target session data) based on the structural similarity
(SSIM) index [40]. For the experiment, we designed an
intuitive MI paradigm for direct interaction between users
and devices without artificial command matching for better
performance [41] and collected various types of movements
of a single-arm such as arm-related MI and hand-related MI.

Hence, our main contributions are three folds: /) We col-
lected a large intuitive EEG data of single-arm MI; arm-
reaching MI, hand-grasping MI, and wrist-twisting ML
ii) We proposed a novel ensemble learning method for
learning generality from other session data. Additionally,
we adopted the principle of a hierarchical CNN archi-
tecture for robust multi-class classification performance.
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iii) The proposed SessionNet achieved remarkable improve-
ment in MI classification performance, and we proved that
learning generality using data from different sessions can
improve multi-class data classification.

Il. MATERIALS AND METHODS

A. DATA ACQUISITION

1) PARTICIPANTS

Twelve naive subjects (nine males, all right-handed,
age: 24 - 31 years) participated in the experiment. All sub-
jects were healthy without any psychiatric or neurological
disorders. Before the experiment, the subjects were asked
to minimize their eye blanking and consistently imagine the
muscle movements. The experimental protocols and envi-
ronments were reviewed and approved by the Institutional
Review Board at Korea University [1040548-KU-IRB-17-
172-A-2].
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FIGURE 1. Experimental protocol for data acquisition.

(a) An experimental environment consisting of a signal amplifier, monitor
display, and EEG channels. (b) Experimental paradigm for obtaining EEG
signals with respect to upper-extremity MI.

2) EXPERIMENTAL ENVIRONMENT

We designed an experimental environment and proto-
col for recording EEG signals (Fig. 1). An EEG signal
amplifier (BrainAmp, BrainProduct GmbH, Germany) and
BrainVision software were used for recording the EEG sig-
nals from 64 Ag/AgCl electrodes according to the 10-20 inter-
national system. The FPz and FCz channels were selected
as ground and reference electrodes. The sampling rate was
set to 1,000 Hz and a 60 Hz notch filter was applied to
remove the noise from the DC power supply. The channel
impedance measured between the electrodes and the scalp
was maintained at 15 k€. Visual instructions were given as
cues presented on a monitor display. Subjects were asked
to imagine the specific muscle movements following the
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FIGURE 2. Overview of the proposed SessionNet for Ml classification.

visual cues. They performed 50 trials according to each MI
task. For multi-session recording, every subject participated
in three recording sessions at one week intervals with the
same experimental protocols.

3) DATASET DESCRIPTION

Six different types of datasets were organized as 3-class,
5-class, 7-class, and 9-class, where the 7-class and 9-class
datasets consisted of two types each, based on vertical
arm-reaching (upward and downward) and the horizontal
arm-reaching (forward and backward). The 3-class dataset
contained categorized arm-reaching MI, hand-related MI,
and resting-state. The 5-class dataset consisted of left, right,
supination, cylindrical grasp, and resting-state. The horizon-
tal 7-class dataset included left, right, forward, backward,
supination, cylindrical, and resting-state. The vertical 7-class
dataset included left, right, upward, downward, supination,
cylindrical grasp, and resting-state. Horizontal and vertical
9-class datasets added lumbrical grasp and pronation to the
horizontal and vertical 7-class datasets, respectively.

B. PROPOSED METHOD

As a pre-processing procedure, we used the zero-phase band-
pass filter in range of [4-40] Hz and selected 24 channels
(F3, F1, Fz, F2, F4, FC3, FC1, FC2, FC4, C3, Cl, Cz, C2,
C4, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, and P4)
placed on the motor cortex [42]. SessionNet was inspired
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by the ensemble learning, especially bagging technique. The
fundamental CNN architecture of SessionNet consists of a
shared block and two sub-networks. We designed identical
CNNs to handle multiple session data. Each CNN was trained
by different session data. Model training was organized to
optimize each CNN on the assigned session data, and a CNN
assigned target session is affected by other CNNs according
to a designed loss function. SSIM is used for measuring the
structural similarity between two images. EEG data are repre-
sented as vector like image, SSIM can measure the similarity
between EEG data. Additionally, we assumed that non-target
session data were structurally shifted compared to target ses-
sion data. Therefore, the SSIM was selected as a similarity
measurement because we assumed the shift in data as a struc-
tural distortion. Hence, CNN becomes committees for influ-
encing training based on the SSIM index [43]. Additionally,
SessionNet was designed as a hierarchical CNN architecture
to decrease the workload of singular CNN (shared block and
sub-networks) extracting frequency features. Hence, it per-
forms step-wise classification splitting the classes as depicted
in Fig. 2.

