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ABSTRACT This paper investigates the output feedback (OPFB) tracking control problem for discrete-time
linear (DTL) systems with unknown dynamics. With the approach of augmented system, the tracking control
problem is first turned into a regulation problem with a discounted performance function, the solution of
which relies on the Q-function based Bellman equation. Then, a novel value iteration (VI) scheme based
on reinforcement Q-learning mechanism is proposed for solving the Q-function Bellman equation without
knowing the system dynamics. Moreover, the convergence of the VI based Q-learning is proved by indicating
that it converges to the Q-function Bellman equation and it brings out no bias of solution even under the
probing noise satisfying the persistent excitation (PE) condition. As a result, the OPFB tracking controller
can be learned online by using the past input, output, and reference trajectory data of the augmented system.
The proposed scheme removes the requirement of initial admissible policy in the policy iteration (PI) method.
Finally, effectiveness of the proposed scheme is demonstrated through a simulation example.

INDEX TERMS Adaptive dynamic programming (ADP), optimal control, Bellman equation, on-policy,
internal model.

I. INTRODUCTION
For controller design problem, optimization of performance
costs has been an important concern since it may lead to
reduction in energy effort which leads to positive conse-
quences on earth environment. The practical need has greatly
promoted the development of optimal control [1]. The key to
optimal control problem is the solution of a equation, which is
called Ricatti equation for linear systems. For the linear case,
the solution of Ricatti equation can be efficiently obtained
by the iteratively computational algorithms [2], [3], which
are only applicable to the cases where complete knowledge
of system dynamics is known. However, it is often desirable
in control engineering to design online learning controllers
without resorting to the system dynamics [4]–[8]. Notice that
a data-based method has been proposed in [9] to analysis
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the controllability and observability of DTL systems without
knowing system parameters.

Reinforcement learning (RL) was developed to focus on
obtaining the optimal reward from the interaction with envi-
ronment [10]. On the other hand, adaptive control has been
studied to design controllers for systems with uncertain
parameter models [11], [12]. Thanks to RL techniques, adap-
tive control with optimal design criterions can be found by
sequentially updating the controller parameters based on the
reward signal reflecting the controller’s performance [13].
Generally speaking, reinforcement learning provides adap-
tive optimal control design philosophy, which brings new
insight into the Control System Community [13], [14]. It has
given development to an alternative optimal control strategy
known as adaptive dynamic programming (ADP), which is
a (partially) model-free method achieving the optimal perfor-
mance index [14]–[18]. Solutions to optimal control based
on the idea of ADP have been extensively investigated for
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both linear quadratic regulator (LQR) and linear quadratic
tracking (LQT) problems, see [19]–[22] and the references
therein. The learning scheme under RL framework generally
has two iterative steps to find optimal control policy, one
for policy evaluated and the other for policy updated with
the latter being an improvement of the first. Notice that RL
based on value function approximation (VFA) would ruin the
algorithm convergence, which results from the exploration
noise added intentionally to the evaluated policy for suffi-
ciently exciting the system [22]–[24]. Besides, the policy iter-
ation (PI) scheme in ADP framework needs an initial admis-
sible policy, which requires a prior knowledge of unknown
system to design a robust controller [21], [25]. To overcome
such a requirement, value iteration (VI) scheme has been
studied in recent work [22], [26] using VFA method.

Most of the existing studies rely on the available mea-
surement of full state information, see [22], [27] and the
references therein. However, it may not be feasible in
practical implementations [28], and therefore, it is desir-
able to design output feedback (OPFB) learning controllers.
Dynamic OPFB controllers have been studied in [29] for the
Q-learning based LQR control of DTL systems. The state
parametrization method was presented to reconstruct system
states based on the filtered input and output signals. On the
other hand, the static OPFB design owes its popularity due
to its simplicity in structure and is proposed to solve the
LQR problem in [30]. Extension to H∞ control problem
can be seen in the recent work [31], [32], where an ini-
tial stabilizing control policy is required. To find the static
OPFB controller, the full state knowledge is needed during
the learning stage and the neural network based model-free
state estimation technique should be employed [31], [32].
OPFB control can also be achieved by employing model-free
state reconstruction method. The advantage comes from the
measured data of past input, output, and reference trajectory
as an alternative to the unavailable system states. It was first
presented in [23] to learn OPFB LQR controller. The same
method has also been used to solve OPFB LQT problem [24]
by employing VFA technique. In recent studies, the model-
free state reconstruction technique was also used to develop
OPFB Q-learning PI scheme for H∞ control problem [33],
[34].

In this paper, a novel VI based Q-learning method is pro-
posed to design OPFB tracking controller for DTL systems
with unknown dynamics. The main contributions are summa-
rized as follows.

1) As opposed to a PI design, VI algorithm removes the
requirement of initial admissible policy such that it allows
a more general condition. Under the Q-learning scheme,
the convergence analysis of VI algorithm is given.

2) TheOPFBQ-learning tracker design is achievedwithout
knowing the full state vector by collecting past input, output,
and reference trajectory data.

3) In [25], a H∞ robust stabilization controller was applied
to provide initial data for LQR problem, but we extend
this design philosophy to LQT problem. An internal model

controller is proposed to collect the unavailable few data at
first. Then the OPFB Q-learning controller is used to achieve
the tracking issue.

II. PROBLEM STATEMENT
In this section, the infinite-horizon LQT problem is first
reviewed for DTL systems. Then, some basic results are pre-
sented for solving a discrete-timeBellman equation. Consider
a DTL time-invariant system described by

xk+1 = Axk + Buk
yk = Cxk (1)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp are the state, input,
and output, respectively. The denotations A,B,C are constant
matrices with appropriate dimensions, where the pairs (A,B)
and (A,C) are respectively controllable and observable.