1) HIERARCHICAL CNN

We adopted the concept of a hierarchical CNN architecture,
which has shown efficiency in multi-class classification [42].
The shared block is composed of two convolution-pooling
blocks. The first block generates the receptive field
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from [4-40] Hz and reduces the channel dimension to a single
channel using the spatial filter. An additional pair of convo-
lution and pooling layers perform convolution and pooling
to extract features. The classification layer categorizes input
data into either arm-reaching MI, hand-related MI, or the
resting-state. The softmax function normalizes outputs into
a probability distribution in the last layer. If SessionNet
predicts that the input is a resting-state, it terminates the
classification process. In this case, the prediction of the model
will be classified as resting-state. Meanwhile, if the result is
either arm-reaching or hand-related MI, sub-networks start
exploiting the feature (i.e., shared feature) from the second
convolution layer of shared block for further classification.
Sub-networks are designated to classify either the hand-
related MI or the arm-reaching MI. One sub-network was
assigned hand-related MI classification, and it consists of
three pairs of convolution and pooling layers. The other sub-
network was assigned arm-reaching MI classification, and it
consists of four convolution-pooling pairs. We conjectured
that arm-reaching MI tasks are relatively more complicated
than hand-related MI. Therefore, we added one more pair
to obtain higher-level features. The parameters of the sub-
networks were selected for the best accuracy. During the
training, sub-networks classify the shared feature regardless
of the shared block’s predictions. Therefore, sub-networks
can learn both correct and incorrect cases at the same time.
Consequently, the two sub-networks become specialized in
arm-reaching MI and hand-related MI.

Every convolution layer conducts an average pooling for
smoothing and reducing the dimension of the features. In the
experimental dataset, average pooling showed better perfor-
mance than max pooling. An exponential linear unit (ELU)
was used as an activation function [44]. Batch normalization
was performed to avoid gradient vanishing and exploding.
The detailed architecture design and filter sizes are given
in Table 1.

TABLE 1. Architecture design of the SessionNet.

Shared conv-pool block

Input Raw EEG (1, 1, 24, 501)

Sub-network (Hand)
Shared feature (1, 36, 1, 137) Shared feature (1, 36, 1, 137)

Sub-network (Arm)

Layers

Conv2D (1, 65, 36 filter)
Conv2D (24, 1, 36 filter)
AvgPool (1, 3, stride: 1, 3)
Conv2D (1,9, 36 filter)

Conv2D (1,9, 72 filter)
AvgPool (1, 3, stride: 1, 3)
Conv2D (1, 9, 144 filter)
AvgPool (1, 3, stride: 1, 3)

AvgPool (1, 10, stride: 1, 3) Conv2D (1, 9, 288 filter)

Fully-Connected Layer

Softmax

AvgPool (1, 3, stride: 1, 3)
Fully-Connected Layer

Softmax

Conv2D (1,9, 72 filter)
AvgPool (1, 3, stride: 1, 3)
Conv2D (1, 9, 144 filter)
AvgPool (1, 3, stride: 1, 3)
Conv2D (1, 9, 288 filter)
AvgPool (1, 3, stride: 1, 3)
Conv2D (1, 9, 288 filter)
AvgPool (1, 3, stride: 1, 3)
Fully-Connected Layer

Softmax

Activation

ELU

ELU

ELU

Optimizer

Adam

Adam

Adam

Loss function Cross entropy

Cross entropy

2) WEIGHTED ENSEMBLE LEARNING

Cross entropy

The proposed SessionNet adopted ensemble learning to
improve MI classification performance exploiting multi-
session data recorded by the same subject. Recently, several
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studies have attempted to achieve better performance in MI
classification using advanced deep learning. However, one of
the challenging limitations of BCI is difficulty in recording
sufficient data from a single subject. Additionally, due to the
EEG recording method and characteristics of the endogenous
paradigm, shifts in data occur. For these reasons, discrepan-
cies in brain signals recorded in different sessions make it
difficult to treat signals from different sessions and different
subjects’ brain signals as the same. As a result, the number
of training data samples is limited. The lack of data samples
leads to a complete but improper training causing serious
problems, such as over- and under-fitting in BCI.

In this study, similarity between extracted features could be
higher than between raw EEG data depending on the method.
For similarity measurement, we used feature maps as images
for measuring SSIM. Thus, if the target session (that we wish
to classify) is set, then other sessions can be exploited as extra
training data. SessionNet extracts the same size of feature
maps from target session data and other session data for
measuring similarity. As shown in Fig. 2, SessionNet extracts
three feature maps from a session dataset. One is extracted
by a shared block and the others are from two sub-networks.
Before backpropagation, it calculates similarities between
extracted feature maps from the same networks based on the
SSIM. These indices are used in loss function as described in
the loss function equation.

During training, the proposed model proceeds to classify
target session data. A CNN assigned target session data
trains only as much as the SSIM index using target session
data and non-target session data whereas, each hierarchical
CNN assigned non-target session data trains using only the
assigned session data. As the training progresses, each CNN
becomes biased to the assigned session data, causing a lower
similarity index. Through several experiments, we empiri-
cally found that feature maps with too low value of an SSIM
index adversely affect training. Therefore, we set a threshold
SSIM index to avoid performance degradation. For our exper-
imental dataset, SessionNet shows the best performance with
a threshold SSIM index of 0.6. As shown in Fig. 3, the sim-
ilarity indices between extracted feature maps are measured
higher than similarity indices between raw EEG data. When
the pattern representation of feature maps becomes apparent
as the training progresses, the SSIM index is measured higher.
Feature maps with SSIM index higher than the threshold are
selected for additional training, and feature maps observed
lower SSIM index than the threshold are excluded from the
training process. As a result, SessionNet can learn target
session data, and further training can be done using the non-
target session datasets for extended generality.

3) LOSS FUNCTION

We used a weighted loss function based on the cross-
entropy loss function [45]. SessionNet generates three
separate terms of loss values from the shared block and sub-
networks. At first, the shared block classifies input data to
select sub-networks based on the probability of each class.
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FIGURE 3. Visualized raw EEG data (a) and the shared feature maps (b). Through visualization, it has been confirmed that features can be extracted for
high similarity unlike raw EEG data. The reference feature map used to measure similarity is a feature map extracted from the target session data (top).
Feature maps with similarity index higher than a threshold value are included in the training (middle), and feature maps with an index lower than the

threshold value are excluded from training (bottom).

Therefore, the probabilities are multiplied to each sub-
network loss function term to consider the uncertainty of a
prediction. All loss terms are summed to the loss function of
the target session. Therefore, the loss function is defined as:

loss = LAS +paLAa +Ph1:h (D

where p, and pj;, are probabilities of arm-reaching MI and
hand-related MI (shared block output). L; is a loss value
generated by the shared block. L, and L are the loss of the
sub-networks assigned to arm-reaching MI and hand-related
MI respectively. The modified loss function was designed
based on the cross-entropy loss function. Details of l:s, l:a,
and I:s are as follows:

A

Ly = Ls,target + )\lLs.non—targetl + )\2Ls.non—target2 (2)

L, = La.target + )\lLa.non—targetl + )VZLa.non—targetg (3)
Ly = Lh.target + )Mth.non—targetl + )‘v2Lh.non—target2 (4)
where A is the SSIM index between the feature maps of target
session data and non-target session data. Ly sarge; 1S the loss
of a shared block assigned target session, and Ly yon—rarger
is the loss of the shared block assigned non-target sessions.
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Likewise, La.target, Lh.target, Lh.non—target, and Lh.non—target are
loss values of target session and non-target sessions data
generated by each sub-network. Details are as follows:

3
Ly target = — Z Vs 10g Vs 1ar (5)
1
3
Ly non—target = — Z Vs 108 Ys.non (6)
1
M
La.target = - Z Ya 1Og }_Ja.tar @)
1
M
La.non—target = — Z Yalog Ya.non ®)
1
N
Lh.target = - Z Yh 1Og }_Jh.tar (9)
1
N

Li.non—target = — Z Yr 108 Yi.non (10)
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where y; is a label of a shared block. y, and y; are labels
of the arm-reaching MI and hand-related MI. y;, y, and y,
are outputs of the shared block, arm-related sub-network
and hand-related sub-network, respectively. The number of
arm-reaching MI and hand-related MI classes determines the
parameters M and N.

Ill. RESULTS

Table 2 indicates the classification accuracies and standard
deviations of each dataset. To avoid under and overfitting,
5-fold cross-validation was used as a statistical technique
of evaluation. The performances of each target classification
session were obtained using the target session data and the
remaining two non-target session data as depicted in Fig. 2.

For 3-class classification, only shared convolution-pooling
blocks performed classification because the dataset consists
of three categorized classes. The highest accuracies were
observed as 0.97, 0.95, and 0.93, respectively. The aver-
age accuracy of target session III was at least 0.07 points
lower than the other target sessions. Target session I shows
the highest averaged classification accuracy as 0.77 in the
5-class classification, whereas the highest averaged accu-
racy was recorded in target session III for 7-class horizontal
classification. In the other datasets, the differences between
average accuracies shrink to 0.01 points. Furthermore, in all
target sessions, horizontal classifications show lower accu-
racies than vertical classifications. More specifically, 7-class
vertical classification shows better results than a horizon-
tal classification by up to 0.09 points in target session I.
Interestingly, the performances of 9-class classifications were
slightly better than 7-class classifications. We investigated
statistical abnormality to figure out using confusion matrices.