The reference trajectory is produced by the exogenous
system

rk+1 = Frk (2)

where rk ∈ Rp and F is a constant matrix of proper dimen-
sion.

Define the tracking error as

ek = yk − rk . (3)

The objective is to design an optimal control policy uk
such that the output yk could track the reference trajectory rk
in an optimal sense by minimizing the following discounted
performance index

J (xk , rk ) =
1
2

∞∑
i=k

γ i−k (eTi Qei + u
T
i Rui) (4)

where Q and R are positive definite weighting matrices, and
0 < γ ≤ 1 is the discount factor.
Remark 1: As argued in [35], the discount factor γ in (4)

allows a more general solution than the standard LQT prob-
lem. The matrix F is not assumed to be stable. Thus, it sat-
isfies a much larger class of reference signals for tracking
control problem with an quadratic performance index. On the
other hand, both feedback and feedforward parts of the con-
trol input can be optimized simultaneously, which provides
a causal manner for the solution of infinite-horizon LQT
problem. Notice that the discount factor γ loses no generality
in the sense that it can be chosen as γ = 1 when F is Hurwitz,
and for this case, the LQT problem reduces into an LQR
problem with some specified output trajectory decaying to
zero exponentially.

A. OFFLINE SOLUTION FOR LQT
Denoting Xk =

[
xTk rTk

]T yields an augmented system

Xk+1 = TXk + B1uk
ek = C1Xk (5)

where T =
[
A 0
0 F

]
,B1 =

[
B
0

]
and C1 =

[
C −I

]
.
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If uk = −KXk with K =
[
Kx Kr

]
, the discounted perfor-

mance index (4) is in a quadratic form as follows

V (xk , rk ) = V (Xk ) =
1
2
XTk PXk (6)

for some matrix P = PT > 0, as can be seen from
Lemma 1 of [35].

Using (4), one has

J (xk , rk ) =
1
2
(eTk Qek + u

T
k Ruk )

+
1
2

∞∑
i=k+1

γ i−(k+1)(eTi Qei + u
T
i Rui) (7)

According to (6), J (xk , rk ) can be expressed as V (xk , rk ).
Thus, we have

V (xk , rk ) =
1
2
eTk Qek +

1
2
uTk Ruk + γV (xk+1, rk+1). (8)

Putting (6) into (8), we have LQT Bellman equation with
respect to P

XTk PXk = XTk 5Xk + u
T
k Ruk + γX

T
k+1PXk+1, (9)

where 5 =
[
CTQC −CTQ
−QC Q

]
.

Define the LQT Hamiltonian

1
2
H (Xk , uk ) =

1
2
XTk 5Xk +

1
2
uTk Ruk + γV (Xk+1)− V (Xk ).

By solving the stationary condition [35], [36], i.e.,

∂H (Xk , uk )
∂uk

= 0

one has

uk = −KXk = −Kxxk − Krrk (10)

where K = (R + γBT1 PB1)
−1γBT1 PT with P satisfying the

following augmented algebraic Riccati equation (ARE)

5− P+ γT TPT − γ 2T TPB1(R+ γBT1 PB1)
−1BT1 P = 0

(11)

Remark 2: The augmented ARE (11) has a unique positive
definite solution P if the pair (A,

√
QC) is observable and

γ 1/2F is stable [24]. Moreover, a lower bound has been given
for the discount factor to guarantee the stability of augmented
system [37].

Due to the nonlinear relationship in the unknown param-
eter, it is difficult to directly obtain the solution of (11).
Instead of solving (11), substituting (10) into (9) leads to the
augmented LQT Lyapunov equation

5− P+ KTRK + γ (T − B1K )TP(T − B1K ) = 0. (12)

In this respect, an offline PI algorithm [35] was proposed to
iteratively compute the solution of (12). However, it requires
the complete knowledge of augmented system dynamics.
To obviate this requirement, a Q-learning scheme [35] has
been developed to solve model-free LQT problem.

B. Q-FUNCTION BELLMAN EQUATION
Let Zk =

[
XTk uTk

]T and define a discrete-time Q-function as

Q(Zk ) =
1
2
XTk 5Xk +

1
2
uTk Ruk + γV (Xk+1) (13)

Using the augmented system dynamics (5) in (13) gives

Q(Zk ) =
1
2
ZTk H̃Zk (14)

where

H̃ =
[
5+ γT TPT γT TPB1
γBT1 PT R+ γBT1 PB1

]
≡

[
H̃XX H̃Xu
H̃uX H̃uu

]
for kernel matrix H̃ = H̃T .

Applying ∂Q(Zk )
∂uk
= 0, we can get

uk = −(H̃uu)−1H̃uXXk (15)

Noticing thatQ(Zk ) = V (Xk ) leads to theQ-functionBellman
equation

ZTk H̃Zk = XTk 5Xk + u
T
k Ruk + γZ

T
k+1H̃Zk+1. (16)

C. PI BASED Q-LEARNING FOR LQT
Based on (16) in terms of Q-function, the PI based Q-learning
solution for LQT problem can be implemented by Algo-
rithm 1 without resorting to the system dynamics [35].