Fig. 4 shows representative confusion matrices of
SessionNet in the target session I task. All true-positive values
recorded higher than true-negatives. In all classifications,
SessionNet tended to confuse left and right arm-reaching
MI with cylindrical and supination MI, meanwhile, the other
classes show consistent accuracy. Specifically, in 3-class
classification, SessionNet misclassified the resting-state as an
arm-reaching MI task by 0.21 points. In 5-class classification,
SessionNet misclassified an average 0.20 points of the left
and right arm-reaching classes as cylindrical grasping and
supination. Cylindrical grasping caused wrong predictions
prominently in some arm-reaching MIs, such as left, right,
and forward arm-reaching in 7-class datasets. As the number
of classes increased, there was a tendency to confuse left and
right arm-reaching MI with the other MI classes.

In addition, decoding resting-state is fundamental to
achieving asynchronous BCI and furthering its practical uses.
SessionNet properly classifies the resting-state, although it
shows somewhat low accuracy in 7-class (HOR). Similar to
left and right arm-reaching MI, the resting-state tends to be
confused with cylindrical and supination MI.

Fig. 5 shows classification performance comparisons by
using the different amount of non-target session dataset for
training. As the amount of non-target session data increases,
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TABLE 2. Classification performances using the SessonNet according to
the classes types for all subjects.

(a) Target classification session: Session I

Subjects  3-class 5-class  7-class (HOR) 7-class (VER) 9-class (HOR) 9-class (VER)

S1 097 +0.01 0.79+0.02 0.62+0.03 0.83+0.02 083+£0.03 0.83+0.02
S2  0.86+0.01 0.82+0.01 0.68+0.02 0.81+0.03 0.81+0.01 0.83£0.01
S3  0.87+0.02 0.60+0.01 0.66+0.01 0.644+0.06 0.69+0.04 0.69 % 0.05
S4  0.86+0.03 0.77+0.01 0.72+£0.02 0.794+0.02 0.80+£0.01 0.79£0.01
S5 0.90+0.02 0.87+0.01 0.73+£0.02 0.89+0.01 0.87+0.01 0.90+0.01
S6  0.95+0.03 0.88+0.02 0.70 £0.02 0.83+0.05 0.85+0.03 0.87+0.02
S7  0.95+0.02 0.77+£0.02 0.68 £0.06 0.80+0.03 0.74+0.03 0.80 £ 0.02
S8  0.85+0.02 0.78 +0.03 0.67 £0.01  0.68 & 0.01

0.70 +0.01  0.73 £0.03

S9  0.83+£0.01 0.774+0.03 0.67+£0.01 0.77+0.01 0.72£0.01 0.79 +0.01

S10 0.87£0.01 0.75+£0.02 0.68£0.02 0.75+£0.02 0.73+0.04 0.78 £0.03
S11 0.83£0.01 0.61 £0.04 0.64+0.03 0.71£0.02 0.714£0.01 0.72+£0.03

S12 0.88£0.02 0.79+£0.02 0.74 £0.01 0.77+£0.01 0.78+£0.03 0.82 £0.02

Avg. 0.89+£0.02 0.77+£0.02 0.68 £0.02 0.77+0.02 0.77 £0.02 0.80 £ 0.02

(b) Target classification session: Session IT

Subjects  3-class 5-class  7-class (HOR) 7-class (VER) 9-class (HOR) 9-class (VER)

S1 0.95+0.01 0.77+0.01 0.78+0.02 0.834+0.01 0.80£0.02 0.8240.01

S2 094 +001 0.784+0.02 0.79£0.08 0.79+0.03 0.81+0.01 0.81+£0.03
S3  0.86+£0.02 0.724+0.01 0.71 £0.04 0.71+£0.02 0.74£0.02 0.78 £0.01
S4  0.82+£0.03 0.70+0.02 0.83+£0.04 074+0.01 0.76+£0.02 0.81+£0.01
S5 0.89+0.01 0.794+0.03 0.75£0.05 0.86+0.01 0.85+0.02 0.87£0.03
S6  0.95+0.02 0.86 =0.02 0.68+0.09 0.84+0.04 0.86+0.01 0.88+0.01

S7  093+0.01 076 £0.03 0.60£0.04 0.754+0.02 0.80+£0.04 0.82+0.01

S8  0.93+0.04 0.59+0.06 0.64+£0.06 0.774+0.02 0.69+0.01 0.74+0.02
S9  0.83+0.01 0.77+0.03 0.67+0.01 0.77+0.01 0.72+£0.01 0.79 £0.01
S10  0.89+£0.01 0.73£0.03 0.73+0.01 0.75+£0.01 0.76+0.02 0.78£0.03
S11 0.81 £0.02 0.62+0.02 0.67+0.01 0.70+0.02 0.71+0.01 0.72 £ 0.02
S12° 091 £0.02 0.77+£0.02 0.72+0.01 0.75+£0.01 0.744+0.01 0.75 £ 0.02

Avg. 0.90+0.02 0.73£0.02 0.71+0.04 0.77+£0.02 0.77+0.02 0.79+0.02

(c) Target classification session: Session III

Subjects  3-class S5-class  7-class (HOR) 7-class (VER) 9-class (HOR) 9-class (VER)

S1 0.88+0.04 0.74+0.01 073 +£0.04 0.714+0.02 083+£0.02 0.89 % 0.02
S2  0.80+0.03 0.79+0.02 0.73£0.05 0.794+0.02 082+£0.02 0.83+0.02
S3  0.824+0.03 0.73+£0.03 0.68+£0.02 0724001 0.73+£0.03 0.78+0.04
S4 078 +£0.06 0.71 +0.04 0.70 £0.02 0.744+0.01 0.74£0.02 0.73 +0.01
S5 0.93+0.03 0.87 +0.01 0.86+0.02 0.82+0.03 0.84£0.02 0.86+0.01
S6  0.89+£0.02 0.834+0.01 0.84 £0.03 0.81+0.05 0.86+0.03 0.88+0.03
S7  0.89+0.02 0.71 0.04 0.68 £0.04 0.73+0.03 0.75+£0.02 0.75+0.01
S8 0.70 £0.03 0.54 +£0.05 0.72 £0.01

0.804+0.03 0.74+£0.01 0.734+0.02

S9  0.64£0.02 0.69+0.01 0.66 £0.01 0.72+£0.02 0.75+£0.01 0.74 £0.02
S10 0.83£0.01 0.75+£0.02 0.69£0.03 0.71£0.02 0.81+0.03 0.84 £0.02
SI1 0.784+0.03 0.73+£0.01 0.67+0.05 0.70£0.04 0.74+0.02 0.75 £0.01

S12 091+0.01 084 £0.01 0.78+0.02 0.81+0.03 0.80+£0.01 0.844+0.01

Avg. 0.824+0.03 0.74£0.02 0.73+£0.03 0.76+0.03 0.78£0.02 0.80 & 0.02

consistent performance improvements were observed in both
target session I and session II classifications. Compared to
the experiment using only the target session dataset, the
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FIGURE 4. Representative confusion matrices using all subjects in session I dataset. All confusion matrices from each session data showed similar

tendencies across all subjects.
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FIGURE 5. Comparison of classification accuracies according to the
training session data.

performance increased up to 0.06 points. For target session 111
classification, non-target session data did not derive consider-
able performance improvement in all experiments. Though it
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derived better performances in some experiments, the classi-
fication accuracies could not increase even where it exploited
additional non-target session datasets in specific classifica-
tions (e.g., 3-class and 7-class classifications).

Table 3 indicates performance comparisons with existing
methods. All experiments were conducted in the same com-
putational environment. The FBCSP with the RLDA model
is a commonly used machine learning method across all
paradigms. The FBCSP4-RLDA had the lowest accuracy of
all experiments and under the condition of a large number of
classification classes, the classification performance rapidly
decreased close to the chance rate. The other CNN-based
models show similar performances in 3-class and 5-class clas-
sification. In target session II and III classifications, Deep-
ConvNet and ShallowConvNet recorded the same accuracies
as SessionNet in 3-class classification (i.e., 0.91 and 0.81,
respectively). As the number of classes increases, singular
architecture models could not maintain competitive perfor-
mance. Among these comparison models, ShallowConvNet
and MCNN show slightly higher consistency than the others.
However, ERA-CNN, designed as a hierarchical architec-
ture, shows relatively robust performance in both 7-class and
9-class classifications. We designed SessionNet as a hierar-
chical CNN similar to the ERA-CNN. Additionally, ensemble
learning was used to train more generality from other session
data to handle unseen data. According to Table 3, SessionNet
achieved a performance improvement up to 0.05 points com-
pared to ERA-CNN. The differences in overall classification
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TABLE 3. Classification performance comparison with existing methods and the SessionNet according to the target classification session.