Algorithm 1 PI Q-learning Algorithm for LQT
Initialization
Start with an admissible control policy u0k with H̃

0

Procedure
1: (Policy Evaluation) For j = 0, 1, . . ., collect data sam-
ples under ujk

to solve H̃ j+1 using the Q-function Bellman equation:

ZTk H̃
j+1Zk = XTk 5Xk + (ujk )

TR(ujk )+ γZ
T
k+1H̃

j+1Zk+1
(17)

2: (Policy Improvement) Compute the improved control
policy as follows:

uj+1k = −(H̃ j+1
uu )−1H̃ j+1

uX Xk (18)

3: (Stopping Criterion) Stop the iteration if ‖H̃ j+1
−H̃ j
‖ <

ε for some specified small positive number ε. Otherwise,
let j = j+ 1 and go back to iteration.
End Procedure

In Algorithm 1, repeated iteration between (17) and (18)
will be performed until convergence. In contrast to offline
algorithm [35], the policy improvement step is conducted by
the learned kernel matrix H̃ j+1. Therefore, the objective of
finding optimal control policy is achieved with completely
unknown dynamics.
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III. VALUE ITERATION Q-LEARNING FOR OUTPUT
FEEDBACK LQT
In this section, the VI learning mechanism is introduced into
Q-learning to solve Q-function Bellman equation arising in
the model-free LQT problem for DTL systems.

A. COMPARISON FOR PI AND VI SCHEME
In ADP framework [10], PI and VI are two basic ways to
solve Bellman equation. Generally, the solution is obtained
by the repeated iteration between policy evaluation and policy
improvement until the desired convergence criterion is met.
PI method has been extensively investigated in a variety of
situations [20], [32]. For the PI based Q-learning in Algo-
rithm 1, it begins with an initial allowable control policy u0k .
Then, update Q-function and control policy by

ZTk H̃
j+1Zk = XTk 5Xk + (ujk )

TR(ujk )

+ γZTk+1H̃
j+1Zk+1 (19)

uj+1k = argmin
uk

{
XTk 5Xk + u

T
k Ruk

+ γZTk+1H̃
jZk+1

}
(20)

To show the drawback, rewrite (19) as

ZTk H̃
j+1Zk = XTk 5Xk + (ujk )

TR(ujk )

+ γZTk+1H̃
j+1Zk+1

= XTk 5Xk + (ujk )
TR(ujk )

+ γ
(
XTk+15Xk+1 + (ujk+1)

TR(ujk+1)
)

+ γ 2ZTk+2H̃
j+1Zk+2

= . . .

=

∞∑
l=k

γ l−k
(
XTl 5Xl + (ujl)

TR(ujl)
)

(21)

Thus, it can seen that ZTk H̃
j+1Zk is in terms of an infinite-

sum. If the stabilizing control policy is not used, it may
go to infinity which makes no sense. The convergence of
Algorithm 1 under an given initial admissible policy has been
proven in [35]. Following the same line in [38], it is concluded
that if an initial stabilizing control policy is used, all improved
control policies uj would be stabilizing.
In contrast to PI scheme, VI learning mechanism admits

a more relaxed initial condition. It begins with an initial
Q-function. Then, update control policy and Q-function by

ujk = argmin
uk

{
XTk 5Xk + u

T
k Ruk

+ γZTk+1H̃
jZk+1

}
(22)

ZTk H̃
j+1Zk = XTk 5Xk + (ujk )

TR(ujk )

+ γZTk+1H̃
jZk+1 (23)

It is seen from (23) that ZTk H̃
j+1Zk is only the sum of

a one-step utility function and the previous Q-function
ZTk+1H̃

jZk+1. The finiteness of ZTk H̃
j+1Zk can be assured by

a finite ZTk+1H̃
jZk+1. Hence, VI removes the requirement of

initial stabilizing control policy.

B. VI Q-LEARNING FOR OPFB LQT
Algorithm 1 requires an initial admissible control policy, and
thus may demand a prior knowledge of controlled system
to conduct a robust design [21], [25]. As seen from the
above subsection, VI learning mechanism would be more
general since it meets a more free initial condition than PI
method. Based on (23), we propose the VI based Q-learning
Algorithm 2 for model-free LQT solution. The convergence
property of Algorithm 2 can be concluded by the convergence
analysis of Algorithm 3, as will be stated in the following
subsection.

Algorithm 2 VI Q-learning Algorithm for LQT
Initialization
Select an initial policy u0k not necessary stabilizing with H̃

0

Procedure
1: (Value Function Update) For j = 0, 1, . . ., collect data
samples under

ujk to solve H̃ j+1 using the Q-function Bellman equation:

ZTk H̃
j+1Zk = XTk 5Xk + (ujk )

TR(ujk )+ γZ
T
k+1H̃

jZk+1
(24)

2: (Policy Improvement) Compute the improved control
policy as follows:

uj+1k = −(H̃ j+1
uu )−1H̃ j+1

uX Xk (25)

3: (Stopping Criterion) Stop the iteration if ‖H̃ j+1
−H̃ j
‖ <

ε for some specified small positive number ε. Otherwise,
let j = j+ 1 and go back to iteration.
End Procedure

In Algorithm 2, the full state information xk is required,
which might not be always available in practice. In what fol-
lows, we will improve Algorithm 2 using the measured data
by the past input, output, and reference trajectory sequence.
The developed VI algorithm uses measured data for value
function update and policy improvement, which is different
from that in Algorithm 2 with state information. For this
purpose, recall the following state reconstruction lemma [23].
Lemma 1: Under the condition that the pair (A,C) is

observable, the augmented system state Xk can be expressed
by past input, output, and reference trajectory sequence as

Xk =
[
Mu My Mr

]ūk−1,k−Nȳk−1,k−N
rk−N

 (26)

where ūk−1,k−N and ȳk−1,k−N , N ≤ n, are the
sequences of input and output signals over the time interval
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[
k − N , k − 1

]
, respectively, defined by

ūk−1,k−N =
[
uTk−1 u

T
k−2 uTk−3 . . . uTk−N

]T
ȳk−1,k−N =

[
yTk−1 y

T
k−2 yTk−3 . . . yTk−N

]T
and the coupling matrices are

Mu=

[
UN − ANW

+

N DN
0

]
, My=

[
ANW+N

0

]
, Mr=

[
0
FN

]
with

UN =
[
B1 AB1 . . . AN−1B1

]
,

WN =
[
(CAN−1)T . . . CA C

]T
,

DN =


0 CB CAB · · · CAN−2B
0 0 CB · · · CAN−3B
...

...
. . .

. . .
...

0 · · · 0 0 CB
0 0 0 0 0

 ,

and W+N = (W T
NWN )−1W T

N .
Now, we can transform (16) into a Q-function Bellman

equation defined in terms of the measured data by the past
input, output, and reference trajectory sequence.

First, using (26) in (14) gives

Q(Zk ) =
1
2
ZTk H̃Zk =

1
2


ūk−1,k−N
ȳk−1,k−N
rk−N
uk


T

H


ūk−1,k−N
ȳk−1,k−N
rk−N
uk


,

1
2
zTk Hzk (27)

with zk =
[
ūTk−1,k−N ȳTk−1,k−N rTk−N uTk

]T
and

H = HT
=


Hūū Hūȳ Hūr Hūu
Hȳū Hȳȳ Hȳr Hȳu
Hrū Hrȳ Hrr Hru
Huū Huȳ Hur Huu


where the partitioned matrices are

Hūū = MT
u (5+ γT

TPT )Mu = MT
u H̃XXMu,

Hūȳ = MT
u (5+ γT

TPT )My = MT
u H̃XXMu,

Hūr = MT
u (5+ γT

TPT )Mr = MT
u H̃XXMu,

Hūu = γMT
u T

TPB1 = MT
u H̃Xu,

Hȳȳ = MT
y (5+ γT

TPT )My = MT
y H̃XXMy,

Hȳr = MT
y (5+ γT

TPT )Mr = MT
y H̃XXMr ,

Hȳu = γMT
y T

TPB1 = MT
y H̃Xu,

Hrr = MT
r (5+ γT

TPT )Mr = MT
r H̃XXMr ,

Hru = γMT
r T

TPB1 = MT
r H̃Xu,

Huu = R+ γBT1 PB1 = H̃uu. (28)

It is observed from (27) that the Q-function is in a new
terms of previous input, output and reference trajectory data.
Performing the minimization of (27) with respect to uk ,

we can obtain the optimal controller using input, output and
reference trajectory sequence

u∗k = −(Huu)
−1(Huūūk−1,k−N + Huȳȳk−1,k−N + Hurrk−N )

= −(Huu)−1
[
Huū Huȳ Hur

]ūk−1,k−Nȳk−1,k−N
rk−N


= −K∗

ūk−1,k−Nȳk−1,k−N
rk−N

 . (29)

Applying (27) into (16), we have a Q-function Bellman
equation in the input-output form

zTk Hzk = τ
T
k 0τk + u

T
k Ruk + γ z

T
k+1Hzk+1 (30)

where τk =
[
yk
rk

]
and 0 =

[
Q −Q
−Q Q

]
.

It is now ready to propose the VI based Q-learning Algo-
rithm 3 to learn the OPFB LQT controller.

Algorithm 3 VI Q-learning Algorithm for OPFB LQT
Initialization
Select an initial policy u0k not necessary stabilizing withH

0

Procedure
1: (Value Function Update) For j = 0, 1, . . ., collect data
samples under

ujk to solve H j+1 using the Q-function Bellman equation:

zTk H
j+1zk = τTk 0τk + (ujk )

TRujk + γ z
T
k+1H

jzk+1. (31)

2: (Policy Improvement) Compute the improved control
policy as follows:

uj+1k = −(H j+1
uu )−1

× (H j+1
uū ūk−1,k−N + H

j+1
uȳ ȳk−1,k−N + H j+1

ur rk−N )

(32)

3: (Stopping Criterion) Stop the iteration if ‖H̃ j+1
−H̃ j
‖ <

ε for some specified small positive number ε. Otherwise,
let j = j+ 1 and go back to iteration.
End Procedure

Using Least-squares (LS) method, we can calculate H j+1

in the value function update step (31). For this purpose,
we denote the linearly parameterized expression of zTk H

j+1zk
as

zTk H
j+1zk = (H̄ j+1)T z̄(k) (33)

with

H̄ j+1
= vec(H j+1) ∈ Rl(l+1)/2

, [H j+1
11 , 2H

j+1
12 , · · · , 2H

j+1
1l ,H

j+1
22 , · · · , 2H

j+1
2l ,

· · · ,H j+1
ll ]T
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where, the number H j+1
ik denotes the element in ith row

and kth column of the matrix H j+1, i, k = 1, · · · , l,
and l = mN + pN + m. The regression vector z̄(k) ∈
Rl(l+1)/2 represented by z̄k = zk ⊗ zk is defined as the
quadratic basis set formed by the Kronecker product z̄ ,
[z21, z1z2, · · · , z1zl, z

2
2, z2z3, · · · , z2zl, · · · , z

2
l ].