Target classification session: Session I

Methods 3-class 5-class 7-class (HOR) 7-class (VER) 9-class (HOR) 9-class (VER)
FBCSP+RLDA [25] 0.58 £0.04 0.42+0.07 0.27 4 0.05 0.32 4 0.04 0.19 4 0.02 0.24 4+ 0.04
DeepConvNet [37] 0.85 £ 0.01 0.64 £+ 0.05 0.57 £ 0.06 0.62 £+ 0.07 0.63 4+ 0.02 0.62 + 0.01
ShallowConvNet [37]  0.87 & 0.01 0.74 + 0.05 0.61 +0.03 0.63 4+ 0.07 0.66 + 0.03 0.66 4+ 0.03
EEGNet [30] 0.79 +£0.04  0.70 £ 0.03 0.56 + 0.07 0.55 +0.03 0.57 + 0.06 0.56 +0.03
MCNN [39] 0.86 = 0.05 0.76 £ 0.01 0.62 + 0.03 0.65 + 0.01 0.65 + 0.03 0.66 4 0.06
ERA-CNN [42] 0.85+0.02 0.75 £ 0.03 0.65 + 0.10 0.74 4 0.03 0.76 & 0.05 0.75 4+ 0.01
SessionNet 0.89 +0.02  0.77 £ 0.02 0.68 + 0.02 0.77 £+ 0.02 0.77 £+ 0.02 0.80 £ 0.02
Target classification session: Session II
Methods 3-class 5-class 7-class (HOR) 7-class (VER) 9-class (HOR) 9-class (VER)
FBCSP+RLDA [25] 0.56 = 0.02  0.46 + 0.04 0.27 + 0.02 0.31 + 0.07 0.23 4 0.05 0.29 4 0.02
DeepConvNet [37] 091 +0.01  0.65 +0.04 0.63 + 0.10 0.62 4+ 0.03 0.64 4+ 0.03 0.65 4= 0.08
ShallowConvNet [37]  0.86 & 0.05  0.69 £ 0.03 0.63 £+ 0.04 0.62 4+ 0.04 0.66 4+ 0.02 0.63 4 0.01
EEGNet [30] 0.72+0.03  0.64 +0.04 0.58 £+ 0.04 0.57 £ 0.05 0.52 £ 0.05 0.52 +£0.02
MCNN [39] 0.85 + 0.01 0.71 +0.03 0.65 + 0.01 0.64 + 0.03 0.66 + 0.01 0.67 4 0.02
ERA-CNN [42] 0.87 £0.05 0.72 £0.03 0.70 + 0.04 0.72 4+ 0.03 0.73 £ 0.02 0.74 £ 0.01
SessionNet 091 +0.04  0.73 £ 0.02 0.71 £+ 0.04 0.77 £+ 0.02 0.77 £+ 0.02 0.79 £ 0.02
Target classification session: Session III

Methods 3-class 5-class 7-class (HOR) 7-class (VER) 9-class (HOR) 9-class (VER)
FBCSP + RLDA [25] 044 +0.05 0.40+0.02 0.22 + 0.02 0.25 +0.03 0.18 £ 0.01 0.20 4 0.01
DeepConvNet [37] 0.79 +£0.04  0.64 + 0.07 0.60 + 0.06 0.61 + 0.07 0.64 + 0.07 0.65 +0.03
ShallowConvNet [37]  0.81 4= 0.06 0.70 +0.07 0.64 4+ 0.04 0.63 4+ 0.06 0.63 4+ 0.07 0.67 +0.03
EEGNet [30] 0.71 £ 0.01 0.65 £ 0.02 0.58 4+ 0.05 0.59 4+ 0.10 0.57 4 0.03 0.57 4+ 0.02
MCNN [39] 0.74 £0.02  0.66 + 0.03 0.66 £ 0.05 0.60 £ 0.02 0.65 4+ 0.04 0.69 £+ 0.02
ERA-CNN [42] 0.77 £+ 0.01 0.68 + 0.03 0.68 + 0.02 0.72 4+ 0.03 0.73 £ 0.05 0.76 4+ 0.03
SessionNet 0.82 +0.03  0.74 + 0.02 0.73 + 0.03 0.76 + 0.03 0.78 £+ 0.02 0.80 £ 0.02

accuracy of the proposed SessionNet over the existing meth-
ods were found to be significant using a paired #-test
(p-value < 0.01) [29].

Many studies have been done using only single session
data to avoid the EEG non-stationary problem. Calculating
the epoch until the model reaches convergence is one of
the important indicators whether the training is well com-
pleted or not. Therefore, if a simple or a sophisticated model
can converge the training within a few iterations, it shows
that the model learns more efficiently exploiting the given
data. Fig. 6 indicates the epoch that obtained the best accuracy
within a subject in target session II, for 9-class classification.
SessionNet derived the highest accuracy before 100 epochs
iterations in five subjects. The averaged epoch for Session-
Net was 115.25 and the minimum value was 76 epochs.