For the right hand side of (31), we denote the first tow terms
as r(τk , u

j
k ), i.e.,

r(τk , u
j
k ) = τ

T
k 0τk + (ujk )

TRujk (34)

Using the denotations of (33) and (34), we can simplify (31)
into

(H̄ j+1)T z̄k = r(τk , u
j
k )+ γ (H̄

j)T z̄k+1 (35)

Since H j+1 is a symmetric l × l matrix with l(l + 1)/2
independent elements, we need to collect N ≥ l(l + 1)/2
data samples z̄k such that, the solution to (35) in the LS sense
can be obtained by

H̄ j+1
= ((8j)T (8j))−1(8j)T (ϒ j

+ γ9 jH̄ j). (36)

where

8j
=


z̄k
z̄k+1
...

z̄k+L−1

 , ϒ j
=


r(τk , u

j
k )

r(τk+1, u
j
k+1)

...

r(τk+L−1, u
j
k+L−1)

 ,

9 j
=


z̄k+1
z̄k+2
...

z̄k+L


with 8j

∈ RL×l(l+1)/2, ϒ j
∈ RL×1 and 8j

∈ RL×l(l+1)/2.
Remark 3: When k ≤ N , the input and output data

ūk−1,k−N , ȳk−1,k−N are not available. To solve this technical
dilemma, the internal model principle will be employed to
collect the unavailable data. The detail of design is given
in the following section. The internal model principle is
effective to accommodate parameter variations of controlled
system [39] while achieving the asymptotic tracking. There-
fore, it is expected that the generated data would contain more
inherent information for learning the optimal control solution.
Remark 4: In (36), H̄ j+1 denotes the jth estimate of

unknown vector H j+1 under the current policy. Based on
the entries of vector H̄ j+1, we can obtain the components of
matrix H j+1. The matrix H j+1 can then be used to compute
uj+1k in the policy improvement step (32), which in turn
are applied to generate the learned N data samples in the
following j + 1 iteration. To guarantee the unique solution
to (36), the persistently exciting (PE) condition [19], [20]
should be satisfied by imposing the exploration noise into
control input. However, it results in a bias of optimal solution
if VFA method is employed [22], [24].
We now show the benefits of employing Q-learning scheme
which creates no bias in the parameter estimates leading to
no bias of optimal solution.

Theorem 1: The exploration noise does not result in any
bias in the Q-function estimates.

Proof: By Lemma 1, we know that the Q-function (27)
in input-output form is equivalent to the original Q-
function (14). Due to the excitation noise, the actual control
input to collect data is ûk = uk+wk withwk being the probing
noise signals.
Hence, the Q-function (13) is rewritten as

Q(Xk , ûk ) =
1
2
XTk 5Xk +

1
2
ûTk Rûk + γV (Xk+1). (37)

Let Ĥ be the estimate of H̃ obtained using the input ûk . It then
follows from (13) that

1
2

[
Xk
ûk

]T
Ĥ
[
Xk
ûk

]
=

1
2
XTk 5Xk +

1
2
ûTk Rûk

+
1
2
γ (TXk + B1ûk )TP(TXk + B1ûk ).

Expanding both sides of the above equation yields

1
2

[
Xk
uk

]T
Ĥ
[
Xk
uk

]
+

1
2
γXTk T

TPB1wk +
1
2
γwTk B

T
1 PTXk

+
1
2
wTk (R+

1
2
γBT1 PB1)uk +

1
2
uTk (R+

1
2
γBT1 PB1)wk

+
1
2
wTk (R+

1
2
γBT1 PB1)wk

=
1
2
XTk 5Xk +

1
2
uTk Ruk +

1
2
wTk Rwk +

1
2
wTk Ruk

+
1
2
uTk Rwk +

1
2
γ (TXk + B1uk )TP(TXk + B1uk )

+
1
2
γ (TXk + B1uk )TPB1wk +

1
2
γwTk B

T
1 PB1wk

+
1
2
γ (B1wk )TP(TXk + B1uk ).

We can observe that both sides of the equation have the same
terms containing wk , and therefore, we are left with

1
2

[
Xk
uk

]T
Ĥ
[
Xk
uk

]
=

1
2
XTk 5Xk +

1
2
uTk Ruk

+
1
2
γ (TXk + B1uk )TP(TXk + B1uk ) (38)

Comparing (38) with (13) gives Ĥ = H̃ , that is

Q(Xk , uk ) =
1
2
XTk 5Xk +

1
2
uTk Ruk + γV (Xk+1) (39)

By (27), we have

zTk Hzk = τ
T
k 0τk + u

T
k Ruk + γ z

T
k+1Hzk+1

Thus, we have obtained the Q-function Bellman equation in
the absence of exploration noise, and it is the same as the
one given in (30). Hence, there is no bias of Q-function after
adding excitation noise. This completes the proof.
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C. CONVERGENCE ANALYSIS
In this section, we propose a convergence analysis for the
VI based Q-learning Algorithm 3, which shows that the pol-
icy matrix H j+1 converges to the optimal value H∗ in each
iteration. Then, according to (29), ujk → u∗k as j −→ ∞.
The convergence properties of VI scheme with state feed-
back have been investigated in recent studies based on VFA
method [22], [26], [40]. In what follows, we will extend them
to the OPFB Q-learning approach.

First of all, (31) can be rewritten as

Qj+1(zk ) = min
uk

{1
2
r(τk , uk )+ γQj(zk+1)

}
=

1
2
r(τk , u

j
k )+ γQ

j(zk+1) (40)

where r(τk , u
j
k ) = τTk 0τk + (ujk )

TRujk and ujk =

argmin
uk

{
1
2 r(τk , uk ) + γQj(zk+1)

}
. Then, based on (40),

the following two lemmas are proposed. The proof follows
from the same line in [22].
Lemma 2: For system (5), given any arbitrary sequence of

control policy {ϑ j}, where j = 0, 1, · · · ,∞, let 3j(zk ) be
formulated as

3j+1(zk ) =
1
2
τTk 0τk +

1
2
(ϑ j(zk ))TRϑ j(zk )+ γ3j(zk+1)

(41)

Let {ujk} and {Q
j(zk )} be the sequences defined by (40).