VOLUME 8, 2020

The second-ranked model is ERA-CNN and its mean epoch
was 152.58 epochs. In terms of accuracy, ERA-CNN showed
slightly lower accuracies than SessionNet. However, the aver-
aged epoch of SessionNet was 37.33 points lower than
ERA-CNN. Accordingly, we confirmed that SessionNet con-
verged the training substantially faster than ERA-CNN.
ShallowConvNet shows almost 10 points lower mean epoch
than the other CNN-based models (154.25). Even though
it consisted of only three layers, it converges the training
quickly and shows competitive performance. DeepConvNet,
EEGNet, and MCNN take a similar number of iterations to
converge the training, 163.08, 161.67, and 165, respectively.

Fig. 7 shows the representative training and test losses
along with the iterations (epochs) using a 5-class classifi-
cation dataset. Loss values were calculated to obtain the
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FIGURE 6. Training accuracy among the conventional methods according
to the number of epochs in 9-class classification.

Epoch

FIGURE 7. Convergence curves of training and test losses across all
subjects. The loss values were calculated using a 5-class classification
dataset where the target session Il

optimized weights of networks during the training. The opti-
mizer updates the model parameters to minimize the losses.
Training loss values converged as the training goes on. On the
other hand, the test loss values had decreased until around
100 epochs, but the loss values had since increased due to
overfitting.

IV. DISCUSSION

In this study, we investigated the possibility of robust
multi-class classification performance related to intuitive MI
using a single upper-extremity. We performed MI classifica-
tion using a deep learning strategy across healthy subjects.
We also presented a novel approach for robust MI classifica-
tion. We proposed the SessionNet architecture, based on fea-
ture similarity-based weighted ensemble learning as depicted
in Fig. 2. To evaluate the proposed method, we collected
a diverse intuitive EEG data samples from a single upper-
extremity, such as arm-reaching MI (6-class), hand-grasping
MI (2-class), and wrist-twisting MI (2-class). The experimen-
tal results showed that SessionNet could achieve high classi-
fication accuracies in multi-class classifications. This result
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demonstrates that learning generality from other session
data was effective in intuitive MI classifications. Hence,
deep learning is an important method in the development
of BCL

Recent BCIs have adopted various deep learning tech-
niques such as ERP detection [46], [47], mental state detec-
tion [48]-[50], and MI classification [31], [37], [51], [52].
Especially, for MI decoding, some groups have tried
to adopt deep learning techniques with brain signals.
Schirrmeister et al. [37] designed the shallow and deep
depth of CNN architecture (i.e., ShallowConvNet and Deep-
ConvNet). The proposed ConvNets are well suited to most
EEG paradigms and have proven to have high classifica-
tion performance on raw EEG data. Xu et al. [31] also
proposed a transfer learning framework for EEG classifi-
cation. They showed that their framework could improve
accuracy and efficiency compared to the traditional methods.
Tayeb et al. [52] validated MI classification using a variety
of deep neural networks and conventional machine learning
techniques through online experiments. They demonstrated
that deep learning techniques can have robust decoding per-
formance in real-time BCIs. Lei et al. [51] proposed a multi-
view multi-level deep polynomial network (MMDPN) for
decoding walking imagery. They compared the decoding
performance using a virtual environment paradigm and tra-
ditional text-based paradigm. MMDPN outperformed other
deep learning methods in terms of classification accuracy
in both paradigms. Jiao et al. [53] proposed a novel sparse
group representation model (SGRM) that extracts features
using CSP. They explicitly exploited within-group sparse and
group-wise sparse constraints. Through this method, SGRM
proved that it can reduce the required training samples from
the target subject effectively. Zhang et al. [54] also proposed a
temporally constrained sparse group spatial pattern (TSGSP)
using CSP-based spatial filtering to classify MI data. For
better performance, TSGSP optimizes filter bands and time
windows simultaneously within the CSP. Recently, intuitive
MI decoding has been investigated for natural interactions
between humans and devices. Schwarz et al. [55] decoded
hand movements such as palmar grasping, lateral grasping,
and supination using MRCP. They evaluated MRCP decoding
in a simulated environment and demonstrated the possibility
of robotic arm control using EEG signals. Jeong et al. [41]
also proved the feasibility of a brain-controlled robotic arm
system based on intuitive MI using a multi-directional CNN-
Bidirectional long-short term memory (BiLSTM) network.
Furthermore, they have tried to decode complex kinemat-
ics information such as forearm rotation from EEG signals.
They proposed a hierarchical flow CNN and evaluated the
decoding performance using not only their experimental
dataset but also a public dataset (BNCI Horizon 2020) [29].
Xu et al. [56] have experienced MI tasks, such as hand
grip, forearm extension/flexion, reach-and-grasp. They con-
firmed that phase synchronization information is effective
in discriminating between different MI tasks with the same
limbs.
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Our proposed approach can produce well-trained networks
because it can extract high-level features from different ses-
sions for the same tasks and for the same subjects, and
it could be applied as a data augmentation strategy. Most
groups studying conventional data augmentation methods
in BCIs have focused on data augmentation within a trial
[28], [57]. As a result, the conventional methods confirmed
the performance enhancement, but the data length for time-
series analysis tends to reflect user intention insufficiently
because of the short epochs of EEG data (e.g., 2-second
[30], [37]). Furthermore, singular models classify entire
classes at once, in contrast the proposed SessionNet first
categorizes input data into arm-reaching MI, hand-related MI,
and the resting-state. Hence, it performs a series of a small
number of classifications (e.g., 3-class to 4-class).