If Q0(zk ) = 30(zk ) = 0, then Qj(zk ) ≤ 3j(zk ), ∀j.
Proof:According to (40),Qj+1(zk ) is theminimumvalue

with respect to ujk . Since3
j+1(zk ) is the result of (41) in terms

of arbitrary control policy ϑ j, we have Qj+1(zk ) ≤ 3j+1(zk ).
Therefore, if Q0(zk ) = 30(zk ) = 0, it follows that Qj(zk ) ≤
3j(zk ), ∀j.
Lemma 3: Consider the sequence {Qj(zk )} defined by (40).

If system (5) is controllable, there exists an upper bound ϒ
such that 0 ≤ Qj(zk ) ≤ ϒ , ∀j.

Proof: Let {υk} be an arbitrary admissible control policy
for LQT problem and Qj(zk ) be formulated as in (40). Define
M j as

M j+1(zk ) =
1
2
τTk 0τk +

1
2
(υk )TRυk + γM j(zk+1) (42)

with Q0(·) = M0(·) = 0. Then, it can be calculated that

M j+1(zk )−M j(zk ) = γ (M j(zk+1)−M j−1(zk+1))

= γ 2(M j−1(zk+2)−M j−2(zk+2))

= γ 3(M j−2(zk+3)−M j−3(zk+3))
...

= γ j(M1(zk+j)−M0(zk+j)) (43)

Since M0(zk+j) = 0, it follows that

M j+1(zk ) = γ jM1(zk+j)+M j(zk )

= γ jM1(zk+j)+ γ j−1M1(zk+j−1)+M j−1(zk )

= γ jM1(zk+j)+ γ j−1M1(zk+j−1)

+ γ j−2M1(zk+j−2)+ · · · +M1(zk ) (44)

Hence, we have

M j+1(zk ) =
j∑

i=0

γ iM1(zk+i)

=

j∑
i=0

γ i(
1
2
τTk+i0τk+i +

1
2
(υk+i)TRυk+i)

≤

∞∑
i=0

γ i(
1
2
τTk+i0τk+i +

1
2
(υk+i)TRυk+i)

(45)

Notice that υk is an admissible tracking control policy. There-
fore, there exists an upper bound ϒ such that

∀j : M j+1(zk ) ≤
∞∑
i=0

γ iM1(zk+i) ≤ ϒ (46)

Since Q and R are both positive definite, r(τk , u0k ) in (40)
is nonnegative. Considering Q0(zk ) = 0, we have
Q1(zk ) ≥ 0. By the mathematical induction, it is easy to
obtain Qj(zk ) ≥ 0, ∀j. By Lemma 2 and Q0(·) = M0(·) = 0,
it can be concluded that

0 ≤ Qj(zk ) ≤ M j(zk ) ≤ ϒ (47)

Using Lemma 3 gives the following theorem.
Theorem 2: let {Qj(zk )} be the sequence defined by (40)

with Q0(·) = 0. Then, the Q-function sequence {Qj(zk )}
is monotonically non-decreasing such that Qj+1(zk ) ≥
Qj(zk ),∀j. Moreover, it follows that Qj(zk ) → Q∗(zk ) as
j → ∞ with Q∗(zk ) the solution of Bellman optimization
equation, that is

Q∗(zk ) = min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

∗(zk+1)
}

(48)

Proof: Since Q0(·) = 0, we have Q1(zk ) ≥ 0. Thus,
Qj+1(zk ) ≥ Qj(zk ) holds when j = 0. By the mathematical
induction method, assume thatQj+1(zk ) ≥ Qj(zk ) holds when
j = ρ, ρ ≥ 0. Then, one has Qρ+1(zk ) ≥ Qρ(zk ). Take j =
ρ + 1, one has

Qρ+2(zk ) = min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

ρ+1(zk+1)
}

≥ min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

ρ(zk+1)
}

= Qρ+1(zk ) (49)

Therefore, Qj+1(zk ) ≥ Qj(zk ) holds when j = ρ + 1. And
we can conclude that {Qj(z(·))} is a non-decreasing sequence
with Qj+1(zk ) ≥ Qj(zk ),∀j. Moreover, as can be seen in
Lemma 3,Qj(zk ) is upper bounded. Hence,Qj(zk )→ Q∞(zk )
as j→∞.

In this respect, we are ready to prove thatQj(zk )→ Q∗(zk )
as j → ∞. Obviously, it is equivalent to show that Q∞

satisfies the Bellman optimality equation, i.e.,

Q∞(zk ) = min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

∞(zk+1)
}

(50)
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On the one hand, by putting Qj(zk ) ≤ Q∞(zk ) into (40),
we can have

∀j : Qj(zk ) ≤ min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

∞(zk+1)
}

yielding

Q∞(zk ) ≤ min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

∞(zk+1)
}

(51)

as j→∞.
On the other hand, since Q∞(zk ) ≥ Qj(zk ), we can obtain

∀j : Q∞(zk ) ≥ min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

j−1(zk+1)
}

Let j→∞, then

Q∞(zk )≥min
uk

{1
2
τTk 0τk +

1
2
uTk Ruk + γQ

∞(zk+1)
}

(52)

Based on (51) and (52), it can be concluded thatQ∞(zk ) is the
solution of Bellman optimality equation (50). This completes
the proof.
Remark 5: It has been proved that the Q-function will

converge to the optimal value in infinite iterations. Besides,
in finite iterations, the Q-function will arrive in a compact
set around Q∗(zk ), i.e., ∀ε, ∃N , |Qj(zk ) − Q∗(zk )| < ε when
j > N . As shown in (40), Qj+1(zk ) = r(τk , u

j
k )+ γQ

j(zk+1).
Then, we have Qj+1(zk ) = r(τk , u

j
k ) + γ r(τk+1, u

j−1
k+1) +

. . . + γ K−kr(τK , u
j−K+k
K ), which means that the value of

Q-function at (j+1)th iteration is the sum of utility functions
at different iterations and different times. The previous recent
iterations give more contribution and the selecting of γ has an
influence on the convergence speed of iterative Q-function.

IV. INTERNAL MODEL CONTROLLER DESIGN
In this section, we review the tracking controller design for
DTL systems based on internal model principle. The inter-
nal model-based design claims that if a closed-loop system
incorporates in the feedback path a reduplicated model of the
references, it can achieve the asymptotic tracking under the
parameter variations within a small range [41].

In the following, the process of internal model design is
described for the sinusoidal reference tracking. For more
details, one can refer to [42]. Consider the DTL system (1)
with exogenous system (2) where

rk =
[
rk1
rk2

]
, F = F(σ ) =

[
0 σ

−σ 0

]
with σ the frequency of sinusoidal signal. Then the tracking
control problem can be formulated as

xk+1 = Axk + Buk
yk = Cxk

rk+1 = F(σ )rk
ek = yk − rk1
rk1 =

[
1 0

]
rk (53)

FIGURE 1. Dynamic output feedback control design with internal model.

According to the internal model principle, the dynamic
output feedback control law [42]

uk = Kηk

ηk+1 =

[
A+ BKx − LC BKη

0 G1

]
ηk +

[
L
G2

]
ek

, ϕ1ηk + ϕ2ek

G1 = 9

[
0 1
−σ 2 0

]
9−1

G2 = 9
[
0 1

]T (54)

solves the tracking control problem regardless of small vari-
ations of the entries in the matrices A,B, and C . In (54), 9 is
chosen as a two-dimensional identity matrix and L is selected
such that A − LC is Schur. The matrix K =

[
Kx Kη

]T is
appropriately designed such that[

A+ BKx BKη
G2C G1

]
(55)

is Hurwitz, where the classic methods such as Lyapunov
method and pole placement can be applied. Until now,
the tracking error ek can converge to zero under some param-
eter variations of the controlled system. The design scheme
of internal model principle is shown in Figure 1.

The internal model principle has the potential to maintain
asymptotic tracking under parameter changes, and therefore,
it allows the unknown system to have a good tendency to
track the reference signal. By such a process of collecting
unavailable measured data, not only it solves the dilemma as
seen in Remark 3, but also it may be more efficient to make
the unknown system track the given signal when utilizing the
Q-learning method.

V. SIMULATION RESULTS
In this section, we propose a simulation example to verify the
effectiveness of developed OPFBQ-learning algorithm based
on VI scheme. Consider a DTL system described by

xk+1 =
[
1.69 −0.67
1 0

]
xk +

[
1
0

]
uk

yk =
[
1 −0.5

]
xk (56)

with x0 =
[
0.65 0

]
. It can be calculated that the open-loop

poles are z1 = 1.0548 and z2 = 0.6352 such that the system
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FIGURE 2. Control gain obtained by Algorithm 1.

FIGURE 3. Trajectories of output and input by Algorithm 1.

is unstable. The PI based Algorithm 1 requires an initial
admissible control policy as well as the available full-state
information. By employing VI scheme combined with the
state reconstruction method, both of these two requirements
have been relaxed in the proposed Algorithm 3.

A. COMPARATIVE STUDIES
In this subsection, comparative studies are conducted on
Algorithm 1 and Algorithm 2 without the initial stabi-
lizing control policy, i.e., u0k = 0. Compared with the
PI-based Algorithm 1, it is verified that the VI-based Algo-
rithm 2 removes the requirement of initial stabilizing control
policy.

The desired reference trajectory is generated by rk+1 =
0.95 rk with r0 = 0.5. The performance function (4)
is considered with Q = 1,R = 0.001 and γ = 1.
Thus the optimal state feedback gain can be obtained as
K∗s =

[
1.1887 −0.6693 −0.9488

]
. During the learning

phase, the injected excitation signal is wk = 0.7 sin(k) +
0.5 cos(2k)+ 0.9 sin(8k)+ 0.2 cos(6k). First, Algorithm 1 is
employed and it is found that the convergence can not be
achieved. Hence, we terminate the learning at j = 14th
iteration. Figure 2 gives the evolution of control parameters.

FIGURE 4. Control gain obtained by Algorithm 2.

FIGURE 5. Trajectories of output and input by Algorithm 2.

Figure 3 shows that the output cannot track the reference
whilst the trajectories of output and input diverge as time
increases.

The corresponding results for using Algorithm 2 are shown
in Figures 4 and 5. For comparison fairness, we perform
Algorithm 2 with the same parameters and excitation signal
as Algorithm 1. It is observed from Figure 4 that Algo-
rithm 2 achieves convergence of the optimal control gain.
This is mainly because the VI mechanism allows learning to
be performedwithout an initial admissible policy. In Figure 5,
the trajectories of output and reference are shown, which
illustrates the guaranteed tracking.