Additionally, SessionNet learns more generality from other
session data based on feature similarity for improving clas-
sification performance. SessionNet can use more data for
training and this training strategy can explain the increase
in performance. Therefore, we focused on enhancing the
classification performance of the target session using multiple
session data learning for more generality. To avoid the non-
stationarity EEG problem, we strictly designed the experi-
mental protocols and obtained the EEG data in each session
under the same experimental conditions. Our experimental
results confirmed that the proposed SessionNet using feature
similarity was more effective for multi-class MI classification
and consisted of complex tasks than conventional approaches.
Additionally, we conducted a statistical analysis of classifica-
tion performance between the conventional methods and the
proposed method. We confirmed the statistically significant
difference between the methods (p < 0.01). Hence, we proved
the superiority and novelty of the proposed network.

However, the SessionNet tends to confuse the resting-
state with hand-related MI (e.g., cylindrical grasping and
supination). When the subjects generate brain signals, it is
necessary to imagine the specific muscle movements. That is,
we conjecture that subjects might find it difficult to imagine
small muscle movements, such as in cylindrical grasping so
that the discriminative brain areas are not activated and it
appears similar to resting-state. To overcome this, the pro-
posed SessionNet will be modified to consider the relation-
ship between earned features and brain functional activities
during MI. It is one of the advanced strategies to design
a brain-inspired network. The deep learning in BCI studies
has been designed to learn features from brain activities.
Therefore, various kinds of filters as temporal, spatial, and
spectral aspects have been developed for including informa-
tion on brain activity. Furthermore, we will demonstrate the
relationship between the learned features and the brain func-
tional network by adding an interpretation function on the
network.

In addition, we compared the computational time for
classification, which is critical in real-time BCI scenarios.
We measured the total elapsed time for model training,
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validation, and testing [17]. On average, the elapsed time of
SessionNet was approximately 28 s, based on 200 epochs
during all procedures with a high-performance computer
(i.e., Intel i7 CPU, a 64-GB RAM, 1-TB SSD, and a TITAN
XP GPU). Achieving competitive classification performance
is a critical issue at the same time, a short computational
time is also essential for real-time BCI scenarios. Especially,
the MI-based BCI paradigm has endogenous characteristics
that generate the EEG patterns by their respective subjects.
Therefore, compared with other BCI paradigms such as exo-
geneous potentials (e.g., SSVEP and ERP), it is difficult to
obtain exact EEG patterns owing to various external and
internal factors like subjects’ mental conditions and attention
level. Long calibration time would induce fatigue and distrac-
tion to the subject and it might decrease the BCI performance
in real-time scenarios [58]. In this point of view, the proposed
SessionNet was designed to utilize the EEG signals from the
different recording sessions. We expect that calibration time
can be reduced within a day using the SessionNet.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed SessionNet that trains more
generality using data recorded multiple sessions based on
ensemble learning and a feature similarity. Additionally,
SessionNet adopted the principle of a hierarchical architec-
ture that can extract features from different body regions such
as the arm and hand of a single-arm. In applying a deep
learning technique, one of the challenging tasks is recording
sufficient EEG data from a single subject. Furthermore, MI
classification performance depends on the quality of data.
With low-quality data, there is a limit to improving per-
formance by changing only filter sizes or designing more
layers. We demonstrated that SessionNet achieved meaning-
ful improvement in MI classification performance by training
more generality from multiple sessions. This enhancement
showed the possibility of using data from different sessions
with a proper similarity index for improving classification
performance.

Hence, in future work, we will develop SessionNet to con-
trol the external devices intuitively, such as robotic arms, with
a high degree of freedom. Therefore, we will demonstrate that
the proposed SessionNet could ultimately help improve the
autonomy of people with movement disabilities and support
the daily life of healthy people. Furthermore, at present,
the SessionNet could be considered only MI domain but
we will plan to expand to the domain-independent network
applicable to different types of brain signals.
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