B. VI Q-LEARNING UNDER PARAMETER VARIATIONS
In this subsection, further simulations are conducted to study
the effectiveness of Algorithm 3. Specifically, the parameter
variations of controlled system would be considered. For
system (56), we first perform the simulation with the internal
model controller designed under the nominal parameters. Let
yr be the desired reference trajectory generated by

ẋr =
[

0 100π
−100π 0

]
xr

yr =
[
1 0

]
xr (57)

with the initial condition xr (0) =
[
0 1

]T . Hence, the refer-
ence trajectory is a sinusoidal waveform with a amplitude of
one and a frequency of 50 Hz. Under the specified sampling
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FIGURE 6. Error |yk − yr | with different a1 by internal model design.

rate f = 10000 Hz, the discrete counterpart of (57) can be
obtained in the form of (2) with

F =
[
0.9995 0.0314
−0.0314 0.9995

]
(58)

The matrices

L =
[
−4.0433 −13.6667

]T
and

K =
[
3.3990 −1.7860 1.1058e8 2.5900e4

]
are obtained by employing the pole placement method.
Figure 6 shows the profile of tracking error when the element
a1 = 1.69 in system (56) ranges from 1.47 to 1.80. It can be
observed that when the parameter gets away from its nominal
value, the tracking error displays a sizable deviation from
zero. Thus we have seen that the tracking performance is only
robust with respect to small parameter variations.

In contrast to the robust design based on internal model,
it is expected that a Q-learning controller can maintain its
tracking performance with optimal criterion in the presence
of parameter variations. Moreover, the learning data usually
cannot be obtained from the full-state information. With the
above observations, we use VI Q-learning Algorithm 3 based
on measured data along the system trajectories. The perfor-
mance function (4) is considered with Q = 1,R = 0.001
and γ = 0.09. The excitation signal injected in the control
channel is wk = 0.7 sin(k) + 0.5 cos(2k) + 0.9 sin(8k) +
0.2 cos(6k). The simulation using Algorithm 3 without an
initial admissible policy is performed. Figure 7 shows that
the controlled output yk achieves tracking of the reference
trajectory yr under different values a1.
With the same parameters and the same excitation signal,

we also perform Algorithm 3 using an initial stabilizing
control policy obtained under the nominal system, i.e.,

u0k = −


1.6000
−1.0500
3.0100
−1.6170
02×1


T ūk−1,k−Nȳk−1,k−N

rk−N

 (59)

FIGURE 7. Error |yk − yr | with different a1 by VI based OPFB Q-learning.

FIGURE 8. Error |yk − yr | with different a1 by VI based OPFB Q-learning.

Figure 8 gives the evolution of tracking error with initial
policy (59). As can be seen, the output tracking of reference
signal is assured. Furthermore, the overshoot in the tracking
performance is improved and it may result from using the
initial stabilizing policy.

From the simulation results, it is observed that the VI based
OPFB Q-learning can achieve tracking no matter whether
an initial admissible policy is given or not. The developed
learning algorithm is able to maintain the tracking property
regardless of parameter variations. As claimed in Remark 3,
the internal model controller based on nominal parameters is
used to provide the unavailable initial data during the OPFB
learning.

C. INFLUENCE OF THE EXPLORATION NOISE
In the following, the unbiasedness of Q-learning algorithm
would be shown, and therefore, we can verify that the conver-
gence to optimal tracking control gain is completely immune
to the excitation noise. The simulation is conducted on Algo-
rithm 3 with the same parameters as the above subsection and
is considered without the initial admissible policy.

Four different excitation noises are respectively injected:

Case1 :

wk = 0.5sin(2.0k)2cos(10.1k)+ 0.9sin(1.102k)2

× cos(4.001k)+ 0.3sin(1.99k)2cos(7k)
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FIGURE 9. Excitation noises during the learning process.

FIGURE 10. Convergence of OPFB control gain matrix under different
excitation noises.

+ 0.3sin(10.0k)3cos(9.65k)

Case2 :

wk = 0.7sin(2k)+ 0.5cos(3k)+ 0.9sin(6k)+ 0.2cos(8k)

Case3 :

wk = sin(100k)2cos(100k)+ sin(2k)2cos(0.1k)

+ sin(−1.2k)2cos(0.5k)+ sin(k)2

+ sin(1.12k)2

Case4 :

wk = sin(1.009k)+ 2cos(0.538k)cos(0.538k)

+ sin(0.9k)+ cos(100k)+ sin(2.781k)2

+ sin(0.157k)3 + cos(0.349k)sin(4.199k)2

Figure 9 gives the excitation noises injected to the control
channel during the learning phase. It can be observed that the
excitation noises are in different frequencies and magnitudes.
However, Figure 10 shows that, although different excitation
noises result in different convergence time, the learned con-
troller gain can converge to the theoretical optimal value for
all four cases. Unlike VFA method, the simulation results
confirm that the Q-learning mechanism would not bring bias
on learning solution under the excitation noise.

VI. CONCLUSION
In this paper, we have studied the VI based Q-learning
algorithm for model-free OPFB tracker design of DTL sys-
tems. Using the augmented system approach, we have trans-
formed this problem into a regulation problem with a dis-
counted performance function, which relies on theQ-function
Bellman equation. For the solution of Bellman equation,
we have employed the VI learning mechanism to remove the
requirement of initial admissible policy, which involves the
measurement of past input, output, and reference trajectory
data. Therefore, it provides a novel solution without the state
measurement. Furthermore, the internal model is incorpo-
rated to provide the unavailable initial data. The effectiveness
of proposed design is shown by the application to a simulation
example. Future work would include extending this result
to the unknown discrete-time multi-agent systems. It is also
interesting to investigate how to classify the initial data pro-
vided by internal model controller in a practical experimental
platform as well as how to choose the value of discount factor
for a practical unknown systems.
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